12株瘤胃细菌的分离及痤疮丙酸杆菌对瘤胃微生物发酵的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用无菌采取健康奶牛瘤胃液,按照厌氧菌分离鉴定的方法,运用厌氧菌专用培养基CDC厌氧血琼脂和丙酸杆菌属特异性培养基SLB琼脂,筛选出12株瘤胃厌氧菌,编号分别为5、6、10、11、13、16、17、22、26、27、30、32,并进行形态学观察及生化分析。
     根据GenBank中细菌16S rRNA序列保守区设计通用引物,从基因组DNA中分别克隆出12株瘤胃厌氧菌16S rRNA基因。经过序列测定,将所得序列经BLAST对GenBank数据库进行同源性分析,同时结合形态学及生物化学反应鉴定结果证实,所分离菌株分别为:蜡样芽孢杆菌(Bacillus cereus)、草乳杆菌(Lactobacillus graminis)、弯曲乳杆菌(Lactobacillus curvatus)、吉氏库特菌(Kurthia gibsonii)、粪肠球菌(Enterococcus faecalis)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、牛链球菌(Streptococcus bovis)、志贺氏菌(Shigellae)、痤疮丙酸杆菌(Propionibacterium acnes)、氧化木糖无色杆菌(Achromobacter xylosoxidans)、夏威夷肠球菌(Enterococcus hawaiiensis)、产粘棒状杆菌(Corynebacterium vitarumen)。其中编号26的痤疮丙酸杆菌为瘤胃内生成丙酸的优势菌之一。
     为了阐明痤疮丙酸杆菌的体外发酵特性,取健康羊瘤胃液,加入痤疮丙酸杆菌菌液(浓度为2.7×10~8个/mL)及其作用底物乳酸(浓度为2g/L),进行连续培养,于培养0、2、4、6、8、10、12、24、36、48h,分别检测培养液的pH及乙酸、丙酸、丁酸、乳酸含量。体外培养试验结果显示:随着培养时间的延长,培养液pH在培养到12h降至最低值,为6.13;乙酸、丙酸、丁酸浓度(mmol/L)均在培养到12h升至最大值,分别为39.86、28.57、33.91;乙酸/丙酸值在培养到12h降至1.40的最低值;乳酸浓度则一直呈下降趋势。
     为了阐明痤疮丙酸杆菌在瘤胃内的发酵特性,取造瘘羊6只,分为实验组和对照组,每组3只。实验组羊经瘤胃瘘管注入痤疮丙酸杆菌培养液100mL(浓度为2.7×10~8个/mL),对照组注入等量生理盐水,于培养0、2、4、6、8、10、12、24h,采集瘤胃液检测pH、乙酸、丙酸、丁酸、乳酸含量。体内试验结果显示:在培养12h时,对照组和实验组的pH均降至最低,分别为6.16和6.02,并且实验组显著地低于对照组(p<0.05);对照组和实验组的乙酸和丙酸及丁酸的浓度(mmol/L)均升至最高,分别为59.25、69.13和23.27、33.36及10.76、15.86,并且实验组三项指标均显著地高于对照组(p<0.05);对照组和实验组的乳酸浓度(mmol/L)、乙酸/丙酸值均呈下降趋势,但是实验组两项指标下降幅度显著地大于对照组(p<0.05)。
     本试验痤疮丙酸杆菌体内外发酵试验证明痤疮丙酸杆菌能利用乳酸生成挥发性脂肪酸(VFA),使pH降低,提高发酵生成丙酸的量,降低了乙酸/丙酸的值,发酵类型倾向于丙酸型。
Twelve strains of the anaerobic bacteria, which named as 5, 6, 10, 11, 13, 16, 17, 22, 26, 27, 30 and 32, respectively, were isolated from rumen fluid of health dairy cows by CDC Blood Agar Base and Sodium Lactate Broth (SLB) which are specific to anaerobes and Propionibacterium respectively , and the morphological and biochemical character of the bacteria were analyzed for each of them . The 16S ribosomal RNA (16S rRNA) genes of them were amplified by polymerase chain reaction (PCR) and sequenced. The strains of 5, 6, 10, 11, 13, 16, 17, 22, 26, 27, 30 and 32 were identified as Bacillus cereus, Lactobacillus graminis, Lactobacillus curvatus, Kurthia gibsonii, Enterococcus faecalis, Bacillus amyloliquefaciens, Streptococcus bovis, Shigellae, Propionibacterium acnes, Achromobacter xylosoxidans, Enterococcus hawaiiensis, Corynebacterium vitarumen, respectively through morphology, biochemical characteristics and 16S rRNA gene sequence.
     Propionibacterium acnes is an anaerobic bacterium known as the ruminal predominant lactate-fermenting species, and can ferment lactic acid to acetic acid and propionic acid via Embden-Meyerhof-Parnas pathway (EMP) and hexose monophosphate pathway (HMP).
     To understand fermentation characteristics of Propionibacterium acnes in vitro, in vitro rumen fluid from health sheep, which added into lactic acid (2g/L), were cultured for 48h with Propionibacterium acnes(2.7×108/mL). Rumen fluid was sampled for analysis of pH and Volatile Fatty Acid (VFA, acetic acid, propionic acid, butyric acid) and lactic acid, at 0h, 2h, 4h, 6h, 8h, 10h, 12h, 24h, 36h, and 48h after being cultured. The results shown: with prolongation of the culture time, at 12h of culture the pH of the rumen fluids decreased to the lowest, which is 6.13. The concentrations of acetic acid, propionic acid and butyric acid increased to the highest at same time, which were 39.86、28.57、33.91 respectively. The ratio of C2/C3 decreased to the lowest at same time. The concentrations of lactic acid decreased contimuously.
     To understand fermentation characteristics of Propionibacterium acnes in vivo, six sheep were medially individed into two groups. One group was infused into 100 mL culture fluid of Propionibacterium acnes (2.7×108/mL) via the rumen fistulae, and another group was infused into the same dose of normal sodium. Rumen fluid was sampled for analysis of pH and Volatile Fatty Acid(VFA) at 0h, 2h, 4h, 6h, 8h, 10h, 12h, and 24h after being cultured. The results shown: pH of rumen fluids were significantly (P<0.05) lower in the experimental groups than control groups in each time point, and at 12h of culture two groups decreased to the lowest, which were 6.02 and 6.15 respectively. The significant increase (P<0.05) of acetic acid, propionic acid, and butyric acid content was observed in rumen fluids of experimental group, at 12h of culture increasec to the highest in two groups, which were 59.24, 69.13 for acetic acid, 21.27, 33.36 for propionic acid, and 10.76, 15.86 for butric acid respectively. The lactic acid content and the ratio of C2/C3 were significantly (P<0.05) lower in the experimental group as compared with the control group.
     Conclusion obtained that Propionibacterium acnes could utilize lactate to generate propionic acid mainly, and belong to propionic acid producing strain.
引文
[1] M P Bryant and L A Burkey. Cultural Methods and Some Characteristics of Some of the More Numerous Groups of Bacteria in the Bovine Rumen. J Dairy Sci, 1953, 36: 205 ~217
    [2] MACKIE R I, AMINOV R I, WHITE B A, et al. Molecular Rcology and Diversity in Gut Microbial Ecosystems: Ruminant Physiology Digestion, Metabolism, Growth and Reproduction. London CBA Internationl, 2000, 61~77
    [3] Bryant, M P. Bacterial Species of the Rumen. Bacteriol. Rev., 1959, 23: 125~153
    [4] Enjalbert F, Nicot M C, Bayourthe C, et al. Ketone bodies in milk and blood of dairy cows: relationship between concentrations and utilization for detection of subclinical ketosis. J Dairy Sci, 2001, 84(3): 583~589
    [5] Hungate R E. The Rumen and Its Microbes(Academic Press). New York, 1966, ed.3
    [6] Floover W H, Stokes S R. Balancing carbohydrates and proteins for optimum rumen microbial yield. J Dairy Sci, 1991, (74): 3630~3644
    [7] Cheng K J, Costerton J W. Adherent rumen bacteria: their role in the digestion of plant material , urea and epithelial cells. In: Ruchebush Y and Thivend P, ed. Digestive Physiology and Metabolism in Ruminants. Lancaster: MTP Press, 1980, 227~250
    [8] Czerkawski J W. Compartmentation in the rumen. Hannah Res. Inst. Rep., 1980, 69~85
    [9] R P McCowan, K J Cheng and J W Costerton. Adherent bacterial populations on the bovine rumen wall: distribution patterns of adherent bacteria. Appl. Envir. Microbiol., Jan 1980, 39: 233 ~241
    [10] R. M. Teather and F. D. Sauer. A Naturally Compartmented Rumen Simulation System for the Continuous Culture of Rumen Bacteria and Protozoa. J Dairy Sci, Mar 1988, 71: 666~673
    [11] Akin D E, Borneman W S, Lyon C E. Degradation of leaf blades and stems by monocentric and polycentric isolates of ruminal fungi. Anim. Feed Sci. Technol., 1990, 31: 205~221
    [12] Forsberg C W, Forano E, Chesson A. Microbial Adherence to the Plant Cell Wall and Enzymatic Hydrolysis. In: Cronje P B, ed. Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction CAB International, 2000
    [13] McAllister T A, Cheng K J, Rode L M, et al. Digestion of Barley, Maize and Wheat by Selected Strains of Rumen Bacteria. Appl. Environ. Microbiol., 1990, 56: 3146~3153
    [14] Lamed R, Setter E, Kenig R, et al. The cellulose discrets cell surface organelle of Clostridium thermcellum which exhibits separate antigenic, cellulose-binding and various catalytic activities. Biotechnol. Bioeng. Symp. 1984, 13:163~181
    [15] Felix C R and Ljungdahl L G. The cellulosome: the Exocellular Organelle of Clostridium. Annu. Rev. Microbiol. 1993, 47: 791~819
    [16] Ljungdahl, degradation L G, Eriksson K E. Ecology of Microbial Cellulose Degradation. Adv. Microbiol. Ecol. 1985, 8: 237~299
    [17] Lamed R, Naimark J, Morgernstern E, et al. Specialized Cell Surface Structures inCellulolytic Bacteria. J. Bacteriol. 1987, 169: 3792~3800
    [18] Ding S Y, Rincon M T, Lamed R, et al. Cellulosomal Scaffoldin-Like Proteins from Ruminococcus flavefaciens. Journal of Bacteriology. 2001, 183 (6): 1945~1953
    [19] Hungate R E. The Rumen and Its Microbes. Academic Press, New York, ed. 1966, 3
    [20] J X Zhang, J Martin and H J Flint. Identification of Non-catalytic Conserved Regions in Xylanases Encoded by the XynB and XynD Genes of the Cellulolytic Rumen Anaerobe Ruminococcus flavefaciens. Mol Gen Genet, 1994, 245(2): 260~264
    [21] P E Vercoe, J L Finks and B A. White DNA Sequence and Transcriptional Characterization of a Beta-glucanase Gene (celB) from Ruminococcus flavefaciens FD-1. Can J Microbiol, 1995, 41(10): 869~876
    [22] R R Gokarn, M A Eiteman, S A Martin, et al. Production of Succinate from Glucose, Cellobiose, and Various Cellulosic Materials by the Ruminal Anaerobic Bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens. Appl Biochem Biotechnol, 1997, 68(1-2): 69~80
    [23] J Kirby, V Aurilia, S I McCrae, et al. Plant Cell Wall Degrading Enzyme Complexes from the Cellulolytic Rumen Bacterium Ruminococcus flavefaciens. Biochem Soc Trans, 1998, 26(2): 169
    [24] A K SIJPESTEIJN. On Ruminococcus flavefaciens, a Cellulose-decomposing Bacterium from the Rumen of Sheep and Cattle. J Gen Microbiol, 1951, 5(5): 869~879
    [25] K M Champion, C T Helaszek and B A White. Analysis of Antibiotic Susceptibility and Extrachromosomal DNA Content of Ruminococcus albus and Ruminococcus flavefaciens. Can J Microbiol, 1988, 34(10): 1109~1115
    [26] H J Flint, J Martin, C A McPherson, et al. A Bifunctional Enzyme, with Separate Xylanase and Beta(1,3-1,4)-glucanase Domains, Encoded by the XynD gene of Ruminococcus flavefaciens. J. Bacteriol., 1993, 175: 2943 ~2951
    [27] C T Helaszek and B A White. Cellobiose Uptake and Metabolism by Ruminococcus flavefaciens. Appl. Envir. Microbiol., 1991, 57: 64 ~68
    [28] S Ito, S Hamada, K Yamaguchi, et al. Cloning and Sequencing of the Cellobiose 2-epimerase Gene from an Obligatory Anaerobe, Ruminococcus albus. Biochem Biophys Res Commun, 2007, 360(3): 640~645
    [29] Randall S. Pegden, Marilynn A. Larson, Richard J. Grant et al. Adherence of the Gram-Positive Bacterium Ruminococcus albus to Cellulose and Identification of a Novel Form of Cellulose-Binding Protein Which Belongs to the Pil Family of Proteins. J. Bacteriol., 1998, 180: 5921~5927
    [30] J Lou, K A Dawson and H J Strobel. Cellobiose and Cellodextrin Metabolism by the Ruminal Bacterium Ruminococcus albus. Curr Microbiol, 1997, 35(4): 221~227
    [31] T L Miller and M J Wolin. Bioconversion of Cellulose to Acetate with Pure Cultures of Ruminococcus albus and a Hydrogen-Using Acetogen. Appl. Envir. Microbiol., 1995, 61: 3832 ~3835
    [32] B Thurston, K A Dawson and H J Strobel. Pentose Utilization by the Ruminal Bacterium Ruminococcus albus. Appl. Envir. Microbiol., 1994, 60: 1087 ~1092
    [33] B Thurston, K A Dawson and H J Strobel. Cellobiose Versus Glucose Utilization by the Ruminal Bacterium Ruminococcus albus. Appl. Envir. Microbiol., 1993, 59: 2631~2637
    [34] Spyros G. Pavlostathis, Terry L. Miller. Fermentation of Insoluble Cellulose by Continuous Cultures of Ruminococcus albus. Appl. Envir. Microbiol., 1988, 54: 2655~2659
    [35] Meyer J. Wolin. Formation of Hydrogen and Formate by Ruminococcus albus. J. Bacteriol. 1974, 117: 928
    [36] J M Leatherwood. Cellulase from Ruminococcus albus and mixed rumen microorganisms. Appl Microbiol, 1965, 13(5): 771~775
    [37] Montgomery L, Flesher B, Stahl D A. Transfer of Bacteroides succinogenes Hungate to New Genus as Fibrobacter succinogenes New Combination and Description of Fibrobacter Intestinalis New Species. Int. J. Syst. Bacteriol. 1988, 38: 430~435
    [38] M J Latham, B E Brooker, G L Pettipher, et al. Adhesion of Bacteroides succinogenes in Pure Culture and in the Presence of Ruminococcus flavefaciens to Cell Walls in Leaves of Perennial Ryegrass (Lolium perenne). Appl. Envir. Microbiol., 1978, 35: 1166~1173
    [39] M Fondevila and B A Dehority. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the Digestion of Cellulose from Forages. J Anim Sci, 1996, 74: 678 ~ 684
    [40] Meng Qi, Hyun-Sik Jun and Cecil W. Forsberg. Characterization and Synergistic Interactions of Fibrobacter succinogenes Glycoside Hydrolases. Appl. Envir. Microbiol., 2007, 73: 6098~6105
    [41] J Seon Park, J B Russell and D B Wilson. Characterization of a Family 45 Glycosyl Hydrolase from Fibrobacter succinogenes S85. Anaerobe, 2007, 13(2): 83~88
    [42] T N Wen, J L Chen, S H Lee, et al. A Truncated Fibrobacter succinogenes 1,3-1,4-beta-d-glucanase with Improved Enzymatic Activity and Thermotolerance. Biochemistry, 2005, 44(25): 9197~9205
    [43] M. Matulova, R. Nouaille, P. Capek, et al. Degradation of Wheat Straw by Fibrobacter succinogenes S85: a Liquid- and Solid-State Nuclear Magnetic Resonance Study. Appl. Envir. Microbiol., 2005, 71: 1247~1253
    [44] H S Jun, J K Ha, L M Malburg, et al. Characteristics of a Cluster of Xylanase Genes in Fibrobacter succinogenes S85. Can J Microbiol, 2003, 49(3): 171~180
    [45] Laura Marrone, Kelly A. McAllister and Anthony J. Clarke. Characterization of Function and Activity of Domains A, B and C of Xylanase C from Fibrobacter succinogenes S85 . Protein Eng., 2000, 13: 593~601
    [46] M W Fields, S Mallik and J B Russell. Fibrobacter succinogenes S85 Ferments Ball-milled Cellulose as Fast as Cellobiose Until Cellulose Surface Area is Limiting. Appl Microbiol Biotechnol, 2000, 54(4): 570~574
    [47] J Miron and D Ben-Ghedalia. Digestion of Cell-wall Monosaccharides of Ryegrass and Alfalfa Hays by the Ruminal Bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens. Can J Microbiol, 1993, 39(8): 780~786
    [48] L K Maas and T L Glass. Cellobiose Uptake by the Cellulolytic Ruminal Anaerobe Fibrobacter (Bacteroides) succinogenes. Can J Microbiol, 1991, 37(2): 141~147
    [49] M McGavin and C W Forsberg. Isolation and Characterization of Endoglucanases 1 and 2 from Bacteroides succinogenes S85. J. Bacteriol., 1988, 170: 2914~2922
    [50] C V Franklund and T L Glass. Glucose Uptake by the Cellulolytic Ruminal Anaerobe Bacteroides succinogenes. J. Bacteriol., 1987, 169: 500~506
    [51] T L Miller. The Pathway of Formation of Acetate and Succinate from Pyruvate by Bacteroides succinogenes. Arch Microbiol, 1978, 117(2): 145~152
    [52] C. C. Scheifinger and M. J. Wolin. Propionate Formation from Cellulose and Soluble Sugars by Combined Cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl. Envir. Microbiol., 1973, 26: 789~795
    [53] J F Preston, J D Rice, L O Ingram, et al. Differential Depolymerization Mechanisms of Pectate Lyases Secreted by Erwinia chrysanthemi EC16. J. Bacteriol., 1992, 174: 2039~2042
    [54] M. P. BRYANT. Normal Flora—Rumen Bacteria. Am. J. Clinical Nutrition, 1970, 23: 1440~1450
    [56] M B Ghali, P T Scott and R A Jassim. Characterization of Streptococcus bovis from the rumen of the dromedary camel and Rusa deer. Lett Appl Microbiol, 2004, 39(4): 341~346
    [57] James B, Russell and Tsuneo Hino. Regulation of Lactate Production in Streptococcus bovis: A Spiraling Effect That Contributes to Rumen Acidosis. J Dairy Sci, 1985, 68: 1712 ~1721
    [58] M Marekova, Z Jonecova and V Kmei. Location of the Alpha-amylase Gene in Rumen Streptococcus bovis strains Distinguished by Unstable Amylase Activity. Folia Microbiol (Praha), 1995, 40(2): 181~184
    [59] B V Tarakanov. Regulation of Microbiologic Processes in the Rumen of Ruminants by Bacteriophages of Streptococcus bovis. Mikrobiologiia, 1994, 63(4): 657~667
    [60] L. J. Hamlin and R. E. Hungate. CULTURE AND PHYSIOLOGY OF A STARCH-DIGESTING BACTERIUM (BACTEROIDES AMYLOPHILUS N. SP.) FROM THE BOVINE RUMEN . J. Bacteriol., 1956, 72: 548~554
    [61] V Clausen, J G Jones and E Stackebrandt. 16S Ribosomal RNA Analysis of Filibacter Limicola Indicates a Close Relationship to the Genus Bacillus. J Gen Microbiol, 1985, 131(10): 2659~2663
    [62] M A Cotta. Amylolytic Activity of Selected Species of Ruminal Bacteria. Appl. Envir. Microbiol., 1988, 54: 772~776
    [63] J. B. Russell, W. G. Bottje and M. A. Cotta. Degradation of Protein by Mixed Cultures of Rumen Bacteria: Identification of Streptococcus Bovis as an Actively Proteolytic Rumen Bacterium. J Anim Sci, 1981, 53: 242 ~252
    [64] S. Mahadevan, J. D. Erfle and F. D. Sauer. Degradation of Soluble and Insoluble Proteins by Bacteroides Amylophilus Protease and by Rumen Microorganisms. J Anim Sci, 1980, 50: 723~728
    [65] M A Cotta and R B Hespell. Proteolytic Activity of the Ruminal Bacterium Butyrivibriofibrisolvens. Appl. Envir. Microbiol., 1986, 52: 51~58
    [66] C Henderson and W Hodgkiss. An Electron Microscopic Study of Anaerovibrio lipolytica (strain 5S) and Its Lipolytic Enzyme. J Gen Microbiol, 1973, 76(2): 389~393
    [67] C Henderson. A Study of the Lipase Produced by Anaerovibrio lipolytica, a Rumen Bacterium. J Gen Microbiol, 1971, 65(1): 81~89
    [68] R A Prins, A Lankhorst, P van der Meer, et al. Some Characteristics of Anaerovibrio lipolytica a Rumen Lpolytic Organism. Antonie Van Leeuwenhoek, 1975, 41(1): 1~11
    [69] A J Verkley, P H Ververgaert, R A Prins, et al. Lipid-phase Transitions of the Strictly Anaerobic Bacteria Veillonella parvula and Anaerovibrio lipolytica. J. Bacteriol., 1975, 124: 1522~1528
    [70] R. I. Mackie and Suzette Heath. Enumeration and Isolation of Lactate-Utilizing Bacteria from the Rumen of Sheep. Appl. Envir. Microbiol., 1979, 38: 416~421
    [71] L. Kung, Jr and A. O. Hession. Preventing in Vitro Lactate Accumulation in Ruminal Fermentations by Inoculation with Megasphaera elsdenii. J Anim Sci, 1995, 73: 250~256
    [72] O Soto-Cruz, E Favela-Torres and G Saucedo-Castaneda. Modeling of Growth, Lactate Consumption, and Volatile Fatty Acid Production by Megasphaera elsdenii Cultivated in Minimal and Complex Media. Biotechnol Prog, 2002, 18(2): 193~200
    [73] G. H. M. Counotte, R. A. Prins, R. H. A. M. Janssen, et al. Role of Megasphaera elsdenii in the Fermentation of DL-[2-13C]lactate in the Rumen of Dairy Cattle. Appl. Envir. Microbiol., 1981, 42: 649~655
    [74] M Marounek, K Fliegrova and S Bartos. Metabolism and Some Characteristics of Ruminal Strains of Megasphaera elsdenii. Appl. Envir. Microbiol., 1989, 55: 1570~1573
    [75] A F Furtado, T A McAllister, K J Cheng, et al. Production of 2-aminobutyrate by Megasphaera elsdenii. Can J Microbiol, 1994, 40(5): 393~396
    [76] A. A. Yousten and E. A. Delwiche. SUCCINIC ACID DEGRADATION BY VEILLONELLA ALCALESCENS . J. Bacteriol., 1964, 87: 1527~1528
    [77] SH Allen. Lactate-oxaloacetate Transhydrogenase from Veillonella alcalescens. Methods Enzymol, 1982, 89: 367~376
    [78] M E Sharpe, M J Latham, E I Garvie, et al. Two New species of Lactobacillus Isolated from the Bovine Rumen, Lactobacillus ruminis sp.nov. and Lactobacillus vitulinus sp.nov. J Gen Microbiol, 1973, 77(1): 37~49
    [79] J R Liu, B Yu, X Zhao, et al. Coexpression of Rumen Microbial Beta-glucanase and Xylanase Genes in Lactobacillus reuteri. Appl Microbiol Biotechnol, 2007, 77(1): 117~124
    [80] V Kmet, P Javorsky, R Nemcova, et al. Occurrence of Conjugative Amylolytic Activity in Rumen Lactobacilli. Zentralbl Mikrobiol, 1989, 144(1): 53~57
    [81] M Marounek, K Jehlickova and V Kmet. Metabolism and Some Characteristics of Lactobacilli Isolated from the Rumen of Young Calves. J Appl Bacteriol, 1988, 65(1): 43~47
    [82] T R. G. Jensen, K. L. Smith, J. E. Edmondson, et al. THE CHARACTERISTICS OF SOMERUMEN LACTOBACILLI . J. Bacteriol., 1956, 72: 253~258
    [83] A Laukova and M Kuncova. Lactic Acid Production and Urease Activity in Strains of Enterococcus faecium Found in the Rumen and Their Genetic Stability. Vet Med (Praha), 1991, 36(6): 335~340
    [84] C Pei, S Mao and W Zhu. Molecular Diversity of Rumen Archaea from Jinnan cattle. Wei Sheng Wu Xue Bao, 2008, 48(1): 8~14
    [85] Andre-Denis G Wright, Xuanli Ma and Nestor E Obispo. Methanobrevibacter Phylotypes are the Dominant Methanogens in Sheep from Venezuela. Microb Ecol, 2007
    [86] Samuel Ohene-Adjei, Ronald M. Teather, Michael Ivan et al. Postinoculation Protozoan Establishment and Association Patterns of Methanogenic archaea in the Ovine Rumen. Appl. Envir. Microbiol., 2007, 73: 4609~ 4618
    [87] André-Denis G. Wright, Clare H. Auckland and Denis H. Lynn. Molecular Diversity of Methanogens in Feedlot Cattle from Ontario and Prince Edward Island, Canada. Appl. Envir. Microbiol., 2007, 73: 4206 ~4210
    [88] Diana Z. Sousa, Hauke Smidt, M. Madalena Alves, et al. Syntrophomonas Zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J Syst Evol Microbiol, 2007, 57: 609 ~ 615
    [89] Australia. André-Denis G. Wright, Andrew J. Williams, Barbara Winder et al. Molecular Diversity of Rumen Methanogens from Sheep in Western. Appl. Envir. Microbiol., 2004, 70: 1263 ~1270
    [90] ELSDEN, S. R. Fermentation of carbohydrates in the rumen of sheep. J. Exptl. Biol., 1945, 22: 51~61
    [91] Jose Gutierrez. NUMBERS AND CHARACTERISTICS OF LACTATE UTILIZING ORGANISMS IN THE RUMEN OF CATTLE. J Bacteriol. 1953, 66(2): 123~128
    [92] C.A. Davidson and T. G. Rehberger. Characterization of Propionibacterium Isolated from the Rumen of Lactating Dairy Cows. Presented at American Society for Microbiology, 1995, 1~5
    [93] G. R. Ghorbani, D. P. Morgavi, K. A. Beauchemin, et al. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. American Society of Animal Science, 2002, (80): 1977~1986
    [94] Thomas Rehberger, Terry D. Parrott, Fred C. Owens. Propionibacterium P-63 for use in direct fed microbials for animal feeds. U S Patent Issued on September 24, 2002
    [95] Koniarova I. Biochemical and physiologic properties of strains of Propionibacterium acnes isolated from the rumen of calves and lambs. Vet Med (Praha), 1993, 38(1): 43~52
    [96] Veysel AKAY, Richard G. DADO. Effects of Propionibacterium Strain P5 on In-Vitro Volatile Fatty Acids Production and Digestibility of Fiber and Starch. Turk J. Vet. Anim. Sci., 2001, (25): 635~642
    [97]Swinney-Floyd D, Gardner B A, RehbergerT, et al. Effects of inoculation with either Propionibacterium strain P-63alone or combined with Lactobacillus acidophilus strain: LZ53545 onperformance of feedlot cattle. J. Anim. Sci, 1999, 77(1): 77
    [98] Kim S W, Standorff D G, Roman-Roasario H, et al. Potential use of Propionibacterium acidipropionici DH42 as adirect-fed microbial for cattle. J Anim Sci, 2000, 78(1): 292
    [99] Allen Trenkle. The Effects of Feeding a Live Microbial Product on Feedlot Performance and Carcass Value of Finishing Steers Fed Wet Corn Gluten Feed. 2001 Beef Research Report — Iowa State University, 2001, 22~24
    [100] Stein DR, Allen DT, Perry EB, et al. Effects of feeding Propionibacteria to dairy cows on milk yield, milk components, and reproduction. J Dairy Sci, 2006, 89(1): 111~125
    [101] She P, Lindberg G L, Hippen A R, et al. Regulation of messenger ribonucleic acid expression for gluconeogenic enzymes during glucagon infusions into lactating cows. J Dairy Sci., 1999, 82(6): 1153~1163
    [102] Krumholz L R, Bryant M P, Brulla W J, et al. Proposal of Quinella ovalis gen. nov., sp. Nov,. Based on Phylognetic Analysis. Int. J. Syst. Bacteriol., 1993, 43: 293~296
    [103] Tajima K, Aminov R I, Nagamine T, et al . Rumen Bacterial Diversity as Determined by Sequence Analysis of 16S rDNA Libraries. FENS Microbiol. Ecol., 1999, 29: 159~169
    [104] Stahl D A, Flesher B, Mansfield H R, et al. Use of Phylogenetically Based Hybridization Probes for Studies of Ruminal Microbial Ecology. Appl. Environ. Microbiol., 1988, 54: 1079~1084
    [105] Chen J Q, Weimer P J. Competition Among Three Predominant Ruminal Cellulolytic Bacteria in the Absence or Presence of Non-cellulolytic Bacteria. Microbiology, 2001, 147: 21~30
    [106] Odenyo A A, Mackie R I, Stahl D A, et al. The Use of 16S rRNA-targeted Oligonucleotide Probes to Study Competition between Ruminal Fibrolytic Bacteria: Development of Probes for Ruminococcus Species and Evidence for Bacteriocin Production. Appl. Environ. Microbiol., 1994, 60: 3688~3696
    [107] Shi Y, Weimer P J. Competition for Cellobiose among Three Predominant Ruminal Cellulolytic Bacteria under Substrateexcess and Substratelimited Conditions. Appl. Environ. Microbiol., 1997, 63: 743~748
    [108] D Paillard, N McKain, LC Chaudhary, et al. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek, 2007, 91(4): 417~422
    [109] 李研东.动物微生态制剂的使用现状及应用前景.河北畜牧兽医,2005.(21-4): 48~50
    [110] 井明艳,孙建义,许梓荣.益生素的应用研究与发展趋势.饲料广角,2003,(9):12~15
    [111] 邓留坤,李云甫,高睿.饲用微生态制剂在反刍动物生产中的研究进展.乳业科学与技术,2005,(2):77~79
    [112] 微生态制剂.猪世界,2003,(8):17~18
    [113] 李春丽,崔淑贞,惠参军,等.微生态制剂对哺乳仔猪生长及免疫机能的影响.中国畜牧兽医,2005,(32-5):14~15
    [114] 赵京杨,吕茂洲,苏海涯.微生物制剂添加方式对哺乳断奶仔猪生产性能和腹泻率的影响.湖北农业科学,2002,(5):122~124
    [115] 邝哲师,张玲华,田兴山,等.复合型微生态制剂对断奶仔猪肠道有害菌的抑制作用.广东农业科学,2005,(2):72~73
    [116] 陈春林,曹国文,徐登峰,等.复合微生态制剂对仔猪 SOD 活性的影响.四川畜牧兽医,2005, (8):30
    [117] 徐建雄,叶陈梁.产酶微生物制剂对肥育猪生产性能和胴体组成的影响.畜牧与兽医,2005, (37-3):26~27
    [118] 李焕友,甄辑铭,田萍,等.微生态制剂在生长猪饲料中应用效果研究.饲料工业,2000,(21-12):14~15
    [119] 艾必燕,黄文涛,冉华山,等.生态型微生态制剂预混料饲喂 PIC 猪应用评价研究.粮食与饲料工业,2002,(9):27~29
    [120] 崔淑贞,李春丽,惠参军,等.微生态制剂对雏鸡免疫功能的影响.河南农业科学,2005,(2):76~77
    [121] 韩进诚,姚军虎.酶制剂和微生态制剂对蛋雏鸡生长性能的影响.中国饲料,2005,(7):14~16
    [122] 张超范,魏萍.复合微生态制剂对肉仔鸡局部免疫调节及降血脂效果分析.饲料博览,2005,(5):30~32
    [123] 崔西勇.不同微生态制剂在商品蛋鸡中的应用效果及机理研究:[硕士学位论文].北京:中国农业大学,2004
    [124] 李研东.动物微生态制剂的使用现状及应用前景.河北畜牧兽医,2005,(21-4):48~50
    [125] 张扬,余雄,蔺宏凯,等.瘤胃微生态制剂对泌乳奶牛产奶量的影响.草食家畜,2005,(2):52~54
    [126] 王志武,梁全忠,杨效民.微生态制剂 EM 对奶牛产奶性能的影响.中国乳业,2005,(6):28~30
    [127] 王美秀.奶牛微生态制剂的研制: [硕士学位论文].内蒙古:内蒙古农业大学,2005
    [128] 直接饲喂微生物对育肥牛的瘤胃发酵、血液指标及微生物群落的影响.中国畜牧兽医,2004,(31-1):47
    [129] 隋大鹏.微生态制剂对南美白对虾生长和非特异性免疫因子影响的研究.中国海洋大学,2003,(5)
    [130] 黎建斌.微生态制剂饲养南美白对虾试验.内陆水产,2004, (2):9~10
    [131] 张新明,李健,刘淇.细菌 J210 对凡纳滨对虾非特异性免疫指标的影响.海洋水产研究,2004,(25-4):6~12
    [132] 方波,潘鲁青,董双林.微生态制剂在沿黄低洼盐碱地凡纳滨对虾养殖中的应用研究.海洋科学,2005,(29-1):1~3
    [133] Douillet P A, Langdon C J. Use of a probiotic for the culture of larvae of the Pacific oyster(Crassostrea gigas Thunberg). Aquaculture, 1994, (119): 25~40
    [134] Austin B, Baudet E, Stobie M. Inhibition of bacterial fish pathogens by Tetraselmis succica. J. Fish Dis., 1992, (15): 55~61
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.