野生型和突变CFTR氯离子通道天然小分子激活剂的发现与分子药理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文工作的目的是对中药单体化合物荷叶碱和姜黄素的CFTR氯离子通道激活作用进行系统的分子药理学研究,以评价其在治疗CF疾病中的可能性和策略。CFTR由于其突变能导致致命性遗传疾病CF而备受关注,人们对其结构、功能进行大量研究取得了很大成果。目前,寻找能够激活野生型和突变型CFTR功能的小分子调节剂是CFTR有关研究的重点之一。我们实验组在前期实验中利用稳定表达人CFTR和对卤族元素碘离子高度敏感的荧光绿蛋白突变体EYFP-H148Q的Fischer大鼠甲状腺上皮细胞为筛选模型,在中药单体化合物库中发现了大量野生型和突变型CFTR Cl~-通道激活剂。在此基础上我们选择了荷叶碱和姜黄素,利用荧光细胞功能测定模型、短路电流测定技术以及细胞膜片钳技术等手段对二者的CFTR氯离子通道激活作用进行系统的分子药理学研究。
     结果表明,生物碱类化合物荷叶碱对野生型和ΔF508突变型CFTR Cl~-通道具有激活作用,而对G551D突变型CFTR Cl~-通道无激活作用。黄酮类化合物姜黄素不能纠正ΔF508-CFTR蛋白胞内转运的障碍,但却具有纠正其通道开放障碍的功能;而且姜黄素对G551D突变型CFTR Cl~-通道也有激活作用。上述两种化合物对野生型和突变型CFTR Cl~-通道的激活作用具有作用迅速、可逆、剂量依赖的特点,上述活性依赖于细胞内cAMP水平而不提高细胞内cAMP水平。机制分析结果显示它们可能是通过与CFTR直接结合而发挥作用的
     荷叶碱与姜黄素具有多方面药理作用,是对CFTR具有激活作用的天然化合物之一,将在阐明CFTR活性机制及作为先导化合物开发与CFTR有关的疾病治疗药物等方面具有重要用途。
Content:The purpose of this study was to investigate the molecular pharmacological mechanism of two natural compounds,nuciferine and curcumin,on CFTR chloride channel in order to evaluate possibility and strategy of their potential use in CF therapy.Mutations of CFTR may lead to the lethal genetic disease Cystic fibrosis (CF),so many attentions have been paid to the CFTR study.Great endeavors have been paid to the study CFTR,and great progress has been achieved in small molecule CFTR regulator identification.Previously,our lab identified a group of CFTR(both wild-type and mutant forms) activators from Chinese herbs by using a cell-based fluorescence assay.Based on this,in this paper we systematically investigated effect of nuciferine and curcumin on CFTR chloride channel activity by using the fluorescence assay,Ussing chanmber short-circuit current and patch-clamp technique.
     We demonstrated that nuciferine activated both wild-type and AF508 mutant CFTR Cl-channel activity,but had no effect on G551D mutant CFTR;curcumin corrected both AF508 and G551D mutant CFTR channel gating defect,but did not correct AF508 mutant CFTR processing defect.Activation of CFTR by these potentiators is rapid,reversible,dose-dependent and cAMP-dependent,but does not elevate cellular cAMP level.Mechanism analyses suggest that they work by a direct binding to CFTR molecule way.
     As natural CFTR activators,nuciferine and curcumin may be useful for probing CFTR channel gating mechanisms and as a lead compound to develop pharmacological therapy of CFTR-related disease.
引文
1.Riordan JR,Rommens JM,Kerem BS,et al.Identification of the cystic fibrosis gene:Cloning and characterization of complementary DNA[J].Science,1989,245:1066-1072.
    2.Romeo G,Devoto M,Galietta LTV.Why is the cystic fibrosis gene so frequent?[J].Hum Genet,1989,84:1-5
    3.Welsh M.J.,and Smith A.E.Molecular mechanisms of CFTR chloride channel dysfunction in.cystic fibrosis[J].Cell,1993,73:1251-1254.
    4.Farrell PM.Improving the health of patients with cystic fibrosis through newborn screening.Wisconsin Cystic Fibrosis Neonatal Screening Study Group.Adv Pediatr,2000,47:79-115.
    5.Khan T Z,Wagener J S,Bost T,et al.Early pulmonary inflammation in infants with cystic fibrosis[J].Am J Respir Crit Care Med,1995,151:1075-1082.
    6.Yang Y,Janich S,Cohn J A,et al.The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment[J].Proc.Natl.Acad.Sci,1993,90:9480-9484.
    7.Loo M A,Jensen T J,Cui L,et al.Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome[J].EMBO J,1998,17(23):6879-6887.
    8.Farinha CM,Nogueira P,Mendes F,et al.The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70[J].Biochem J,2002,366(3):797-806.
    9.Kopelman H,Durie P,Gaskin K,et al.Pancreatic fluid secretion and protein hyperconcentration in cystic fibrosis[J].N Engl J Med,1985,312(6):329-334.
    10.Kerem E,Corey M,Kerem BS,et al.The relation between genotype and phenotype in cystic fibrosis analysis the common mutation (F508)[J].N Eng J Med,1990,323:1517-1522.
    11.Kristidis P,Bozon D,Corey M,et al.Genetic determination of exocrine pancreatic function in cystic fibrosis[J].Am J Hum Genet,1992,50:1178-1184.
    12.Hamosh A,Corev M.Correlation between genotype and phenotype in patients with cystic fibrosis[J].N Eng J Med,1993,329:1308-1313.
    13.Eggermont E,De Boeck K.Small-intestinal abnormalities in cystic fibrosis patients[J].Eur J Pediatr,1991,150(12):824-828.
    14.Shwachman H.,and I Antonowicz.Studies on meconium.In:Gastroenterology and Nutrition in Infancy,edited by E.Lebenthal[J].New York:Raven,1981,83-93.
    15.Park RW,Grand RJ.Gastrointestinal manifestations of cystic fibrosis:a review[J].Gastroenterology,1981,81(6):1143-1161.
    16.Knowles,M.R.,M.J.Stutts,et al.Abnormal ion permeation through cystic fibrosis respiratory epithelium[J].Science,1983,221:1067:1070.
    17.Quinton PM.Chloride impermeability in cystic fibrosis[J].Nature,1983,301(5899):421-422.
    18.Stigers KD.,Soth MJ.,Nowick JS.Designed molecule that fold tomimic protein secondary structures[J].Current opinion in chemical Biology,1999,6:714-723.
    19.Livnah O.,Stura EA.,Johnson DL.,et al.Functional mimicry of a protein hormone by a peptide agonist:the EPO receptor complex at 2.8A[J].Science,1996;273:464-471.
    20.Bunnett NW.,Bouvier M.,De Blasi A.Peptide G-protein-coupled receptors meet at Erice[J].Trends in Pharmacological.Sciences,1998,19:343-346.
    21.Berger,HA.,M.P.anderson.Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel[J].J.Clin.Invest,1991,88:1422-1431.
    22.Hart P,Warth J D,Levesque P C,et al.Cystic fibrosis gene encodes a cAMP-dependent chloride channel in heart[J].Proc.Natl.Acad.Sci,1996,93:6343-6348.
    23.Yajima T,Nagashima H,Tsutsumi-Sakai R,et al.Functional activity of the CFTR Cl-channel in human myocardium[J].Heart Vessels,1997,12(6):255-261.
    24.Kunzelmann K & Schreiber R.CFTR,a regulator of channels[J].J.Membr.Biol,1999,168:1-8.
    25.Hamosh A,Rosenstein BJ,Cutting GR.CFTR nonsense mutations G542X and W1282X associated with severe reduction of CFTR mRNA in nasal epithelial cells[J].Hum Mol Genet,1992,l:542-544.
    26.Cheng SH,Gregory RJ,Marshall J,et al.Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis[J].Cell,1990,63(4):827-834.
    27.Strong TV,Smit LS,Turpin SV,et al.Cystic fibrosis gene mutations in two sisters with mild disease and normal sweat electrolyte levels[J].N Eng J Med,1991,325:1630-1634.
    28.Anderson MP,Walsh MJ.Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains[J].Science,1992,257:1701-1704.
    29.Sheppard DN,Rich DP,Ostedgaard LS,et al.Mutations in CFTR associated with mild disease form Cl channels with altered pore properties[J].Nature,1993,362:160-164.
    30.Highsmith WE Jr,Burch LH,Zhou Z,et al.Identification of a splice site mutation (2789-5G-A) associated with small anounts of normal CFTR mRNA and mild cystic fibrosis[J].Hum Mutat,1997,9:332-338.
    31.Zielenski J,Markiewicz D,Lin SP,et al.Skipping of exon 12 as a consequence of a point mutation (1898-5G→T) in the cystic fibrosis transmembrane conductance regulator gene found in a consanguineous Chinese family[J].Clin Genet,1995,47:124-132.
    32.Ellgaard L.,Molinari M.,and Helenius A.Setting the standards:quality control in the secretory pathway[J].Science,1999,286:1882-1888.
    33.Kleizen B.,Braakman I.,and de Jonge H.R.Regulated trafficking of the CFTR chloride channel[J].Eur.J.Cell Biol,2000,79:544-556.
    34.Sharma M.,Benharouga M.,Hu W,et al.Conformational and temperature-sensitive stability defects of the delta F508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments[J].J.Biol.Chem,2001,276:8942-8950.
    35.Dalemans W,Barbry P,Champigny G,et al.Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutaion[J].Nature,1991,354:526-528.
    36.Haws C.M,Nepomuceno IB,Krouse ME,et al.Delta F508-CFTR channels:kinetics,activation by forskolin,and potentiation by xanthines[J].Am.J.Physiol,1996,270:C1544-C1555.
    37.Li C,Ramjeesingh M,Wang W,et al.ATPase Activity of the Cystic Fibrosis Transmembrane Conductance Regulator[J].J.Biol.Chem,1996,271:28463-28468.
    38.Howell L.D,Borchardt R,Cohn J.A.ATP hydrolysis by a CFTR domain:pharmacology and effects of G551D mutation[J].Biochem.Biophys.Res.Commun,2000,271:518-525.
    39.Jensen TJ,Loo MA,Pind S,et al.Multiple proteolytic systems,including the proteasome,contribute to CFTR processing[J].Cell,1995,83:13-20.
    40.Sato S,Ward CL,Krouse ME,et al.Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation[J].J.Biol.Chem,1996,271:635-638.
    41.Kelley TJ,al-Nakkash L,Drumm ML.CFTR-mediated chloride permeability is regulated by type Ⅲ phosphodiesterases in airway epithelial cells[J].Am.J.Respir.Cell.Mol.Biol,1995,13:657-664.
    42.Smith SN,Middleton PG,Chadwick S,et al.The in vivo effects of milrinone on the airways of cystic fibrosis mice and human subjects[J].Am.J.Respir.Cell.Mol.Biol,1999,20:129-134.
    43.Kelley TJ,Thomas K,Milgram LJ,et al.In vivo activation of the cystic fibrosis transmembrane conductance regulator mutant deltaF508 in murine nasal epithelium[J].Proc.Natl Acad.Sci.USA,1997,94:2604-2608.
    44.Andersson C & Roomans GM.Activation of delta F508 CFTR in a cystic fibrosis respiratory epithelial cell line by 4-phenylbutyrate,genistein and CPX[J].Eur.Respir.J,2000,15:937-941.
    45.Illek B,Fischer H,Santos GF,et al.cAMP-independent activation of CFTR Cl channels by the tyrosine kinase inhibitor genistein[J].Am.J.Physiol,1995,268:C886-893.
    46.Hwang TC,Wang F,Yang IC,et al.Genistein potentiates wild-type and delta F508-CFTR channel activity[J].Am.J.Physiol,1997,273:C988-998.
    47.Gekko K,and Ito H.Competing solvent effects of polyols and guanidine hydrochloride on protein stability[J].J.Biochem.(Tokyo),1990,107:572-577.
    48.Guay-Broder C,Jacobson KA,Barnoy S,et al.Al receptor antagonist 8-cyclopentyl-l,3-dipropylxanthine selectively activates chloride efflux from human epithelial and mouse fibroblast cell lines expressing the cystic fibrosis transmembrane regulator delta F508 mutation[J].Biochemistry,1995,34:9079-9087.
    49.Eidelman O.,Zhang J.,Srivastava M.,et al..Cystic fibrosis and the use of pharmacogenomics to determine surrogate endpoints for drug discovery[J].Am J Pharmacogenomics,2001,l(3):223-238.
    50.Galietta,L.J.V.,Haggie,P.M.Green fluorescent protein-based halide indicators with improved chloride and iodide affinities[J].FEBS Lett,2001,499:220-224.
    51.Schultz BD,Singh AK,Devor DC,et al.Pharmacology of CFTR chloride channel activity[J].Physiol Rev,1999,79:109-144.
    52.Becq F,Jensen T J,Chang X B,et al.Phosphatase inhibitors activate normal and defective CFTR chloride channels[J].Proc Natl Acad Sci U S A,1994,91 (19):9160-9164.
    53.Renaud D(?)rand,Laurence Bulteau-Pignoux,and Fr(?)d(?)ric Becq.The Cystic Fibrosis Mutation G551D Alters the Non-Michaelis-Menten Behavior of the Cystic Fibrosis Transmembrane Conductance Regulator(CFTR) Channel and Abolishes the Inhibitory Genistein Binding Site[J].J Biol Chem,2002,277(39):35999-36004.
    54.徐进宜.《药物化学》.北京:化学工业出版社,2006.4-7.
    55.彭涛.组合化学及其在药物开发中的应用[J].计算机与应用化学,2005,22(2):103-107.
    56.宋晓凯.《天然药物化学》.北京:化学工业出版社,2004.1-7.
    57.张董喆,张宾,孙曙光.中药的现代化离不开中医药理论[J].中医药管理杂志,2008,16(3):192-193.
    58.王智民.中药药效物质基础的系统研究是中药现代化的关键[J].中国中药杂志,2003,28(12):1111-1113.
    59.刘淑萍,樊淑彦,侯海妮,等.荷叶化学成分及药理作用研究进展[J].河北医科大学学报,2004,25(4):254-256.
    60.肖桂青,卢向阳,田云,等.荷叶中生物碱类成分的研究进展[J].化学与生物工程,2006,23(5):1-2.
    61.涂长春,李晓宇,杨军平,等.荷叶生物总碱对肥胖高脂血症大鼠减肥作用的实验研究[J].江西中医学院学报,2001,13(3):120-121.
    62.唐裕芳,张妙玲,刘忠义,等.荷叶生物碱的提取及其抑菌活性研究[J].广州食品工业科技,2004,20(2):51-53.
    63.Kashiwada Y,Aoshima A,Ikeshiro Y,et al.Anti-HIV benzyliso2 quinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera,and structure-activity correlations with related alkaloids[J].Bioorganic edicinal Chemistry,2005,13(2):443-448.
    64.Boustie J,Stigliani J L,Montanha J,et al.Antipoliovirus structure -activity relationships of some aporphine alkaloids[J].J Nat Prod,1998,61(4):480-484.
    65.Kunitomo J.Alkaloids of Nelumbo Nucifera[J].Phytochemistry,1973,12:699-701.
    66.Chulia S,Ivorra M D,Cave A,et al.Relaxant activity of three aporphine alkaloids from Annona cherimolia on isolated aorta of rat[J].J Pharm Pharmacol,1995,47(8):647-650.
    67.Bhattacharya S K,Bose R,Ghosh P,et al.Psychopharmacological studies on(-)-nuciferine and its Hofmann degradation product atherosperminine[J].Psychopharmacology,1978,59(1):29-33.
    68.Polc P,Haefely W.Effects of intravenous kainic acid,N-methyl-D-aspartate,and(-)-nuciferine on the cat spinal cord[J].1Naunyn Schmiedebergs Arch Pharmacol,1977,300(3):199-203.
    69.于冬青,邓华聪.姜黄素药理作用的研究进展[J].山东医药.2005,42(2)72-73.
    70.Quiles JL,Mesa MD,Ramirez-Tortosa CL,et al.Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits[J].Arterioscler Thromb Vasc Biol,2002,22(7):1225-1231.
    71.陈文星,刘乐平,李璘,等.姜黄素抗抑郁作用及其机理研究[J].中药新药与临床药理,2006,17(5):317-320.
    72.王春彬,高大中.姜黄素研究进展以及在心血管中的应用[J].心血管病学进展.2005,6:614-616.
    73.齐莉莉,王进波.单体姜黄素稳定性的研究[J].食品工业科技.2007,1:181-182.
    74.Ma T,Thiagarajah JR,Yang H,et al.Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion[J].J Clin Invest,2002,110(11):1651-1658.
    75.Galietta LV,Jayaraman S,Verkman AS.Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists[J].Am J Physiol Cell Physiol,2001,281(5):C1734-1742.
    76.Ma T,Vetrivel L,Yang H,et al.High-affinity activators of cystic fibrosis transmembrane conductance regulator(CFTR) chloride conductance identified by high-throughput screening[J].J Biol Chem,2002,277(40):37235-37241.
    77.Yang H,Shelat AA,Guy RK,et al.Nanomolar Affinity Small Molecule Correctors of Defective {Delta}F508-CFTR Chloride Channel Gating[J].J Biol Chem,2003,278(37):35079-35085.
    78.Hwang TC,Sheppard DN.Molecular pharmacology of the CFTR Cl- channel[J].Trends Pharmacol Sci,1999,20(11):448-453.
    79.Chang XB,Tabcharani JA,Hou YX,et al.Protein kinase A(PKA)still activates CFTR chloride channel after mutagenesis of all 10 PKA consensus phosphorylation sites[J].J Biol Chem,1993,268(15):11304-11311.
    80.Welsh MJ,Smith AE.Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis[J].Cell,1993,73(7):1251-1254.
    81.Egan ME,Pearson M,Weiner SA,et al.Curcumin,a major constituent of turmeric,corrects cystic fibrosis defects[J].Science,2004,304:600-602.
    82.Song Y,Sonawane ND,Salinas D,et al.Evidence against the rescue of defective DeltaF508-CFTR cellular processing by curcumin in cell culture and mouse models[J].J Biol Chem,2004,279(39):40629-4063.
    83.Berger AL,Randak CO,Ostedgaard LS,et al.Curcumin stimulates cystic fibrosis transmembrane conductance regulator CI" channel activity[J].J Biol Chem,2005,280(7):5221-5226.
    84.Dragomir A,Bjorstad J,Hjelte L,et al.Curcumin does not stimulate cAMP-mediated chloride transport in cystic fibrosis airway epithelial cells[J].Biochem Biophys Res Commun,2004,322(2):447-451
    85.Lipecka J,Norez C,Bensalem N,et al.Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin:involvement of the keratin 18 network [J].J Pharmacol Exp Ther,2006,317(2):500-505.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.