小金海棠和香橙耐缺铁机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱性及钙质土壤上粮食作物和果树的缺铁现象在世界范围内普遍存在。铁在土壤中尽管含量很丰富,但通常都呈不溶状态很难被植物吸收。据统计,全球约25%~30%的土壤存在潜在的植物缺铁现象。植物缺铁,叶片脉间失绿,叶肉发黄甚至变白,叶片缩小,如果缺铁症状严重,会引起生长停滞甚至死亡,给农业生产造成严重损失。果树作为一种与人民生活密切相关的重要经济作物,由于其本身的特点,缺铁造成的产量损失远比一年生作物严重,因为果树一旦栽培在土壤中便很多年不移动,所以有明显的缺铁积累效应。可是,时至今日缺铁现象还没有完全被人们认识清楚,现行的矫治措施也收效不大,有些甚至还带来严重的环境问题。随着分子生物学和现代生物技术手段的发展,科学家们开始寻找新的方法来解决缺铁问题,创造铁吸收利用高效型的植物种类已经成为一条有希望的途径,在果树生产中,创造新的综合性状优良同时又耐缺铁的砧木便可以达到既防治果树缺铁又保护环境的目的。基于此,本研究选择了两种果树砧木,小金海棠和香橙因为它们在初步的田间鉴定中表现耐缺铁,但它们耐缺铁的生理及分子机制并不清楚。本研究通过进一步分析香橙和小金海棠的耐缺铁特性,研究它们耐缺铁的生理原因和分子基础,并通过分析三价铁螯合物还原酶基因的空间表达模式,从分子水平上去探讨植物耐缺铁的原因,为从香橙和小金海棠中克隆三价铁螯合物还原酶基因奠定基础,并为人工创造耐缺铁的果树砧木提供基础研究数据。主要的研究结果如下:
     1:铁胁迫下香橙的生理反应研究
     香橙在田间实验中表现耐缺铁,在pH7.8的土壤中生长正常,叶片无任何缺铁症状;但对照植物枳在同样土壤条件下却表现出明显的缺铁症状,作为缺铁程度指标的叶片叶绿素含量极显著低于香橙。枳在缺铁营养液中培养4周即可出现明显缺铁症状,而生长在同样时间内和同样缺铁培养液中的香橙观察不到任何缺铁症状,香橙的叶片叶绿素和活性铁含量均极显著高于枳;但枳的黄化叶片的总铁含量高于香橙和枳的绿色叶片。恰如以前的许多报道,铁是唯一的组织含量和缺铁程度没有相关关系的个例。
    
     香橙的根系H”分泌迅速被缺铁激活,在缺铁4天即明显强于对照处理,在
     缺铁12周依然明显强于对照处理;积的幼苗根系在缺铁4天时也有较强的H”
     分泌,但随着缺铁时间的延长,在缺铁12周时H”分泌已观察不到。由于培养
     液以NO厂析为N源,它会引起溶液PH的升高,但香橙的培养液在加入Fe卜,
     Fey和完全无 Fe 3种处理下的 pH升高的值始终低于积 3种处理的培养液的升
     高值。涨醚和积的 3种处理的溶液的 eH增加的值始终是+Fey}+Feh )Fe。
     很显然,缺铁激活了香橙根系净H”的分泌,使得香橙控制环境PH的能力始终
     比积强,香橙根系很强的H”分泌能力与香橙耐缺铁的特性有关。
     香橙根系的三价铁赘合物还原酶活性被缺铁诱导强烈增加,在缺铁4周时
     酶活性增加了20倍;积在缺铁4周时酶活性仅增强了不到3倍。。很明显,香
     橙根系三价铁赘合物还原酶活性的强烈增加与香橙耐缺铁的特性直接相关。香橙
     比积耐缺铁的原因便是铁胁迫条件下,香橙根系三价铁螫合物还原酶恬性被缺铁
     诱导增加的幅度远大于积的酶活性增加幅度。
     香橙根系三价铁赘合物还原酶的还原区域与H”分泌区域重叠;而且被缺铁
     激活的香橙根系H”分泌先于根系三价铁赘合物还原酶的出现。可见,增强的H“
     分泌可以降低根际土壤的PH,低的根际土壤PH不仅增加了根际土壤中铁的溶
     解度,而且为根系三价铁螫合物还原酶的活动提供了适宜的PH环境,因为已经
     发现该酶有PH依赖性,碱性PH会强烈地抑制该酶活性。
     缺铁使香橙根系的形态发生了一定的变化。开始,香橙幼苗的根系生长比积
     慢,但随着铁胁迫时间的延长,积的地上部分生长受到明显抑制,根系生长减缓,
     根长而纤细,很少侧根发生;而香橙的根系则变的粗短,缺铁胁迫下的香橙的根
     长和恻根的发生量虽明显低于对照处理,但侧根发生量却明显优于积的缺铁处
     理,而根长又极显著低于积的缺铁处理。电子显微镜下观察到,与对照加铁处理
     相比,缺铁香橙的根吸收区域表皮细胞明显稻皱隆起;而积的根系吸收区域的表
     皮细胞在两种铁处理下没有明显变化。可见缺铁会使香橙的根系吸收区域发生一
     定的形态变化,沼皱隆起的细胞表面增加了吸收面积,对铁吸收无疑是有帮助的,
     但要肯定香橙的根系形态变化是香橙耐缺铁的原因之一尚需做进一步的较精确
     的测定。
     2.铁胁迫下小金海棠的生理反应研究和小金诲棠无性系的建立
     小金海棠实生苗在田间土壤PH为7.8时生长正常?
Introduction
    Iron chlorosis of food crop plants and fruit trees grown on alkaline, or calcareous soils is a widespread agricultural problem in the world. Although abundant in these soils, iron is often insoluble and therefore is unavailable for the plants roots. Statistics show that potential iron-deficiency exists in plants growing in 25%~30% soils of the globe. Iron deficiency causes interveinal chlorosis, mesophyll yellowing or paling and leaf size reduction and, if severe enough, retards the growth of the plants and may even cause their death, thus resulting in great losses to agricultural production. Fruit trees are very important economic crops in people's life, the losses of fruit production caused by iron chlorosis are usually higher than those of other annual economic crops because fruit tress, as perennial plants, will remain there for many years after they are planted in a field and an evident accumulation effect may take place. Unfortunately, the widespread problem of iron chlorosis of fruit trees remains poorly understood and the results of the methods for its correction are not satisfactory, and they sometimes cause serious environmental problems as well. With the advances in molecular biology and modern biological engineering technology, scientists begin to look for new ways to tackle this problem. It has become possible to create new iron efficient plant materials or to avoid soil environmental pollution by creating new rootstocks with high iron efficiency as well as excellent complex characters. C. junos and M. xiaojinensis were found to be tolerant to iron chlorosis and were able to acquire iron from soils of low iron availability in previous field experiments, but the physiological
    
    
    
    and molecular mechanisms for their iron efficiency have remained unclear. The purposes of this project were to further analyze the characteristics of their iron efficiency under iron stress, to study the physiological and molecular mechanisms of iron efficiency under iron deficiency in C. junos and M. xiaojinensis , and to analyze the spatial expression model of FCR (ferric chelate reductase) gene under iron stress with the hope to cast a new light on iron stress tolerance on the molecular level, to lay solid foundations for cloning FCR gene in C. junos and M. xiaojinensis, and to provide some basic data for creating new rootstocks with excellent complex characters and iron efficiency. The main results are presented as follows: 1. The physiological reaction of C. junos under iron stress
    In field experiments, C. junos manifested itself as tolerant to iron stress. No chlorosis symptom was not found in its leaves when it was grown in a soil with pH 7.8. In contrast, severe chlorosis was found in the control plant P. trifoliata grown under the same soil conditions, and leaf chlorophyll content as an indicator for the degree of Fe deficiency in P. trifoliata was much lower than in C. junos. In solution culture, evident chlorosis symptoms were observed in the leaves of P. trifoliata after 4 weeks of iron deficiency treatment, while no chlorosis symptoms were observed in the leaves of "iron efficient" C. junos under the same culture conditions. The content of leaf chlorophyll and active iron in C. junos was much higher than that of P. trifoliata. However, iron content of chlorotic leaves of P. trifoliata was found to be even higher than that of the green leaves of P. trifoliata and C. junos. Just as reported before, Fe is only case where its content in plant tissues is not correlated with the degree of its deficiency.
    Net H excretion in C. junos was rapidly activated by iron deficiency and its rate was enhanced 4 days after the start of the treatment as compared with the non-deficiency control, and this trend lasted over 12 weeks under iron deficiency. In P. trifoliate, net H+ excretion rate was also enhanced under 4 days' iron deficiency, but was no longer observed under iron deficiency for 12 weeks. NOs-N was used as the N source of the culture solution and it increased pH of solution. The extent of the increa
引文
1 F.奥斯伯,R.布伦特,R.E.金斯顿等著,颜子颖,王海林译。精编分子生物学实验指南。北京:科学出版社,1999
    2 J.萨姆布鲁克,E.F弗里奇,T.曼尼阿蒂斯著,金冬雁,黎孟枫等译。分子克隆。北京:科学出版社,1999
    3 成明昊,江宁拱,曾维光。苹果属—新种。西南农学院学报。1983,4:53-55
    4 成明昊,杨晓红,曾维光。苹果砧木资源---小金海棠的调查研究初报。西南农学院学报,1984,3(5):38-43
    5 成明昊,李晓林,张云贵。苹果优良砧木-小金海棠研究进展。西南农业大学学报,2000,22(5):383-386
    6 程彦星。苹果砧木的耐盐性及其盐害生理的研究。西南农业大学硕士研究生论文,1993
    7 韩振海。从苹果属植物中筛选耐缺铁的基因型。北京:中国农业大学博士学位论文集,1988.
    8 K.伊稍著,李正理译。种子植物解剖学。上海:上海科学技术出版社,1982
    9 李扬汉主编。植物学。上海:上海科学技术出版社,1984
    10 李育龙编著。苹果属植物种质资源研究。北京:中国农业出版社,2001
    11 李育农。现代苹果属植物分类新体系刍议。果树科学,13(增刊):82-92
    12 李道高主编。柑橘学。北京:中国农业出版社,1996,142-165
    13 李凌,范艳华,罗小英等。三价铁螯合还原酶基因在香橙和枳中的表达(Expression of Ferric-chelate Reductase gene in Citrus junos and Poncirus trifoliate Tissues).植物学报,(已接受)2002,6
    14 李凌,罗小英,周泽扬等。三价铁螯合还原酶基因在四种果树砧木中的表达特点及基因型差异(Expression Characteristics and Genotype Difference of Ferric-chelate Reductase Gene in Four Fruit Rootstocks)。植物生理学报,(已接受)2002
    15 李凌,范艳华,罗小英等。香橙和枳的三价铁螯合还原酶诱导研究。西南农业大学学报,2001,5(23):435-437
    16 李凌。三种柑橘砧木实生苗对缺铁黄化的敏感性差异机理研究。西南农业大学学报,1992,2(14):121-125
    17 李凌。三种柑橘砧木对缺铁黄化的敏感性差异机理研究。西南农业大学硕士学位论文。1988
    18 李学柱,罗泽民,邓烈。6种柑橘砧木苗对土壤pH适应性的初步研究.西南农业大学学报,1991,1(13):79-81
    19 李学柱,邓烈,何绍兰等。紫色土CaCO_3含量对枳砧伏令夏橙产量与品质的影响。西南农业大学学报,1991,1(13):66-71
    20 李学柱,罗泽民,李小仪。四川盆地紫色土柑橘黄化减产原因研究。中国柑橘,1987,2:1-5
    21 李春俭,朱晓萍,邹助雄等。缺铁条件下豌豆,黄瓜根系质子分泌和Fe~(+3)还原酶活性的变化及其相互关系。北京:21世纪植物生理学研究论文集,1999,386-388
    22 李泽岩。
    23 粱国鲁。中国苹果属植物的核型比较研究。西南农业大学学报,1986,1:106-117
    24 梁国鲁。中国苹果属植物染色体观察。植物分类学报,1987,25(6):437-441
    25 刘维仲,印莉萍,刘祥林等。高等植物铁营养的生理学和分子生物学。北京:论文集,1999,300-315
    26 P.马利加,D.F.克莱森,A.R.卡什莫尔等著,刘进元,吴庆余等译。植物分子生物学实验指南。北京:科学出版社,2000
    27 裘凌沧,潘军,段彬伍。61个生命元素生物效应的特征及其规律性。杭州:杭州大学出版社,1993,11-17
    28 沈德绪,王元裕,陈力耕。柑橘遗传育种学。北京:科学出版社,1998,11-28
    29 王夔主编。副族生命微量元素。生命科学中的微量元素分析与数据手册。北京:中国计量出版社。1998,86-164
    30 王关林,方红筠主编。植物基因工程原理与技术。北京:科学出版社,1998
    31 王继世等。苹果无融合生殖型砧木“76-2”(Malus spp.)的利用研究初报。果树科学,1985,1:14-19
    32 吴平,印莉萍,张立平等编著。植物营养分子生理学。北京:科学出版社,2001
    33 俞德浚。中国果树分类学。北京:农业出版社,1979,280-300
    
    
    34 杨晓红。小金海棠无融合生殖的胚胎学研究。西南农业大学硕士学位论文,1988
    35 杨进。中国苹果砧木资源。济南:山东科技出版社,1990,97-9
    36 印莉萍,孙铭名,刘祥林等。铁转运机制与相关基因的研究进展。植物学通报,1999,16(6):642-647
    37 俞立达。柑橘缺素诊断及其防治实验总结。中国柑橘,1986,3:1-3
    38 俞立达主编。柑橘营养诊断与施肥论文集。上海:上海科学技术出版社,1993。
    39 于福同。小麦植物铁载体分泌特性的遗传分析。1997,中国农业大学硕士论文
    40 周厚基,全月澳。苹果树缺铁失绿的研究进展。中国农业科学,1988,21(4):46-50
    41 周学伍,李质怡,陈学年等。土壤母质及砧木对柑橘缺素的影响研究。西南农业大学学报,1991,1(13):8-14
    42 周志钦。小金海棠遗传多样性及其Apfl基因的克隆,序列分析和遗传转化研究。西南农业大学博士学位论文,2001
    43 张福锁,著。环境胁迫与植物根际营养。北京:中国农业出版社,1998
    44 W鲁瑟,LD巴切勒,HJ韦伯主编,胥洱,孔淼译:柑橘业(第2卷)。北京:农业出版社,1985,200-230
    45 中国科学院上海植物生理研究所,上海市植物生理学会编。现代植物生理学实验指南。北京:科学出版社,1999
    46 Andrew T Mckie,Dalna Barrow,Gladys O Latunde-dada et al.An iron-regulated ferric reductase associated with the absorption of dietary iron.Science,2001,291:1755-1759
    47 Andrew I Samuelsen,Yuth C Martin,David W S Mok et al.Expression of the Yeast FRE genes in transgenic tobacco.Plant Physiol,1998,118:51-58
    48 Adam Schikora Wolfgang Schmidt.Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responsed to low iron availability.Plant Physiol,2001,125:1679-1687
    49 A F Lopez-Millon,F Merales,A Abadia et al.Response of Sugar beet roots to iron deficiency,changes in carbon assimilation and oxygen use.Plant Physiol,2000,124(10):885-898
    50 Alcantara E,De la Guardia M D,Romera F J.Plasmalemma redox activity and H~+ extrusion in roots of Fe-deficient cucumber plants.Plant Physiol,1991,96:1034-1037
    51 Alcantara E,De la Guardia M L.Variability of sunflower inbred lines to iron deficiency stress.Plant Physiol,1991,130:93-96
    52 Allen J Milligan,Paul J Harrison.Effects of non-steady-state iron limitation on nitrogen assimilatory enzymes in the marine diatom Thalassiosira weissflogii(Bacillariophyceae).J Phycol,2000,36:78-86
    53 A F Lopez-millon,F Merales,A Abadia et al.Effects of Iron deficiency on the composition of the leaf apoplastic fuid and xylem sap in sugar beet.Implications for iron and carbon transport.Plant Physiol,2000,124(10):873-884
    54 A F Lopez-Millon,F Merales,A Abadia et al.Response of Sugar beet roots to iron deficiency,changes in carbon assimilation and oxygen use.Plant Physiol,2000,124(10):885-898
    55 Ajmi L,Fermin M,Ana F Lopez-Millan et al.Technical advance:Reduction of Fe(Ⅲ)-chelates by mesophyll leaf disks of sugar beet.Multi-component origin and effects of Fe deficiency.Plant & Cell Physiology,1(42):94-105
    56 A Herbik,A Girith,C Horstmann et al.Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva.Plant Physiol,1996,111:533-540
    57 Adrew I Samuelsen,Ruth C Martin,David W S Mok et al.Expression of the yeast FRE genes in transgenic tobacco.Plant Physiol,1998,118:51-58
    58 Alcaraz CF,Martinez-Sanchez F,Sevilla F et al.Influence of ferrrdoxin levels on nitrate reductase activity in iron deficient lemon leaves.J Plant Nutr,1986,9:1405-1413
    59 A Schmidt,T Buckhout.The response of tomato roots(Lycopersicon esculentum Mill.)to iron deficiency stress:alterations in the pattern of protein synthesis.J Experimental Botany,1997,48:1909-1918
    60 Askerlund P,Larsen C.Transmembrane electron transport in plasma membrane vesicles loaded with an
    
    NADH-generating system or ascorbate. Plant Physiol,1991,96:1178-1184
    61Bar-Ness E.Chen Y. Hadar Y et al.. Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. In iron nutrition and interactions in plants. Eds. Y Chen and Y hadar,Dordrecht: Kluwer Acad Publishers,1991,271-281
    62Bar-Ness E,Hadar Y,Chen Y et al. Short-term effects of rhizosphere microganisms on Fe uptake from microbial siderophores by maize and oat. Plant Physiol,1992,100:451-456
    63Bar-Ness E,Hardad Y,Chen Y et al. Iron uptake by plants from microbial siderophores. A study with 7-nitrobenz-2 oxa-1,3-diazole-desferrioxamine as fiurescent ferrioxamine B analog. Plant Physiol,1992,99:1329-1335
    64Bavaresco L,Fregoni M,Fraschini. Investigations on iron uptake and reduction by excised roots of different grapevine rootstocks and a V.vinifera cultivar. Plant and Soil,1991,130:109-113
    65Bavaresco L. Fregoni M. Fraschini P. Effect of some biological methods to improve Fe-deficiency in grafted grapevine. Proc 7th Intern Symp on Iron Nutrition and Interactions in Plants. Ed. J Abadia. Dordrecht: Kluwer Academic Publishers. 1994
    66Berger F. Hung C Y. Dolan L et al. Control of cell division in the root epidermis of Arabidopsis thaliana. Dev Biol. 1998,194:235-245
    67Berger F,Linstead P,Dolan L et al. Stomata patterning on the hypocotyl of Arabidopsis thaliana is controlled by genes involved in the control of root epidermis patterning. Dev Biol,1998,194:226-234
    68Bienfait F,van den Briel W,Mesland-Mui N T. Free space iron pools in roots,generation and mobilization. Plant Physiol,1985,78:596-600
    69Bienfait F,Luttge U. On the function of two systems that can transfer electrons across the plasma membrane. Plant Phydiol Biochem,1989,26:665-671
    70B Hoffmann,H Kosegarten. FITC-dextran for measuring apoplast pH and apoplast pH gradients between various cell types in sunflower leaves. Physiologia Plantarum,1995,95:327-335
    71 Bruce A McClure,Tom Guilgoyle. Rapid redistribution of auxin-regulated RNAs during gravitropism. Science,1989 243:91
    72 Bruce A McClure,Tom J Guilfoyle. Tissue print hybridization. A simple technique for detecting organ-and tissue-specific gene expression. Plant Molecular Biology,1989,12:517-524
    73 Beinfait H E. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr,1985,17:73-83
    74 Beinfait H F. Mechanisms in Fe-deficiency reactions of higher plants. J Plant Nutr,1988,11:605-629
    75 Bruggeman W,Mass-Kantel K,Moog P R. Iron uptake in mesophyll cells:the role of plasma membrane bound ferric-chelate reductase. Planta,1993,190:15-155
    76 Brown J C,Ambler J E. Iron stress responses in tomato( Lycopersion esculentum Mill)l.Sites of Fe reduction,absorption and transport. Physiology Plant,1974,31:221-224
    77 Brown J C,Holmes R S,Tiffin L O. Iron chlorosis in soybeans as related to the genotypes of rootstock. Soil Sci,1958,86:75-82
    78 Buckhout T J,Bell P F,Luster D G et al. Iron-stress induced redox activity in tomato(Lycopersicum esculentum Mill) is localized on the plasma membrane. Plant Physiol,1989,90:151-156
    79 C-L Rosenfield,D W Reed,Matthew W Kent. Dependency of iron reduction on devolopment of a unique root morphology in Ficu benjamina L. Plant Physiol,1991,95:1124-1120
    80 Chaney R L,Brown J C,Tiffin L O. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant physiol,1972,50:208-213
    
    
    81 Chaney R L,Bell P F. Complexity of iron nutrition: lessons for plant-soil interaction research. J Plant Nutr,1987,10:963-994.
    82 Chaney R L,Chen Y,Green C E et al. Root hairs on chlorotic tomatoes are an effect of chlorosis rather than part of the adaptive Fe-stress-response. J Plant Nutr,1992,15:1857-1875
    83 Chanock S J. The respiration burst oxidase. J Biol Chem,1994,269:24519-24522
    84 Claire L R,D W Reed,Matthew W K. Dependency of iron reduction on development of a unique root morphology in Ficus benjamina L. Plant Physiol,95:1120-1124
    85 Cohen C K,Fox T C,Gravin D F,Kochian L V. The role of iron-deficiency stress responses in stimulating heavy metal transport in plants. Plant Physiol,1998,116:1063-1072
    86 David J Thomas,Thomas J Avensonjannette B Thomas et al. A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but is not sensitized to oxidative stress induced with norflurazon. Plant physiol. 1998. 116:1593-1602
    87 De Nise P; Zocchi G. Phosophoenolpyruvate carboxlyase in cucumber(Cucumis sativus L) roots under iron deficiency: activity and kinetic characterization. J Exp Bot. 2000,51:1903-1909
    88 De Vos CR,Lubberding HJ,Beinfait HF. Rhizosphere acidification as a response to iron deficiency in bean plants. Plant Physiol,1986,81:842-846
    89 Dell'Orto M,Santi S,De Nisi P et al.Development of De-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity. J Exp Bot,2000,51:695-701
    90 Dolcet-Sanjuan R,Mok D W S,Mok M C. Characterization and in vitro selection for iron efficiency in Pyrus and Cydonia. In Vitro Cell Dev Biol. 1995,28:25-29
    91 D Tchemitchko,M Bourgeois,C Beaumont. Tissue-specfic and iron-dependent expression of the two isoforms of the iron transporter Nramp2/DMTl. Metals and Cells. Caterbury,Easter 2001. [http://www.ncl.ac.uk/sbg/robinson/metalcells]
    92 Eide D J. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu. Rev. Nutr. 1998,18:441-469
    93 Eide D,Broderius M,Feit J et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA,1996,93:5624-5628
    94 Eide D. In metal ions in gene regulation. New York: Champan and Hall,1998,342-371
    95 Elena B,Gonalez-Vallejo,F Morales et al. Iron deficiency decreases the Fe(III)-chelate reducing activity of leaf protoplasts. Plant Physiol,2000,122:337-344
    96 Espen L,Dell'Orto M,Feit J et al. Metabolic responses in cucumber(Cucumis sativus L.) roots under Fe-deficiency: a 31P-nuclear magnetic resonance in vivi study.Planta,2000,210:985-992
    97 Eckhardt U,Buckhout T J. Iron assimilation in Chlamydomonas reinhardtii involves ferric reduction and is similar to Strategy I hingher plants.J Exp.Bot.,1998,49:1219-1224
    98Eckardt U,Mas Marques A,Baukhout T J. Two iron-regulated cation transporters from tomato complement metal uptake-deficiency yeast mutants. Plant Mol Biol(in press),2001
    99 F Cinelli,R Viti,D H Byrne et al. Physiological characterization of two peach seedling rootstocks in bicarbonate nutrient solution. I. root iron reduction and iron uptake. J Abadia(ed),Iron Nutrition in Soils and Plants. 1995,323-328
    100 Fleming A L,Chaney R L,Coulombe B A. Bicarbonate inhibits Fe-stress response and Fe uptake-translation of chlorosis-susceptible soybean cultivar. J Plant Nutr,1984,7:699-714
    101 Fhilip D Reid,Elena del Campillo,Lowell N Lewis. Anatomical changes and immunolocalization on nitrocellulose tissue prints. Plant physiol,1990,93:160-165
    
    
    102 Finegold A A. Shatwell K P,Segal A W et al. A. Intramembrane bis-heme motif for trans-membrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem. 1996,271:31021-31024
    103 Frank Mass. Dirk A M van DE Watering,Marinus L van Beusichem et al. Characterization of phloem iron and it possible role in the regulation of Fe-efficiency reactions. Plant Physiol,1988,87:167-171
    104 Fox T C,Guerinot M L. The molecular biology of cation transport in plants. Annu Rev Plant Mol Miol. 1998,49:669-696
    105 Grusak M A,Dallapenna D. Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol,1999,50:133-161
    106 GS Waldo,E Wright,ZH Whang et al.Formation of the ferritin iron mineral occurs in plastids. Plant Physiol,1995,109:797-802
    107 Gitan. Eide. Biochem J.2001. 346:329-336
    108 G Vert. F Dedaldechamp. F Gaymard et al. Expression and function of iron transporters IRT1 and IRT2 from Arabidopsis thanliana. Metals and Cells,Abstracts of poster presentations. Canterbury,Easter 2001
    109 Galway Me,Masucci J D,Lloyd A M et al. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol. 1994,166:740-754
    110 Harold G Weger. Ferric and cupric reductase activities in the green alga Chlamydomonas reinhardtii: experiments using iron-limited chemostats. Planta,1999,207:277-384
    111 Harvey J Liang,Claire-Lise Rosenfield,D W Reed. Response of Ficus benjamina and Dracaena marginata to iron stress. J Amer Soc Hort Sci,1990,115(4) :589-592
    112 H J Lang,C L Rosenfield,D W Reed. Response of Ficus benjamina and Dracaena marginata to iron stress. J Amer Soc Hort Sci. 1990,115(4) :589-592
    113 Harald U Kosegarten,Bernd H,Konrcad M. Apolasric pH and Fe(III) reduction in intact sunflower leaves. Plant Physiol,1999,121:1069-1079
    114 H Marschner,V Romheld. Strategies of plants for acquisition of iron. Plant and Soil,1994,165:161-274
    115 H Nakanishi,N Bughio,S Matsuhashi et al. Visualizing real time [11C]methionine translocation in Fe-sufficient and Fe-deficient barley using a positron emitting tracer imaging system(PETIS). Experimental Botany,1999,50:637-643
    116 Hamilton E I et al. Relations between metal elements in man's diet and environmental factors. TSEH-XII-I,1979,3-15
    117 Herbik A,Giritch A,Horstmann C et al. Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronrva. Plant Physiol,1996,111:533-540
    118 Hildebrand DF. Lipoxygenases. Physiol Plant,1989,76:249-253
    119 Hirotaka Yamaguchi,Hiromi Nakanishi,Naoko K Nisizawa et al. Isolation and characterzation of IDI2,a new Fe-deficiency-induced cDNA from barley roots,which encodes a protein related to the a subunit of eukaryotic initiation factor 2B(eIF2B a ). J of Exp Bot,2000,353(51) : 2001-2007
    120 Hoffman B,Planker R and Mengel K. Measurements of pH in the apoplast of sunflower leaves by means of fluorescence. Physiol Plant,1992,84:146-153
    121 Hung C Y,Lin Y,Zhang M et al. A common position-dependent mechanism controls cell-type patterning and GLABRA2 regulation in the root and hypocotyl epidermis of Arabidopsis. Plant Physiol,1998,117:73-84
    122 Inskeep W P,Bloom P R. Effect of soil moisture on soil CO2,soil solution bicarbonate,and iron chlorosis in soybeans. Soil Sci Soc Am J,1986,50:946-952
    123 Inskeep W P,Bloom P R. Soil chemical factors associated with soybean chlorosis in Calciaquolla of Wesyern
    
    Minnesota. Agron J,1986. 79:779-786
    124 Izuo Tsutsui,Yaka-aki Ohkawa. Regulation of the H+ pump activity in the plasma membrane of internally perfused Chara corallina. Plant and Cell Physiol,2001. 5(42) :531-537
    125 Itai R,Suzuki K,Yamaguchi H et al. Induced activity of adenine phosphoribosyltransferase(APRT) in iron-deficient barley roots: a possible role for phytosiderophore production. J of Exp Bot,51:1179-1188
    126 Jaret A Lynnes,Tina L M Derzaph,Harold G Werger. Iron limitation results in induction of ferricyanide reductase and ferric chelate reductase activities in Chlamydomonas reinhardtii. Planta,1998,204:360-365
    127 J M Zhou. C Liu,P M Huang. Perturbation of taranakite formation by ferrous and ferric iron under acidic conditions. Soil Science Society of America Journal,2000,64:885-892
    128 J N Egilla,D H Byrne,D W Reed. Iron stress response of three peach rootstock cultivars:ferric-iron reduction capacity. J Plant Nutrition,1994,17( 12) :2079-2103
    129 Jocelyn K Middlemiss. Andrea M Anderson. Chad W Stratilo et al. Oxygen consumption associated with ferric reductase activity and iron uptake by iron-limited cells of Chlorella kessleri( Chlorophyceae). J Phycol. 2001,37:393-399
    130 John W Schiefelbein. Constructing a plant cell: The genetic control of root hair development. Plant Physiol,2000. 124:1525-1531
    131 Jonathan Nda Egilla,David H Byrne. D W Reed. Iron stress response of the three peach rootstock cultivars: ferric-iron reduction capacity. J Plant Nutri,1994,17(12) :2079-2103
    132 Jolley W P,Brown J C. Soybean response to iron-deficiency stress as related to iron supply in the growth medium. J Plant Nutr,1987,10:637-651
    133 Jolley W P,Fairbanks D J,Stevens W B et al. Root iron-reduction capacity for genotypic evaluation of iron efficiency in soybean. J Plant Nutr. 1992. 15:1679-1690
    134 Kawai S. Mugineic acid-family phytosiderophores in root secretions of barley,com and sorghum varieties. J Plant Nutr,1988,11:633-642
    135 Kazuya Suzuki,Reiko Itai,Koichiro Suzuki et al. Formate dehydrogenase,an enzyme of anaerobic metabolism,is induced by iron deficiency in barley roots. Plant Physiol,1998,116:725-732
    136 Keller T. A plant homolog of the neutrophil NADPH oxidase gp91phox submit gene encodes a plasma membrane protein with Ca( II) binding motifs. Plant Cell,1998,10:1-13
    137 K J Dietz. N Tavakoli,C kluge et al. Significance of the V-type ATPase for the adaption to stressful growth conditionsand its regulation on the molecular and biochemical level. Experimental Botany. 2001,363(52) :1969-1980.
    138 Kolesch H,Oktay M,Hofner W. Effect of iron chlorosis-inducing factors on the pH of the cytoplasm of sunflower(Helianthus annuus). Plant and Soil,1984,82:215-221
    139 Konrad Mengel. Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant and Soil,1994,165:275-283
    140 Konrad Mengel. Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant and Soil. 1994,165:275-283
    141 Korshunova Y O,Eide D,Clark W G,Guerinot M L,Pakrasi H B. The IRT1 protein from Arabidopsis thaliana is a metal transport with a broad substrate range. Plant Mol Biol,1999,40:37-44
    142 Landsberg EC. Transfer cell formation in the root epidermis: a prerequisite for Fe-efficiency? J Plant Nutr,1982,5:415-432
    143 Landsberg EC. Function of rhizodermal transfer cells in the Fe stress response mechanism of Capsicum annuum L. Plant Physiol,1986,82:511-517
    
    
    144 Larkin J C,Marks M D. Nadeau J et al. Epidermal cell fate and patterning in leaves. Plant Cell. 1997,9:1109-1120
    145 LongneckerN,Welch R M. Accumulation of apoplastic iron in plant roots. Plant Physiol,1990,92:17-22
    146 Loreti. Presente e future dei portinnesti degli alberi da frutto. Frutticoltura,1988,1-2,77-86
    147 Lozoff B,A M Wolf,E Jimenez. Iron deficiency anemia and infant development:effects of extended oral iron therepy. J Pediatrics. 1999,129:382-389
    148 L C Wei,R H Loeppert,W R Ocumpaugh. Analysis of Fe-deficiency induced H+ release by plant roots using chemical equilibrium and pH-stat methods. J Plant Nutr. 1998,21:1539-1549
    149 L C Wei,R H Loeppert,W R Ocumpaugh. Characteristics of Fe-deficiency acidification in subterranean clover. Physiologia Plantrum,1998,103:443-450
    150 L Wei,R Loeppert,W Ocumpaugh. Fe-deficiency stress response in Fe-deficiency resistant and susceptible subterranean clover:importance of induced H+ realease. J Experimental Botany,1997,48:239-246
    151 L Espen et al. Metabolic responses in cucumber (Cucumis sativus L ) roors under Fe-deficiency: a 31P-nuclear magnetic resonance in Vivo study. Planta,2000. 210(6) :985-992
    152 Ma J F. Biosynthesis of phytosiderophores,mugineic acids.Associated with Methionine cycling. J Biol Chem,1995,270:16549-16554
    153 MarschnerH. Localization of phytosiderophore release and iron uptake along intact barley roots. Physiol Plant,1987,71:157-162
    154 Mattew L Adams,Wendell A Norvell,William D Philpot et al. Toward the discrimination of manganese,zinc,copper and iron deficiency in "Bragg"soybean using spectral detection methods. Agronomy J,2000,92:268-274
    155 M J Holden,D G Luster,R L Chaney et al. Fe(III)-chelate reductase activity of plasm membranes isolated from Tomato (Lycopersicon esculentum Mill.) roots. Plant Physiol,1991,97:537-544
    156 Moog P R,Van der Kooij T A,W Bruggemann et al. Responses to iron deficiency in Arabidopsis thaliana: The turbo reductase does not depend on the formation of root hairs and transfer cells. Planta,1994,200:350-358
    157 Michel K-P,Thole H H,Pistorius E K. IdiA,a 34kDa protein in the cyanobacteria Synechoccus sp strains PCC 6301 and PCC 7942,is required for growth under iron and manganese limitations. Micrology,1996,142:2634-2645
    158 Michel K-P,Pablo E-S,Garbriele S-B et al. Immunocytochemical locilization of IdiA,a protein expressed under iron or manganese limitation in the mesophilic cyanobacterium Synechococcus PCC6301 and the thermophilic cyanobacterium Synechococuus elongates. 1998,Planta,205:73-81
    159 Michiko Takahashi,Hirotaka Yamaguchi,Hiromi Nakanishi et al. Cloning two genes for nicotianamine aminotransferase,a critical enzyme in iron acquisition(Strategy II) in graminaceous plants. Plant Physiol,1999,121:947-956
    160 Mary L G,Ying L. Iron: nutritious,noxious and not readily available. Plant Physiol,1994,104:815-820
    161 Martins L J,Jensen L T,Simons J R et al. Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem,1998,273:23716-23721
    162 Marto Dell'Orto,Simonetta Santi,Patrizia De Nisi et al. Development of Fe-deficiency responses in cucumber(Cucumis sativus) roots: onvolvement of plasma membrane H+-ATPase activity. J Experimental Botany,2000,345(51) :695-701
    163 Marschner H. Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr,1986,9:695-713
    164 M de Guardia,E Alcantara. Ferric cjelate reduction by sunflower(Helianthus annuus L) leaves:influence of light,oxygen,iron-deficiency and leafage. J Experimental Botany,1996,47:669-675
    165 Mengel K,Planker R,Hoffman B. Relationship between leaf apoplast pH and Fe chlorosis of sunflowers(Helianthus annuus L). J plant Nutr,1994,17:1053-1064
    166 Morris D R,Loeppert R H,Moore T J. Indigenous soil factors influencing iron chlorosis of soybean in calcareous
    
    soils. Soil Sci Soc Am J. 1990. 54:1329-1336
    167 Mori S. Identification of barley chromotosome NO.4,possible encoder of genes of mugineic acid syntheses from 2-deoxymagineic acid using wheat-barley addtion line.Plant Cell Physiol,1989,30:1057-1061
    168 Mori S. Identification of rye chromosome 5R as carrier of genes for mugineic acid synthesis and 3-hydromugineic acid synthesis using wheat-rye addtion lines. Japaness J Genet,1990,65:343-352
    169 N J Robinson,Catherine M P,Erin L Connolly et al. A ferric-chelate reductase for iron uptake from soils. Nature,1999,397:694-697
    170 N J Robinson,Sadjuga,Quentin J G. The froh gene family from Arabidopsis thaliana: putative iron-chelate reductase. Plant and Soil,1997,196:245-248
    171 Nicolaus von Wire,Sukhbinder Klair,Suhkibar Bansal et al. Nicotianamine chelates both Fe and Fe. Implications for metal transport in plants. Plant Physiol,1999,119:1107-1114
    172 Nelson S D. Response of several wildland shrubs and forbs of arid regions to iron-deficiency stress. J Plant Nutr. 1992,15:2015-2023
    173 Nelson M,Cooper C R,Crowley D E et al. An Escherichia coli bioassay of individual siderophores in soil. J Plant Nutr,11:915-924
    174 Oliver Thimm,Bemd Essigmann,Sebastian Kloska et al. Response of Arabidopsis to iron deficiency stress as revealed by macroarray analysis. Plant Physiol,2001,127:1-14
    175 Petra R Moog,W Bruggemann. Iron reductase systems on the plant plasma membrane-A review. Plant and Soil,1994,165:241-260
    176 Patrizia De Nisi,Graziano Zocchi. Phosphoenolpyruvate carboxylase in cucumber(Cucumis salivus L) roots under iron deficiency: activity and kinetic characterization. J Experimental Botany,2000,352(51) :1903-1909
    177 Pate J S. Exchange of solutes between phloem and xylem circulation in the whole plant. In transport in plants. I. Phloem,Transport. Eds. M H Zimmermann and J A Milburn,Berlin: Springer Verlag,1975,451-473
    178 Rainer Low,Beate Rockel,Matthias Kirsch et al. Early salt stress effects on the differential expression of vacuolar H+-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol,1996,110:259-265
    179 Radisky D,Kaplan J. Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem,1999,274:4481-4484
    180 Rabotti G,De Nisi P,Zocchi G. Metabolic implications in the biochemical responses to iron deficiency in cucumber(Cucumis sativus L)roots. Plant Physiol,1995,107:1195-1199
    181 Reiko Itai,Kazuya Suzuki,Hirotaka Yamaguchi et al. Induced activity if adenine phosophoribosyltransferase(APRT) in iron-deficient barley roots: a possible role for phytosiderophore production. J Experimental Botany,2000,51:1179-1188
    182 Reichard P. From RNA to DNA,why so many ribonucleotide reductase? Science,1993,260:1773-1777
    183 Rom R C.The peach rootstock situation: An international perspective. Fruit Var J,1983,36:2-14
    184 Roman D G,Dancis A,Anderson G J et al. The fission yeast ferric reductase gene frpl* is required for ferric iron uptake and is homologous to gp91-phox submit of the human NADPH phagocyte oxidoreductase. Mol Cell Biol,1993,13:4342-4350
    185 Romeld V,Marschner H. Genotypical differences among graminacerous species in release of phytosiderophores and uptake of iron-phytosiderphores. Plant and Soil,1990,123:146-153
    186 Romera F J,Alcantara E,de la Guardia M D. Effects of bicarbonate,phosphate and high pH on the reducing capacity of Fe-deficient sunflower and cucumber plants. J Plant Nutr,1992,15:1519-1530
    187 Romera F J. Iron requirement for and effects of promoters and inhibitors of ethylene action on stimulation of Fe(III)-chelate reductase in roots of strategy I species. Bio Metals,1996,9:45-50
    
    
    188 Romerta F J. Ethylene involvement in the over expression of Fe(III)-chelating reducing capacity by roots of E107 pea( Pisun sativum L) and chloronerva tomato( Lycopersicon esculentum L) mutant genotypes. Bio Metals,1996,9:38-44
    189 Richard P. From RNA to DNA,Why so many ribonucleotide reductase? Science,1993,260,1773-1777
    190 R Pinton,S Cesco,S Santi et al.Water-extratable humic substances enhance iron deficiency responses by Fe-deficient cucumber plants. Plant and Soil,1999,210:145-147
    191 Romera F J,Alcantara E,Guardia M D. Effects of bicarbonate,phosphate and high pH on the reducing capacity of Fe-deficient sunflower and cucumber plants. J Plant Nutr,1992,15:1519-1530
    192 Romeheld V,Marschner H. Evidence for a specific uptake system for iron phytosiderophore in roots of grasses. Plant Physiol,1986. 9:695-713
    193 Roswitha Becker,Renate Manteuffel,Dieter Neumann et al. Excessive iron accumulation in the pea mutants dgl and brz: subcellar localization of iron and ferretin. Planta. 1998. 207:217-223
    194 Ronald F Korcak. Iron deficiency chlorosis. Annual Review of plant physiology. 19. 133-172
    195 Romheld V,Muller C,Marschner H. Localization and capacity of proton pumps in roots of intact sunflower plants. Plant Physiol,1984. 76:6-3-606
    196 Sakano K. Revision of biochemical pH-stat:involvement of alternative pathway metabolism. Plant Cell Physiol. 1998,39:467-473
    197 Santos S,Anunciacion A,Jose A Gonzalez-Reyes et al.The pH requirment for in vivo activity of the iron-deficiency-induced "Tuobo" ferric chelate reductase. Plant Physiol. 1996,110:111-123
    198 Sansavini S. Orientamenti per l'impianto e per 1' allevamento del pero. Frutticoltura. 1986,5:21-30
    199 Schmidt W. Iron stress-induced redox reactions in bean roots. Physiol Plant,1993,89:448-452
    200 Schmidit W. Root-mediated ferric reduction: responses to iron deficiency,exogenously induced changes in hormonal balance and inhibition of protein syntheisis. J Exp Bot,1994,45:725-731
    201 Schmidit W. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol,1999,141:1-16
    202 Schmidit W,Barrels M. Formation of root epidermal transfer cells in Plantago. Plant Physiol,1996,110:217-225
    203 Schmidit W,Tittel J,Schikora A. Role of hormones in the induction of Fe deficiency responses in Arabidopsis root. Plant Physiol,2000,122:1109-1118
    204 Sevilla F,Dei Rio LA,Hellin E. Superoxide dismutases from a citrus plant:presence of two iron-containing isoenzymes in leaves of lemon trees(Citrus limonum L). J Plant Physiol,1984,116:381-387
    205 Shim S C.Heavy metal nutrition and iron chlorosis of citrus seedlings.Plant Physiol,1965,38:371-382
    206 Spiller S C,Terry N.Limiting factors of photosynthesis II: iron stress diminishes photochemical capacity by reducing the number of photosynthetic units.Plant 1980,65:121-125
    207 Spiller S C,Kaufman LS,Thompson WF et al. Specific mRNA and rRNA levels in greening pea leaves during recovery from iron stress. Plant Physiol,1987,84:409-414
    208 Stephen U W,Scholz G. Nicotianamine: mediator of transport of iron and heavy metals in the phelom? Physiol Plant,1993,88:522-529
    209 Susin S,Abian J,Sanchez-Baeza F,Peleato J L et al. Ribonflavin 3'-and 5'-sulfate,two novel flavins accumulating in the roots of iron-deficienct sugar beet(Beta vulgaris).J Biol Chem,1993,268:20958-20965
    210 Tagliavini M,Scudellari D,Marangoni B et al. Acid spray regreening of kiwifruit leaves affected by lime induced Fe chlorosis. Proc.7th international symposium on iron nutrition and interactions in plants. Ed. J Abadia,1994
    211 Tama C Fox,M Lou Guerinot. Molecular biology of cation transport in plants. Annu Rev Plant Physiol Plant Mol Biol,1998,49:669-696
    212 Tama C Fox,Jon E Shaff. Michael A Grusak et al. Direct measurement of 59Fe-labelled Fe+2 influx in roots of pea
    
    using a chelator buffer system to control free Fe+2 in solution. Plant Physiol,1996. 111:93-100
    213 Takagi S. Naturally occurring iron-chelating compounds in oat-and rice-root washing. l.Activity.measurement and preliminary characterization. Soil Sci and Plant Nutr,1976,22:423-433
    214 Takagi S. Physiological aspect of mugineic acid,a possible phytosiderophore of graminaceous plants. J Plant Nutr,1984,7:469-477
    215 Torres M A. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase(gp91phox). Plant J,1998,14:365-370
    216 Toulon V,Sentenac H,Thibaud J B et al.Role of apoloplast acidification by the H+ pump. Effect on the sensitivity to pH and CO2 of iron reduction. Planta,1992,186:212-218
    217 U Eckhardt,T Buckhout. Iron assimilation in Chlamydomonas reinhardtii involves ferric reduction and is similar to strategy I in higher plants. J Experimental Botany. 1998,49:1219-1226
    218 U Eckhardt. Andreas Mass Marques. Thomas J Buckhout. T\vo iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant molecular Biology. Netherlands: Kluwer Academic Publishers. 2001
    219 Vose P B. Iron nutrition in plants: A world view. J Plant Nutri. 1982. 5:233-249
    220 World Health Organizationhttp://www.aho.int/nut/malnutrition-worldw'ide.htm#ida.25 January. 1999
    221 Wess M G. Inhertance and physiology of efficiency in iron utilization in soybeans. Genetics,1943,28:253-268
    222 Wlech R M,Norvell W A,Schaefer S C,Shaff J E,Kochian L V. Induction of iron(III) and copper( II) reduction in pea( Pisum sativum L.) by Fe and Cu status: does the root-cell Fe(III)-chelate reductase perform general role in regulating cation uptake? Planta,1993,190:555-561
    223 Wlech R M,Norvell W A. Possible role of root-ethylene in Fe(III)-phytometallophore uptake in strategy II species. Plant Nutrition-for sustainable food production and environment. 1997,119-122
    224 Winder T L,Nishio J N. Early iron deficiency stress response in leaves of sugar beet. Plant Physiol,1995,108:1487-1496
    225 W Schmidit,J Tittel,A Schikora. Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol,2000,122:1109-1118
    226 W Schmidt. Influence of chromium(III) on root-associated Fe(III) reductase in Plantago lanceolata L. J Experimental Botany,1996,47:805-810
    227 Wolfgang Schmidt,Adam Schikora. Different pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physiol,2001,125:2078-2088
    228 Yan Shi,David H Byrne,David W R. Influence of bicarbonate in ironochlorosis development and nutrient uptake of the peach rootstock montclar. J Plant Nutri,1993,16(9) :1657-1689
    229 Yi Y,Guerinot M L. Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J,1996,10:835-844
    230 Zhang F S. Diurnal pattern in release of phytosiderophores and uptake rate of zinc in iron deficient and iron sufficient wheat. Soil Sci Plant Nutr,1991,37:671-678
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.