基于AnnAGNPS模型的流域侵蚀产沙评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水土资源是人类最宝贵的自然资源和生存基础,土壤侵蚀是导致土地资源退化乃至彻底破坏的主要原因。三峡库区的水土保持生态环境状况,不仅关系到三峡工程的安危和经济运行年限,而且还关系到长江中上游乃至整个长江流域经济的可持续发展。库区水土流失非常严重,已成为长江中上游的重要环境问题,但是该区研究基础薄弱、手段有限。当前在三峡库区的中、大流域尺度上,采用物理过程模型对侵蚀产沙时空变化特征的研究几乎是一片空白。
     本文以长江三峡库区腹心——大宁河流域为研究对象,在3S技术支持下构建了AnnAGNPS (Annualized AGricultural Non-Point Source)模型数据库,在模型校正与验证的基础上,利用模型研究了流域侵蚀产沙时空变化特征,分析了流域及其支流的SDR值,并模拟两种BPMs对流域泥沙量的影响,为控制三峡库区水土流失和实现流域优化管理提供重要科学依据。主要研究结论如下:
     一、深入分析流域气象、地形、土壤、土地利用和作物管理等相关参数,在3S技术平台上构建了适用于库区中等流域尺度侵蚀产沙的模型数据库。
     二、用数字滤波法把水文站径流中的基流分割后,利用偏差、决定系数和Nash-Sutcliffe模拟系数3个指标评价了模型的适用性,结果表明,模型能够比较理想的预测流域年和月水平的径流量和泥沙量,适用于该流域侵蚀产沙定量评价。(1)模型校正结果显示:年水平上,预测与实测径流深偏差为-1.09%;月水平上,两者最佳拟合直线斜率为0.94,相关系数r2为0.97,NS系数0.97。(2)模型径流验证结果显示:年水平上,预测与实测径流深偏差都在-12%以内;月水平上,相关系数r2都大于0.90,NS系数都超过0.80;3年整体比较显示,两者最佳拟合直线斜率为1.04,相关系数为0.93,NS系数为0.92。(3)模型泥沙量验证结果显示:预测与实测的多年平均输沙量偏差为1.8%。
     三、探明了流域侵蚀产沙时空变化规律:(1)流域无明显流失面积1 996.8 km2,占流域总面积的47.76%,流域平均土壤侵蚀模数为1 551.7 t·km-2·a-1,流域流失面积(不含无明显流失面积)的侵蚀模数为2 650.6 t·km-2·a-1;(2)流域土壤流失量和输沙量空间差异较大,流域年均土壤侵蚀总量为648.8万t·a-1,其中136.6万t·a-1 (21.05%)泥沙沉积于流域各分室内,317.6万t·a-1 (48.97%)泥沙沉积于流域沟道系统中,其余194.6万t·a-1 (29.98%)泥沙直接输入长江干流。(3)流域内不同土地利用类型侵蚀量分析显示:坡耕地和低覆盖度草地是流域水土流失的策源地,占流域面积22.33%的耕地和5.34%的低覆盖草地侵蚀量分别占流域侵蚀总量的55.59%和10.90%。(4)侵蚀产沙季节分布集中程度很高,呈典型的单峰型。6-8月是产流产沙集中期,分别占年总量的64.26%和74.26%,其中7月份为产流产沙最高峰,分别占年总量的27.58%和34.44%。(5)侵蚀产沙年季分布差异大,径流和泥沙变异系数分别为0.45和0.41,径流深和泥沙量年季变化趋势成正相关(y = 2.30x, r2 = 0.83);产沙量不仅与年径流总量有关,而且与产流分布和强度直接相关。
     四、揭示了流域泥沙输移特性:(1)大宁河干流多年平均输沙量自上游巫溪站的124.6万t,沿程递增至大昌站的178万t,大昌站以下增加缓慢,到流域出口为194.6万t。6条支流中,西溪河对流域出口的径流量贡献最大,占20.97%。对流域出口泥沙量贡献最大是东溪河,占26.88%;巫溪站以下至大昌站的大宁河干流左岸区间以坡耕地和低覆盖度草地为主,而且年均径流深大,也是产沙集中区,如柏杨河输沙量占流域出口16.24%,年均输沙模数高达1 111.2 t·km-2·a-1。(2)上游(巫溪)——中游(大昌)——流域出口的3个干流站点控制面积其输沙模数(623.1 -594.1- 465.3 t·km-2·a-1)与SDR (0.440- 0.331-0.300)逐渐减小,两者呈正相关关系,流域面积与SDR呈负相关关系。但从6条支流看,这种关系不明显,SDR值最高的是面积最大的西溪河0.531,SDR值最低的是后溪河0.376,输沙模数最高的是面积最小的柏杨河1111.2 t·km-2·a-1,输沙模数最低是平定河402.8 t·km-2·a-1。(3)大宁河流域的SDR值为0.30,与相关文献的结果比较接近。
     五、评价了两种最佳管理措施(BMPs)的水土保持效益,结果显示,退耕还林是一种较好的治理措施,所有大于25°坡耕地种植灌木林后,将削减流域总侵蚀量和输沙量的24.5%左右。
Water and soil resources are most important for human beings survival and development. Soil erosion is a major cause for land resource degradation and the total destruction.The Three Gorges Reservoir (TGR) region is a very severely eroded region in China. The soil erosion and sedimentation of this region have been concerned by government and researchers for years. But the research techniques in this region are traditional and inefficient. The study on tempo-spatial dynamic changes of soil erosion and sediment using physically based distributed model at the large-watershed scale is almost a bank research branch in this region.
     AnnAGNPS, a continuous-simulation, watershed-scale model, is widely used to evaluate non-point source pollution from agricultural watersheds in a number of countries. AnnAGNPS simulates surface water, sediment, nutrients, and pesticides leaving the cells and their transport through the watershed. It is an expansion of the capabilities of the single event AGNPS. The watershed is subdivided into homogenous land areas (cells) with respect to soil type, land use, and land management. These areas can be of any shape from the original square grid cells of AGNPS to more appropriate hydrologic boundaries that can be generated by terrain-following Geographical Information System (GIS) software. The model enables managers to identify sensitive or critical areas of non point source pollution and to perform and evaluate various“what-if”scenarios in the decision-making process related to watershed management and specific water-quality management.
     The Daning River Watershed with a contributing drainage area of about 4 181 km2 was selected as the case study. A large number of basic data including digital elevation model (DEM), landuse, soil category and crop management, were collected through the extensive on-site investigation to set up model databe. Based on the calibration and validation of the model, the model was applied to evaluate the tempo-spatial dynamic changes of erosion and sediment, analyze the sediment delivery ration (SDR) of Daning River Watershed and its six tributaries and simulate two best management practices. The main conclusions are drawn as follows:
     With the aid of 3S (GIS, Remote Sensing, Global Position System) technology, the AnnAGNPS model database was set up in the area by analysis of rainfall characteristics, size of simulating cells, translation of soil relative parameters, characteristic of land use management, and so on.
     The model was calibrated using the monitoring runoff data at Wuxi hydrological station in 1998. The model was validated on the basis of the monitoring runoff data between 2003 and 2005 at the station and average annual sediment loading data from Dachang hydrological station. The calibration result for runoff is very satisfactory (relative errors -1.09% by year and Nash-Sutcliffe coefficient (NS) 0.97 by month). The regression of the monthly predicted runoff with the observed runoff on the line of equal values is good with a R-square value of 0.97 and a slope of 0.94. The monthly predicted runoff also matches well with the observed runoff in the validation (relative errors < -12% by year and r2> 0.90, NS > 0.80 by month). The model predicted average sediment loading over the eight-year period from 1998 to 2005 is more than 1.8% of the observed data. The predicted runoff and sediment loading compares fairly well with the observed data indicating that the model has an acceptable performance in simulation of runoff and sediment in Daning River Watershed.
     The tempo-spatial variation of soil erosion and sediment of the watershed is found.The tiny erosion area of the Daning River Watershed has come to 1 996.8 km2, accounting for 47.76% of the total watershed area. The annual average soil erosion rate of the watershed is found to be 1 551.7 t·km-2·a-1, and the rate is 2650.6 t·km-2·a-1 if tiny erosion area is not included. The soil erosion rate and erosion amount vary greatly among different land use types. The sloping lands and grasslands with low coverage cover 22.33% and 5.34% of the total area respectively, however, their erosion amounts accounted for 55.59% and 10.90% of that in the watershed. The study demonstrates that sloping lands and grasslands with low coverage is the main source of soil loss and the key of soil loss control is to utilize them rationally.
     The sediment budget of the watershed clearly shows that the average annual erosion amount of the Daning River Watershed is 6.488 million tons, 48.97% of the sediment is deposited in the reach networks, 21.05% is deposited in the cells and the rest is the output of the watershed.
     In the Daning River Watershed, runoff is positively correlated with sediment loading and annual and interannual variations of them vary greatly. The runoff and sediment losses mainly occurred between June and August. More than 64% and 74% of total runoff and sediment loading, respectively, are lost during this period. July is the peak month and more than 27 % and 34% of total runoff and sediment loadings are lost. Sediment loading is related to total annual runoff, especially to runoff distribution and intensity.
     The characteristics of sediment delivery are studied. Xixi River, one of the biggest tributaries in the Daning River Watershed, has largest runoff loading contributions up to 20.97% of the watershed outlet. But Dongxi River, the second tuiburary, has largest sediment loading contributions up to 26.88% of the watershed outlet. The area of left bank from the watershed main stream from Wuxi to Dachang is also the sediment source. Viewed from three main stream stations, i.e. Wuxi, Dachang and the watershed outlet, the sediment delivery ratio (SDR) is positively correlated with sediment loading and negatively correlated with the watershed area. But the relations are not significant. In the six tributaries, the maximum SDR is Xixi River up to 0.531 and the minimum SDR is Houxi River up to 0.376. The SDR of Daning River Watershed is 0.30, consistent with relevant conferences.
     Two BMPs have been made quantitative assessment with the AnnAGNPS before and after applied, and this method gives the scientific basis for soil erosion and sediment controlling measures. Reconverting farmland with larger than 25 gradients to forest with medium coverage will reduce 24.5% of the total erosion amount and sediment loading.
     The study demonstrates that AnnAGNPS model is successfully applied to research and control soil and water loss of Daning River Watershed, Three Gorges Reservoir Region. The model is a research tool and practical means for optimal watershed management and rational landuse resources, and can be applied for other comparable areas of the Three Gorges Reservoir Region.
引文
Lovejoy S B, Lee J G, Randhir T O, et al. Research needs for water quality management in the 21st century: A spatial decision support system [J]. Journal of Soil and Water Conservation, 1997, 52: 19-23.
    陈国阶, 陈治谏. 三峡库区及长江沿江重点地区生态与环境建设对策的指标体系与优化研究 [M]. 成都: 中科院成都山地灾害与环境研究所. 1995, 1-7.
    卜兆宏, 孙金庄, 周伏建. 水土流失的定量遥感及其应用研究进展 [J]. 土壤学报,1997, 34 (3) : 235-246.
    蔡国强. 黄土丘陵沟壑区典型小流域产沙过程模型 [J]. 水土保持通报, 1998, 18 (3): 82-89.
    蔡强国, 陈浩. 影响降雨击溅侵蚀过程的多元正交试验研究 [J]. 地理研究, 1989, 8 (4) : 28-36.
    蔡强国, 陆兆熊, 王贵平. 黄土丘陵沟壑区典型小流域侵蚀产沙过程模型 [J]. 地理学报. 1996, 51(2):108-116
    陈国祥, 谢树楠, 汤立群. 黄土高原地区流域侵蚀产沙模型研究 [M]. 黄河水利出版社, 1996.
    陈军锋, 陈秀万. SWAT 模型的水量平衡及其在梭磨河流域的应用[J]. 北京大学学报(自然科学版), 2004 (2): 264-270.
    陈明华, 周伏建, 黄炎和, 等. 土壤可蚀性因子的研究 [J]. 水土保持学报, 1995, 9 (1) :19- 24.
    窦葆璋, 周佩华. 雨滴的观测和计算方法 [J]. 水土保持通报, 1982, 2 (1) : 44-47.
    范瑞瑜. 黄河中游地区小流域土壤流失量计算方程的研究 [J]. 中国水土保持, 1985 (2) : 12-18
    高博文. 介绍土壤流失方程 R 值和 C 值的计算方法 [J] . 中国水土保持, 1982 , (4): 55-58.
    高学田, 包忠谟. 降雨特性和土壤结构对溅蚀的影响 [J]. 水土保持学报, 2001, 15 (3) : 24-27.
    关君蔚 主编. 水土保持原理 [M]. 北京: 中国林业出版社, 1996
    哈德逊. 土壤保持 [M]. 北京: 科学出版社, 1975
    贺秀斌, 张信宝, 文安邦. 川中丘陵区侵蚀产沙的尺度单元及其研究方法 [J]. 水土保持通报, 2004, 24 (3) : 18-19.
    黄金良, 洪华生, 杜鹏飞, 等. AnnAGNPS 模型在九龙江典型小流域的适用性检验 [J]. 环境科学学报, 2005, 25 (8) : 1135-1142.
    黄金良, 洪华生, 张珞平等. 基于 GIS 和 USLE 的九龙江流域土壤侵蚀量预测研究 [J]. 水土保持学报, 2004, 18(5): 75-79.
    黄炎和, 卢程隆, 付勤, 等. 闽东南土壤流失预报研究 [J]. 水土保持学报, 1993, 7 (4) : 13-18
    贾志军, 王小平, 李俊义, 等. 晋西黄土高原降雨侵蚀力研究 [J]. 中国水土保持, 1991, (1): 19-22.
    贾志军, 王小平. 晋西黄土丘陵沟壑区降雨侵蚀力计算指标的确定 [A]. 晋西黄土高原土壤侵蚀规律实验研究文集 [C]. 北京: 水利电力出版社, 1990, 12-16.
    江忠善, 宋文径. 黄河中游黄土丘陵沟壑区小流域产沙量计算 [A]. 第一次河流泥沙国际学术讨论会论文集 [C], 北京: 光华出版社, 1980.
    江忠善, 王志强, 刘志. 黄土丘陵区小流域土壤侵蚀空间变化定量研究 [J]. 土壤侵蚀与水土保持学报, 1996, 2 (1): 1-10
    柯克比, 摩根. 土壤侵蚀 [M]. 北京: 水利电力出版社, 1987
    拉尔 R 著. 水土保持学会、黄河水利委员会宣传出版中心译. 可蚀性和侵蚀性、土壤侵蚀研究方法 [M]. 北京: 科学出版社, 1991, 137-146.
    刘宝元, 张科利, 焦菊英. 土壤可蚀性及其在侵蚀预报中的应用 [J]. 自然资源学报, 1999, 14 (4): 345 - 350.
    刘昌明, 李道峰, 田英, 等. DEM 的分布式水文模型在大尺度流域应用研究 [J]. 地理科学进展, 2003, 22 (5): 437-447.
    美国土壤保持协会. 土壤侵蚀预报与控制 [M]. 北京: 农业出版社, 1981
    牟金泽, 孟庆枚. 降雨侵蚀土壤流失预报方程的初步研究 [J]. 中国水土保持, 1983 (6): 23-27
    牟金泽, 熊贵枢. 陕北小流域产沙量预报及水土保持措施拦沙计算 [A]. 第一次河流泥沙国际学术讨论会文集 [C], 北京: 光华出版社, 1980
    孙立达, 孙保平, 陈禹, 等. 西吉县黄土丘陵沟壑区小流域土壤流失量预报方程 [J].自然资源学报, 1988, (2): 141-153.
    汤立群, 陈国祥, 蔡名扬. 黄土丘陵区小流域产沙数学模型 [J]. 河海大学学报, 1990 , 18 (6) : 10-16
    唐克丽 主编. 中国水土保持 [M]. 北京: 科学出版社, 2004.
    唐克丽, 张科利, 郑粉莉, 等. 子午岭区自然侵蚀与人为加速侵蚀剖析 [J]. 西北水土保持研究所集刊, 1993, 17: 17-28.
    万超, 张思聪. 基于GIS的潘家口水库面源污染负荷计算[J]. 水力发电学报, 2003,(2): 62-68.
    王飞儿, 吕唤春, 陈英旭, 等. 基于 AnnAGNPS 模型的千岛湖流域氮、磷输出总量预测 [J]. 农业工程学报, 2003, 19: (6): 281-284.
    王建云. 利用通用流失方程计算星云湖流域污染负荷[J]. 环境工程, 2001, 19(4): 54-56.
    王礼先 主编. 水土保持学 [M]. 北京: 中国林业出版社, 1995
    王万忠, 焦菊英. 黄土高原降雨侵蚀产沙与黄河输沙 [M] . 北京: 科学出版社, 1996.
    王万忠. 黄土地区降雨侵蚀力 R 指标的研究 [J]. 中国水土保持, 1987, (12) :34 - 40.
    王星宇. 黄土地区流域产沙的数学模型 [J]. 泥沙研究, 1987, 3: 55-60.
    吴礼福. 黄土高原土壤侵蚀模型及其应用[J]. 水土保持通报, 1996 , 16 (5): 29-35.
    谢树楠, 王孟楼, 张仁. 黄河中游黄土沟壑区暴雨产沙模型的研究 [M]. 北京:清华大学出版社, 1990
    邢可霞, 郭怀成, 孙延枫, 等. 基于 HSPF 模型的滇池流域非点源污染模拟 [J]. 中国环境科学. 2004, 24 (2): 229-232.
    杨武德, 陈宝林, 徐锴. 红壤坡地不同利用方式土壤侵蚀模型研究 [J]. 土壤侵蚀与水土保持学报, 1999, 5 (1) : 52-58, 68.
    杨艳生, 史德明, 吕喜玺. 长江三峡区的坡面土壤流失量和入江泥沙量研究 [J]. 水土保持学报, 1991 , 5 (3) : 22-27.
    杨艳生, 史德明. 关于土壤流失方程中 K 因子的探讨 [J] . 中国水土保持, 1982 , 4: 39-42.
    尹国康, 陈钦峦. 黄土高原小流域特性指标与产沙统计模式 [J]. 地理学报, 1989, 44 (1) : 31-45
    张光辉, 梁一民. 黄土丘陵区沙打旺草地截留试验研究 [J] . 水土保持通报, 1995 , 15(3): 28-32.
    张宪奎, 许靖华, 邓育江, 等. 黑龙江省土壤侵蚀方程的研究 [J]. 水土保持通报, 1992, 12 (4) : 1-9, 18
    张延龙. 应用遥感与计算机进行柳河地区土壤侵蚀定量研究 [D]. 北京: 北京大学, 1988.
    郑粉莉, 康绍忠. 黄土坡面不同侵蚀带侵蚀产沙关系及其机理[J]. 地理学报, 1998, 53 (5): 422-428.
    周伏建, 陈明华, 林福兴, 等. 福建省土壤流失预报研究 [J]. 水土保持通报, 1995 , 9 (1) : 25-30, 36
    周慧平, 许有鹏, 葛小平. GIS 支持下非点源污染模型应用分析 [J]. 水土保持通报, 2003, 23 (3): 60-63.
    周佩华, 李银锄, 黄义端, 等. 2000 年中国水土流失趋势预测及其防治对策 [J]. 中国科学院西北水土保持研究所集刊, 1988 (7) : 57- 71
    朱松, 陈英旭. 小流域 N、P 污染负荷的构成比重研究 [J]. 环境污染防治, 2003, 25 (4): 226-227.
    Baginska B, Milne-Home W, Cornish P S. Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST [J]. Environmental Modelling and Software, 2003, 18 (8-9): 801-808
    Cronshey R G and Theurer F D. AnnAGNPS-Non-Point Pollutant Loading Model [A]. In Proceedings First Federal Interagency Hydrologic Modeling Conference [C]. 1998, Las Vegas, Nevada, 1-16.
    Flangan D C and Nearing M A. USDA Water erosion prediction project: hillslope profile and watershed model Documentation [R]. USDA-ARS, NSERL, Report no.10. USDA-ARS, West Lafayette, Indiana, USA. 1995.
    Fu T, N i J P, Wei C F, et al. Recent development of sloping field erosion. Journal of Soil and Water Conservation, 2001, 15 (3) : 123-128.
    Jennifer B S, George V, David B, et al. Use of AnnAGNPS model for a watershed in the coastal plain of Georgia [A]. Proceedings of the 9th National Nonpoint Source Monitoring Workshop [C], 2001.
    Knisel W G. CREAMS: A Field Scale Model for Chemical, Runoff, and Erosion from Agricultural Management Systems [R]. Conservation Res Report USDA-SEA, 1980.
    Lane L J, Renard K G, Foster G R, et al. Development and application modern soil erosion prediction technology the USDA experience [J]. Aust J Soil Resources , 1992 , 30: 893-912
    Liu B Y, Nearing M A, Shi P J, Jia Z W. Slope length effects on soil loss for steep slopes [J]. Soil Sci. Soc. of Am., 2000, 64 (5):1 759 - 1 763.
    Liu B Y, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes [J]. Transactions of the ASAE, 1994, 37(6): 1 835 - 1 840.
    Liu B Y, Zhang K L, Xie Y. An Empirical Soil Loss Equation [A]. Proceedings 12th International Soil Conservation Organization Conference, Vol. Ⅱ: Process of Soil Erosion and Its Environment Effect [C]. Beijing, Tsinghua University Press, 2002, 21-25
    Luis P. Helping states slow sediment movement [J]. Agricultural Research, 2003, 51 (12) : 12-14.
    Luzio M D, Srinivasan R, Arnold J. ArcView Interface for SWAT 2000, User’s guide [M]. Blachland Research Center, 2001.
    Nearing M A, Foster G R, Lane L J, et al. Aprocess-based soil erosion model for USDA-Water Erosion Prediction Project Technology. Trans. ASAE, 1989, 32: 1587-1593.
    Renard K G, Foster G R, Weesies G A et al. RUSLE: revised Universal Soil Loss Equation [J]. Journal of Soil and Water Conservation, 1991, 46:30-33.
    Shi Z H, Cai C F, Ding S W, et al. Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China [J]. Catena, 2004, 55: 33- 48.
    Shrestha S, Babel M S, Das Gupta A, et al. Evaluation of an annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal [J]. Environment Modelling & Software, 2006, 21: 961-973.
    Tsou M S, Zhang X Y. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS [J]. Journal of Environmental Sciences, 2004, 16 (5): 865-867
    Walling D E, He Q. Improved models for estimating soil erosion rates from caesium-137measurements. Journal of Environmental Quality, 1999, 28: 611-622.
    Williams J R. The EPIC model [A]. In: V P Singh, ed. Computer Models of Watershed Hydrology [C]. Water Resource Publications, Littleton, CO. 1995, 25: 909-1000
    Wischmeier W H, Smith D D. Predicting rainfall erosion losses from cropland east of the Rockky Mountains. Agricultural Handbook 282 [M]. Washington D. C, 1965.
    Wischmeier W H, Smith D D. Predicting rainfall erosion losses. Agricultural Handbook 537 [M]. Washington DC, 1978.
    Yong P Y, Bingner R L, Rebich R.A. Evaluation of AnnAGNPS on Missippi Delta Msea Watersheds [J]. Transactions of the ASAE, 2001, 44 (5): 1183-1190.
    Yong P Y, Dabney S M, Bingner R.L. Cost effectiveness of agricultural BMPs for sediment reduction in the Misissippi Deta [J]. Jounal of Soil and Water Conservation, 2002, 57 (5): 259-267.
    Yong P Y, Ronald L B, Richard R A. Evaluation of AnnAGNPS nitrogen loading in an agricultural watershed [J]. Journal of the American Water Resource Association, 2003, 39 (2): 457-466.
    Yong P Y, Bingner R L, Theurer F D, et al. Phosphorus component in AnnAGNPS [J]. Transactions of the ASAE, 2005, 48 (6): 2145-2154.
    Young R A, Onstad C A, Bosch D D, et al. AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds [J]. Journal of Soil and Water Conservation, 1989, 44 (2): 168-173.
    Young, R A, Onstad C A, Bosch D D, et al. AGNPS: An agricultural non-point source model. In Computer Models of Watershed Hydrology [M]. Singh, V.P. (Ed.). Water Resources Publications.1995, Highlands Ranch, CO, 1011-1020.
    Zhang X, Li S, Wang C et al. 1989, Use of caesium-137 measurements to investigate erosion and sediment sources within a small basin in the Loess Plateau of China [J]. Hydrological Processes, 3: 317-323.
    Zhang X, Higgitt D L, Walling D E. A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China [J]. Hydrological Science Journal, 1990, 35: 267-276.
    Zhang X, Walling D E, He Q. Simplified mass balance models for assessing soil erosion rates on cultivated land using caesium-137 measurements [J]. Hydrological Sciences. 1999, 44: 33-45.
    Alonso C V, Theurer F D, Havis R N. Simulating Sedimentation in Salmonid Redds [A]. In Proceedings First Federal Interagency Hydrologic Modeling Conference [C]. Las Vegas, Nevada, 1998.
    Bagnold R A. An approach to the sediment transport problem from general physics [M]. New York: U. S Geological Survey, Prof., 1966, 1-37
    Bingner R L, Darden R W, Theurer F D, et al. AnnAGNPS Input Parameter Editor Interface. First Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada, 1998, 8-18.
    Bingner R L, Garbrecht J, Arnold J G, et al. Effects of Watershed Subdivision on Simulated Runoff and Fine Sediment Yield [J]. Transactions of the American Society of Agricultural Engineers, 1997, 40 (5): 1329-1335.
    Costa-Cabral M C and Burges S J. Digital Elevation Model Networks (DEMON): A Model of Flow Over Hillslopes for Computations of Contributing and Dispersal Areas [J]. Water Resources Research, 1994, 30 (6):1681-1692.
    Douglas D H. Experiments to Locate Ridges and Channels to Create a New Type of Digital Elevation Models [J]. Cartographica, 1986, 23 (4):29-61.
    Fairfield J and Leymarie P. Drainage Networks from Grid Digital Elevation Models [J]. Water Resources Research, 1991, 30 (6):1681-1692.
    Geter W F and Theurer F D. AnnAGNPS- RUSLE Sheet and Rill Erosion. In Proceedings First Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada, 1998, 1-24.
    Johnson G L, Hanson C L, Hardegree S P, et al. Stochastic weather simulation: Overview and analysis of two commonly used models [J]. J. Appl. Meteor., 1996, 35, 1878-1896.
    Langendoen E J, Bingner R L, Alonso C V. Simulation of fluvial processes in evolving channel networks [A]. ASCE International Water Resources Engineering Conference [C]. Memphis, Tennessee, 1998,
    Mark D M. Automatic Detection of Drainage Networks from Digital Elevation Models [J]. Cartographica, 1984, 21 (2/3):168-178.
    Martz L W and De Jong E. Catch: a FORTRAN Program for Measuring Catchment area from Digital Elevation Models [J]. Computers & Geosciences, 1988, 14 (5):627-640.
    Martz L W and Garbrecht J. Numerical Definition of Drainage Network and Subcatchment Areas from Digital Elevation Models. Computers and Geosciences, 1992, 18 (6):747-761.
    Richardson C W. Stochastic simulation of daily precipitation, temperature, and solar radiation [J]. Water Resources Res., 1981, 17, 182-190.
    Theurer F D, Bingner R L, Fontenot W, et al. Partnerships in Developing and Implementing AGNPS 98: A suite of water quality models for watershed use [A]. In Proceedings of the Sixth National Watershed Conference [C]. Austin, Texas, 1999.
    Theurer F D, Clarke C D. Wash load component for sediment yield modeling [A]. In Proceedings of the fifth federal interagency sedimentation conference [C]. 1991, 1-8.
    Theurer F D, Cronshey R G. AnnAGNPS-Reach routing processed [A]. Proceedings of the first Federal Interagency Hyrologic Modeling Conference [C]. Las Vegas, Nevada, 1998, 1-32.
    Theurer F D, Lines I, Nelson T. Interaction between riparian vegetation, water temperature, and salmonid habitat [J]. American Water Resources Association Bulletin, 1984, 21 (1):53-64.
    Wu W, Vieira D A. One-Dimensional Channel Network Model CCHE1D 2.0 – Technical Manual [R]. National Center for Computational Hydroscience and engineer Univesity of Missippi, 2001.
    Yong P Y, Bingner R L, Theurer F D, et al. Phosphorus component in AnnAGNPS [J]. Transactions of the ASAE, 2005, 48 (6): 2145-2154
    Yong P Y, Bingner R L, Rebich R A. Evaluation of AnnAGNPS on Missippi Delta Msea Watersheds [J]. Transactions of the ASAE, 2001, 44 (5): 1183-1190
    Yong P Y, Dabney S M, Bingner R L. Cost effectiveness of agricultural BMPs for sediment reduction in the Misissippi Deta [J]. Jounal of Soil and Water Conservation, 2002, 57 (5): 259-267
    Yong P Y, Ronald L B, Richard A.R. Evaluation of AnnAGNPS nitrogen loading in an agricultural watershed [J]. Journal of the American Water Resource Association, 2003, 39 (2): 457-466
    Young R A, Onstad C A , Bosch D D, et al. AGNPS: An agricultural non-point source model. In Computer Models of Watershed Hydrology [M]. Singh V P (Ed.). Water Resources Publications, Highlands Ranch, CO, 1995, 1011-1020.
    Young R A, Onstad C A, Bosch D D, et al. AGNPS: A non-point source pollution model for evaluating agricultural watersheds [J]. Journal of Soil and Water Conservation, 1989, 44 (2):168-173.
    陈国阶, 陈治谏. 三峡库区及长江沿江重点地区生态与环境建设对策的指标体系与优化研究 [M]. 成都: 中科院成都山地灾害与环境研究所. 1995, 1-7.
    丁多文, 白世伟, 刘泉声等. 三峡库区重力侵蚀特征及其对重要城镇地质环境影响评价. 地球科学 [J]. 中国地质大学学报, 1996, 21 (1): 108-112
    范月娇, 周万村. 基于空间信息技术的巫山县土地利用时空变化分析 [J]. 长江流域资源与环境,2002, 11 (3: 234-239
    李锐. 巫山县旅游业发展的背景条件分析 [J]. 重庆师范学院学报 (自然科学版), 2000, 17 (增刊): 31-33.
    马泽忠. 生态环境质量评价信息系统研究与构建——以大宁河流域生态环境质量评价为例 [D]. 中国科学院研究生院博士学位论文. 成都: 中国科学院、水利部成都山地灾害与环境研究所, 2005
    冉光和, 王定祥, 李敬. 三峡水资源战略储备库的保护与开发 [J]. 改革, 2005, 2: 56-60.
    任美锷. 中国自然地理纲要 (修订第三版) [M]. 北京: 商务印书馆, 1992.
    四川省巫溪县志编纂委员会. 巫溪县志 [M].成都: 四川人民出版社, 1991, 46-88.
    巫山县国土局. 巫山土地 [M]. 重庆: 巫山县国土局, 1995: 3-12.
    徐德龙, 荣风聪. 大宁河巫溪站历史洪水分析研究 [J]. 水利水电快报, 1999, 20 (2): 28-29.
    余海鹏, 孙娅范. 巫山县生态农业建设研究 [J]. 西南农业大学学报.1998, 20 (6): 650-654
    赵济, 陈传康. 中国地理 [M]. 北京: 高等教育出版社, 1999.
    卜兆宏, 孙金庄, 周伏建. 水土流失的定量遥感及其应用研究进展 [J]. 土壤学报, 1997, 34 (3) : 235-246.
    卜兆宏. 降雨侵蚀力因子新算法的初步研究 [J]. 土壤学报, 1992, 29 (4): 408-417.
    蔡永明, 张科利, 李双才. 不同粒径制间土壤质地资料的转换问题研究 [J].土壤学报, 2003, 40 (4): 511-517.
    方纲清, 阮伏水, 吴雄海, 等. 福建省主要土壤可蚀性特征初探 [J]. 福建水土保持, 1997 (2): 19-23.
    郭新波, 红壤小流域土壤侵蚀规律与模型研究 [D]. 浙江大学博士学位论文. 浙江大学,2001.
    何电源. 中国南方土壤肥力与作物栽培施肥 [M]. 科学出版社,1994, P588.
    黄炎和, 卢程隆, 郑添发, 等. 闽东南降雨侵蚀力指标R值的研究. 水土保持学报, 1992, 6 (4): 1-5
    梁音, 史学正. 长江以南东部丘陵山区土壤可蚀性 K 值研究 [J].水土保持研究, 1999, 6(2) : 47-52.
    刘宝, 谢云, 张科利. 土壤侵蚀预报模型 [M]. 北京: 中国科学技术出版社, 2001.
    刘纪远 (主编). 中国资源环境遥感宏观调查与动态研究 [M]. 北京: 中国科学院出版社. 1996.
    吕喜玺, 沈荣明. 土壤可蚀性因子 K 值的初步研究 [J]. 水土保持学报, 1992, 6(1): 63-70.
    史学正, 于东升, 邢廷炎, 等. 用田间实测法研究我国亚热带土壤可蚀性K值 [J]. 土壤学报, 1997, 34 (4): 399-405.
    四川省农牧厅, 四川省土壤普查办公室. 四川土壤 [M]. 成都: 四川科学技术出版社, 1995.
    万县地区土地资源调查办公室. 万县地区土壤 [M], 1987.
    王万忠, 焦菊英. 中国的土壤侵蚀因子定量评价研究 [J]. 水土保持通报,1996, 16 (5): 1-20.
    吴立新. 地理信息系统原理与算法 [M]. 科学出版社, 2003.
    吴素业. 安徽大别山区降雨侵蚀力指标的研究 [J]. 中国水土保持, 1992, (2), 32-33.
    余炜敏. 三峡库区农业非点源污染及其模拟研究 [D]. 西南农业大学博士学位论文. 重庆: 西南农业大学, 2005.
    臧英,高焕文. 旱地保护性耕作土壤风蚀模型研究 [J]. 干旱地区农业研究,2006,24 (2): 1-7)
    章文波, 付金生. 不同类型雨量资料估算降雨侵蚀力 [J]. 资源科学, 2003, 25 (1): 35-41.
    周伏建, 陈明华, 林福兴, 等. 福建省土壤流失预报研究 [J]. 水土保持通报, 1995 , 9 (1) : 25-30, 36
    Feike J L, William J A, Martinus Thvan G, et al. The UNSODA Nnsaturated Soil Hydraulic Database User’s Manual Version 1.0 [M]. EPA: 600/R-96/095, 1996.
    Neitsch S L, Amold J G, Kiniry J R., et al. Soil and Water Assessment Tool User’s Manual Version 2000, Agriculture Research Service and Blackland Research Center, 2001.
    Neitsch S L, Arnodl J G, Kiniry J R, et al. Soil and water assessment tool theoretical documentation. Grassland: Soil and Water Research Laboratory and Agricultural Resersch Service, 2002.
    Renard K G, Forest G R, Weesies G A, et al. RULSE- A guide to conservation planning with the revised universal soil loss equation [M]. USDA Agricultural Handbook No.703, 1997.
    Renard K G, Freimund J R. Using monthly precipitation data to estimate the r-factor in the revised USLE [J]. Journal of Hydrology, 1994, 157: 287-306.
    Shrestha S., Babel M.S., Das Gupta A., et al. Evaluation of an annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal [J]. Environment Modelling & Software, 2006, 21: 961-973.
    Wischmeier, W H. A soil erodibility nomograph farmland and construction sites [J]. Journal of Soil and Water Conservation, 1971, 26: 189-193.
    Yu B. Rainfall erosivity and its estimation for Australian's tropics [J]. Aust. J. Soil Res, 1998, 36: 143 一 165.
    陈少志. 大宁河泥沙与巫溪县城防洪问题 [J]. 四川水利, 1998, 14 (5): 16-18
    赵海瑞, 储开凤, 尹东伟. 三峡地区水资源评价 [J]. 水文, 1995, (3): 12-20
    Arnold J G, Allen P M. Automated methods for estimating baseflow and ground water recharge from streamflow. Journal of the American Water Resources Association, 1999, 35(2):411-424.
    Arnold J G, Muttiah R S, Srinivasan R, et al. Regional estimation of base flow and groundwater recharge in the upper Mississppi river basin [J]. Journal of Hydrology, 2000, 227:21-40
    Birtles A B. Identification and separation of major baseflow components from a stream hydrograph [J]. Water Resources Research, 1978, 14(5):791-803.
    Chapman T G. Modelling stream recession flows [J]. Environmental Modelling & Software, 2003, 18: 683-692.
    Furey P R, Gupta V K. A physically based filter for separating baseflow form stream flow time sseries [J]. Water Resources Research, 2001, 37(11):2709-2722.
    Lyne V, Hollick M. Stochastic time variable rainfall runoff modeling [A]. Hydrology and Water Resources Symposium [C]. National Committee on Hydrology and Water Resources of the Institution of Engineers, 1979, 89-92.
    McNamara J P, Kane D L, Hinzman L D. Hydrograph separations in an Arctic watershed using mixing Model and graphical techniques [J]. Water Resources Research, 1997, 33: 973-983.
    Nathan R J, McMahon A M. Evaluation of Automated Techniques for Baseflow and Recession Analysis [J]. Water Resources Research, 1990, 26(7): 1465-1473.
    Mutehler C K, Bowie A J. Effect of land use on sediment delivery ratios [A]. Third federal inter-agency sedimentation conference [C]. U.S Water Resources Council, Washington D.C., 1976, 111-121.
    USDA. Sediment sources, yields, and delivery ratios [M]. National Engineering Handbook, Section 3 Sedimentation, 1972.
    Walling D E. The sediment delivery problem [J]. Journal of Hydrology, 1983, 65:209-237.
    Williams J R, Berndt H D. Sediment yield computed with universal equation [J]. Journal of hydraulics division, 1972, 98 (HY2): 2087-2098.
    Williams J R, Renard K G, Dyke P T. A new method for assessing the effects of erosion on productivity-The EPIC model [J]. Journal of Soil and Water Conservation, 1983, 38: 381-383
    张信宝. 长江上游水土流失治理的思考 [J].水土保持科技情报, 1996, (4): 7-9.
    向安东. 长江泥沙输移特性分析 [J]. 水文, 1993, (6).
    史德明等. 三峡库周边地区土壤侵蚀对库区泥沙来源的影响及其对策 [A]. 长江三峡工程对
    生态环境影响及其对策研究论文集 [C]. 北京: 科学出版社, 1987.
    景可. 长江上游泥沙输移比初探 [J]. 泥沙研究, 2002, 1: 53-59.
    吴成基. 陕南河流泥沙输移比问题 [J]. 地理科学, 1998, (1): 39-44.
    蔡强国. 黄土丘陵沟壑区典型小流域产沙过程模型 [J]. 水土保持通报, 1998, 18 (3): 82-89.
    张胜利, 于一鸣, 姚文艺. 水土保持减水减沙效应计算方法 [M]. 北京: 中国环境科学出版社, 1994, 40-43.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.