植被对建筑物自然通风的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然通风能在不消耗能源的情况下置换建筑室内的空气,改善室内温湿环境,人们对自然通风有很好的适应性,因此,自然通风是绿色生态建筑设计的发展方向。长期以来,人们对自然通风的研究主要集中在室内一侧,而对室外建筑环境关注较少。室外植被通过蒸腾作用与周围环境进行着物质与能量交换,进而影响建筑微气候;不同植被构成不同的下垫面,对室内外气流的分布也会产生不同的影响。自然通风是室内外各场(温度场、速度场等)综合作用的结果,所以植被与自然通风有着密切的关系。
     在冬冷夏热地区,夏季自然通风对建筑环境影响非常明显。本文以湘潭市某校办工厂的一栋单层厂房为研究对象。采用现场实测的方法,观测其7月份的环境气候参数,得出:(1)无论何种类型的地表,其上方空气温度在0.2m高度范围内急剧变化,0.2m以后变化趋势较平缓;(2)阴天水泥地表温度约为30℃,平均气温约为31℃,雨后初晴天水泥地表温度约为27℃,平均气温约为29℃,长阳天气水泥地表温度最高达42℃,平均气温约为32℃;(3)阴天时全天气温变化不大,晴天时下午15:00时气温最高。
     论文结合工业通风、流体力学等相关理论,建立数学模型,进行CFD数值模拟,提出了在植被区域设置源项,并将建筑物内外速度及压力耦合的方法。对裸地和有植被时改变植被面积、高度以及覆盖率作了对比分析,得出了不同植被条件对建筑物自然通风的影响及其规律,(1)植被对空气具有降温作用,最大降温为1℃,且环境气温与植被的种植面积、植被高度以及植被覆盖率与成反比;(2)植被对风流具有阻挡作用,建筑的自然通风进风量与植被的种植面积、植被高度以及植被覆盖率成反比。在所例举的情况中,当种植面积为1%厂房面积、高度为1.3倍厂房高度、覆盖率为20%绿化带面积时降温效果最好,其气温比裸地分别降低0.1℃、0.1℃、0.2℃,建筑物进风压力比裸地分别降低1.2Pa、1.3Pa、1.2Pa。
Natural ventilation can replace building indoor air, improve the indoor temperature and humidity environment in the case of non-energy consumption, and people have a good adaptability of natural ventilation. So natural ventilation is the need of construction of sustainable development, and it is the green direction of development of eco-building design. In recent years, studies about natural ventilation focus on indoor side. And vegetation exchange the matter and energy with surrounding environment through transpiration, thereby affect the near-surface atmospheric environment; different vegetation constitute different types of underlying, and it will also produce different effects on the distribution of indoor and outdoor air. Natural ventilation is caused both by the coupling indoor and outdoor fields (temperature Field, velocity field and so on), Therefore, natural vegetation has close relationship with ventilation.
     In the summer of cold winter and warm summer climate region, natural ventilation is very important to building environment. This dissertation studied a single-story factory, located in Xiangtan City. Through measured its environment parameters in July, concluded that (1) No matter what type of the underlying surface, air temperature follows that changes rapidly within the 0.2m height and trends flatly outside the 0.2m.(2)On cloudy day, cement surface temperature remains basically unchanged at about 30℃, average air temperature remains about 31℃. In the first sunny day after rain, cement surface temperature remains about 27℃, average air temperature remains about 29℃. In the hot sunny day, cement surface temperature up to 42℃, average air temperature remains about 32℃.(3)The air temperature of every moment changes little in cloudy day, and it is maximum at 15:00 in the sunny day after the rain and the hot sunny day.
     Combined with the correlative theory of industrial ventilation、fluid mechanics and so on, established mathematical model,then made the numerical simulation analysis. Proposed the methods to set the source term in the vegetation area, and coupled the speed and pressure inside and outside the building. Made a comparative analysis about bare land and vegetation, includes changes in vegetation height, coverage area and coverage, concluded the influence and laws of different vegetation on the building natural ventilation, (1)The vegetation can cool the air temperature and block the air flow, the maximum temperature drop is 1℃, the environment air temperature are directly proportional to vegetation planting area, vegetation height and vegetation coverage.(2)The vegetation have a blocking effect on the air current, and is inversely proportional to vegetation planting area, vegetation height and vegetation coverage. In the case of enumerated, when planting area of coverage is 1% factory are, plant height is 1.3 times factory height and coverage rate is 20% greenbelt square , the cooling effect is best, and reduced 0.1℃, 0.1℃and 0.2℃when compared with the bare land, and the building inlet pressure reduced 1.2Pa, 1.3Pa and 1.2Pa.
引文
[1]张溪泉.节能与建筑[J].上海建材,2004
    [2]刘邦营.我国建筑节能技术的发展及应用分析[J].中国青年科技,2006,5,18(4)
    [3]张金萍,李安桂.自然通风的研究应用现状与问题探讨[J].暖通空调,2005,35(8):32-38
    [4]王威,狄洪发,江亿等.不同地表状况下的温度分布比较研究[J].北方园艺,2001,4:24-26
    [5]林波荣.绿化对室外热环境影响的研究[D].清华大学建筑技术科学系学位论文,2004
    [6]陈星,雷鸣,汤剑平.地表植被改变气候变化影响的模拟研究[J].地球科学进展,2006,21(10):1075-1082
    [7]欧阳沁.自然风的1/f紊动特性的研究现状与展望[C].2002年全国暖通空调制冷学术年会论文集.2002
    [8]Olesen B W. Guidelines for comfort[J]. ASHRA E J, 2000, 42(8):41-46
    [9]Oseland N A. Acceptable temperature ranges in naturally ventilated and air conditioned offices[J]. In: ASHRA E Trans.1998, 104(1).1018-1030
    [10]赵平歌,宋慧.建筑自然通风的影响因素及实现途径[J].房材与应用,2005,5:54-56
    [11]万鑫,苏亚欣.现代建筑中自然通风技术的应用[J].建筑节能,2007,09:12-15
    [12]黄晨,李美玲.大空间建筑室内垂直温度分布的研究[J].暖通空调,1999,29(5):28-33
    [13]段双平,张国强,彭建国,等.自然通风技术研究进展[J].暖通空调,2004,34(3):22-28
    [14]李晓峰,谭刚.自然通风设计方法研究(一)理论与方法[C].见:全国暖通空调制冷200年学术年会论文集.2000
    [15]韩焕金.城市绿化树种生态功能研究[D].东北林业大学硕士论文,2002,5
    [16]Akira Hoyano, Climato logical Uses of Plants for Solar Control and the Effects on the Thermal Environment of a Building[J], Energy and Buildings,11(1988)181-199
    [17] I. Saito, O. Ishihara, T. Katayama. Study of the effect of green areas on the thermal environment in an urban area.Journal of Energy and Buildings[J].1990,15-16:443-446
    [18]A.H. Rosenfeld, H. Akbari, S. Bretz, B. L. Fishman, D. M. Kurn, D. Sailor, H.Taha. Mitigation of urban heat islands: materials, utility programs, updates[J]. Journal of Energy and Buildings.1995,22:55-265
    [19]M.Santamouris, N.Papanikolaou, I.Livada,I.Koronakis, C.Georgakis, A.Argiriou,D.N.Assimakopoulos. On the impact of urban climate on the energy consumption of buildings[J]. Solar Energy.2001, 70:201-216
    [20]陈健等,北京夏季绿地小气候效应.《绿化环境效应研究》[M],中国环境科学出版社,1992,1-8
    [21]蒋国碧,试说重庆城市绿化的降温效应.《绿化环境效应研究》[M],中国环境科学出版社,1992,9-15
    [22]蒋美珍等,园林绿化改善小气候的功能.《绿化环境效应研究》[M],中国环境科学出版社,1992,19-22
    [23]吴钦传,南京城市绿化树木改善小气候的效应.《绿化环境效应研究》[M],中国环境科学出版社,1992,16-18
    [24]陆鼎煌,北京市区绿化与居民夏季舒适度.《绿化环境效应研究》[M],中国环境科学出版社,(1992)
    [25]蒋慧君.绿色植被对建筑物室内外空气环境影响的初步研究[D]:[学位论文].西安:西安建筑科技大学环境工程系,1998
    [26]陈自新,苏雪痕,刘少宗等.北京城市园林绿化生态效益的研究(2)[M].中国园林,Vol.14,No.56,1998(2):51-54
    [27]陈自新,苏雪痕,刘少宗等.北京城市园林绿化生态效益的研究(3)[M].中国园林,Vol.14,No.57,1998(3):53-56
    [28]王威,狄洪发,江亿等.草坪环境下温度分布试验研究[J].北方园艺.2001年02期.47-49
    [29]周广胜.植物给气候号脉———访中科院植物所[N],科技日报.2001
    [30]韩焕金.城市绿化树种生态功能研究[D].东北林业大学硕士论文,2002,5
    [31]林波荣.绿化对室外热环境影响的研究[D].清华大学工学博士学位论文,2004.4
    [32]郭雨华,赵廷宁,孙保平等.灌木林对地表风况及空气动力学参数影响的野外调查研究——以丰宁满族自治县小坝子乡为例[J].林业调查规划,2006.8.31(4):72-75
    [33]胡永红,王丽勉,秦俊等.不同群落结构的绿地对夏季微气候的改善效果[J].安徽农业科学,2006,34(2):235-237
    [34]石雪峰,夏建新,吉祖稳.植被条件对近地表风速垂线分布的影响[J].中央民族大学学报(自然科学版),2007,16
    [35]王汉青.通风工程[M].机械工业出版社.2005.03.
    [36]李克资.关于建筑自然通风设计的探讨[R].贵阳铝镁设计研究院.贵阳:2009,36,2:35-38
    [37]周国逸.生态系统水热原理及其应用[M].北京:气象出版社,1997:178-187.
    [38]张永志,赵首萍,徐明飞等.不同蒸腾作用对番茄幼苗吸收Pb、Cd的影响[J].生态环境学报,2009,18(2):515-518
    [39]郝建军,康宗利.植物生理学[M].北京:化学工业出版社,2005:125
    [40]Michael Tausz Charles, Warren R, Mark A. Adams. Dynamic light use and protection from excess light in upper canopy and coppice leaves of了Nothofagus cunninghamiiin an old growth, cool temperate rainforest in Victoria, Australia[J]. New Phytologist., 2005,165(1):143-156
    [41]李为,吴耿,余龙江等.桂林岩溶试验场不同地貌部位黄荆蒸腾作用的比较研究[J].武汉植物学研究,2007,25(3):316-319
    [42]王介民,高峰,刘绍民.流域尺度ET的遥感反演[J].遥感技术与应用, 2003,18(5):332-338
    [43]王孟本,李洪建,柴宝峰等.树种蒸腾作用光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410
    [44]王孟本,李洪建,柴宝峰.晋西北小叶杨林水分生态的研究[J].生态学报,1996,16(3):232-237
    [45]王翼龙,张硕新,雷瑞德等.秦岭火地塘林区锐齿栎光合、蒸腾特性[J].西北林学院学报,2003,18(4):9-12
    [46]肖文发,徐德应,刘世荣,等.杉木人工林针叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38-46
    [47]翟洪波,李吉跃,魏晓霞.应用热扩散技术对油松栓皮栎比导率的研究[J].林业科学,2006,42(8):14-17
    [48]马玲,赵平,饶兴权.乔木蒸腾作用的主要测定方法[J].生态学杂志,2005,24(1):88-96
    [49]张华,李锋瑞,张铜会等.春季裸露沙质农田土壤风蚀量及变异特征[J ].水土保持学报,2002 ,16 (1):29 - 32
    [50]刘应中,缪国平.高等流体力学(第二版)[M].上海交通大学出版社,2002,12(3)
    [51]王福军.计算流体动力学分析—CFD软件原理与应用[M].清华大学出版社,2005,5:7-11
    [52]H.K. Versteeg, W. Malalasedera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method[J]. Wiley, New York, 1995
    [53]H. Schlichting, Boundary Layer Theory, 8th ed[J]. McGrawHill, New York,1979
    [54]C.J.Chen,S.Y.Jaw. Fundamentals of Turbulence Modeling[M]. Taylor&Francis, Washington, 1998
    [55]P. Moin, Progress in large eddy simulation of turbulence flows[J]. AIAA paper,94-15761,1997
    [56]B.E. Launder,D.B. Spalding, Lectures in Mathematical Models of Turbulance[M]. Academic Press, London,1990
    [57]S.V.Patanker,D.B.Spalding, A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int J Heat Mass Transfer,15:1787-1806,1972
    [58]Pingtong Zeng, Hidenori Takahashi, A first-order closure model for the wind flow within and above vegetation canopies[J]. Agricultural and Forest Meteorology, 2000,103:301-313
    [59]T.H. Shin, W.W. Liou, A. Shabbir, Z. G. Yang, J. Zhu, A new k ?εeddy viscosity model for high Reynolds number turbulent flows[J]. Comput Fluids. 24(3):227-238, 1995
    [60]王新华.住宅自然通知风的数值模拟及气候效应研究[D].天津大学硕士学位论文,2008,5
    [61]蒋慧君,张鹤飞.绿色植被内空气温湿度计算的数学模型[J].太阳能学报,2003-2.
    [62]戴志远.植物的叶[M].台湾:幼狮文化事业公司,1990.
    [63][荷].高德力安.作物微气象学[M].北京:北京科学出版社,1985.
    [64]张良诚,郭延平.用能量平衡法测定叶子边界层阻力[N].植物生理通讯.2001,6.
    [65]刘伟.多孔介质传热质理论与应用[M].科学出版社.2006,12.
    [66]George E.DevVaull, John A. King,Ronald J.Lantzy et al.Understanding Atmospheric Dispersion of Accidental Releases[M].New York: Center for Chemical Process Safety of The American Institute of Chemical Engineers.1995,6-13
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.