铝合金点焊质量的逆过程检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电阻点焊作为一种常用的焊接方法,由于其高生产效率和易于实现自动化的特点,而在汽车、航空、航天产品的生产中得到了广泛的应用,尤其在现今汽车行业的高速发展中,点焊的应用更加广泛。随着世界能源日益紧缺,汽车轻量化理念使得具有优良性能的轻金属-铝合金成为了汽车生产的主要材料,但由于铝合金点焊焊接性较差及影响点焊质量的因素较多的缘故,使得对铝合金点焊质量的研究日益成为焊接工作者研究的重点。目前,点焊质量检测存在两方面的不足,在特征提取上,点焊特征提取主要集中在宏观特征和奇异点特征上,而由于点焊过程的影响因素较多,使得点焊特征信号受噪声的干扰而发生了部分特征变异,而传统的提取方法不能很好的把握这种变化。在检测方法上,目前,点焊质量检测模型主要集中在建立数学函数模型上,但由于点焊的缺陷受到多种因素的影响,其与点焊信号特征之间的函数关系不够严格,导致目前的数学检测模型的检测精度较低。鉴于这种情况,目前已经有部分学者开始把模式识别的理论应用到点焊质量检测上,但还需要进行深入研究。因此本文针对目前点焊质量检测中存在的这些不足,本文做了以下方面的研究工作:
     (1)构建多信息融合的点焊信息采集系统,获得焊点的4个同步信号。
     构建了多信息融合的智能信息采集系统,采集了电极电压、焊接电流、焊接过程中的声发射和电极位移四个参量数据。该多信息融合的智能信息采集系统可以迅速快捷的完成点焊数据的采集、转换和存储,各智能采集终端通过数字处理模块实现与计算机的通信。基于多信息融合的点焊信息采集系统可以达到信号采集的快速、同步和高效。
     (2)应用信号分析理论和非线性动力学理论提取信号的特征值。
     由于在铝合金点焊过程中,各类信号的变化比较复杂且变化幅度较小,传统的特征提取方法就显得不够准确了,因此,本文结合信号分析理论和非线性动力学理论,考虑到信号分形维数较强的抗噪能力,及该指标对数据信号变化特征的总体反映能力,对点焊电极电压、点焊电流、点焊过程中的声发射信号和电极位移信号进行分形维数特征提取;根据电压对点焊形核的能量输入特征,对电压信号进行了双谱分析,提取了其三阶累积量的线谱最大5个谱线的均值作为电压的第二特征;通过对点焊电流的非线性分析发现,点焊电流信号具有混沌特征,而混沌特征能够有效反映信号的微弱变化,数据序列的混沌特征用Lyapunov指数来表征量,鉴于电流信号的变化对熔核尺寸和飞溅产生的影响极大,因此提取电流的Lyapunov指数作为电流的第二特征。点焊过程中的形核和飞溅都会造成声音信号能量的变化,因此,提取声音的能量变化率作为声音信号的第二特征。点焊的形核和飞溅直接影响了电极位移的变化规律,故提取了表征点焊电极位移变化不确定程度的位移信号的Renyi熵作为电极位移信号的第二特征。对每个焊点共获得了对应的8个特征值。
     (3)应用人工智能理论,模式识别理论及应用数学方面的知识,把模糊灰色信息系统、支持向量机和隐形Markov链引入点焊的质量检测中,并讨论了各模型的检测效果及本文提取的各数据特征对模型检出准确率的影响情况。
     首次把模糊灰色信息系统引入点焊质量检测领域,根据模糊灰色关联度的概念,构建了点焊的模糊灰色信息系统检测模型,并比较了各信号特征对模型检出准确率的影响,模糊灰色信息系统对点焊缺陷具有较好的的检测效果,当8个特征输入时达到最大检出准确率,熔核尺寸检出率为91%,飞溅状况检出率为92%;构建了点焊信号的支持向量机检测模型,并分析了个特征对模型检测精度的影响,发现支持向量机检测模型在5个或6个特征输入时,达到最佳检测效果,熔核尺寸检出率为86%。飞溅检测效果在5特征输入时达到最佳检出率为88%。首次构建了点焊的隐性Markov链检测模型,并分析了各特征组合对该模型的影响,发现在7特征输入时熔核的检出率达到最佳,为93%,而飞溅的最佳检出率也是在7特征输入时获得的为87%。
     (4)为达到同时检测焊点尺寸和飞溅两种缺陷的目的。构建熔核尺寸检测和飞溅检测模型阵列。
     本文首次构建了模糊灰色信息系统检测模型阵列,达到同时检测熔核尺寸和飞溅的目的,本文构建了8特征输入的点焊尺寸灰色信息系统检测模型和6特征输入的点焊飞溅灰色信息系统检测模型阵列,其最佳检测效果较好,检出率达到89%,支持向量机阵列模型的最佳检出率为80%,隐性Markov链检测模型的最佳检出率为81%。比较发现,模糊灰色信息系统检测模型为最佳点焊缺陷检测模型,其他两种方法可以作为辅助检查方法。
Because of the characteristic of high productivity and automatic realization, resistance spot welding, as a common welding method, has obtained widespread application in the production of automobile and aviation industry. It has more application especially in the rapid development of automobile industry. The concept of automobile lightweight makes the aluminum alloy, which is one of the light alloy with excellent performance, to be the leading material in the automobile production due to the lack of energy in the world. The study of welding quality in resistance spot welding of aluminum alloy becomes a important study direction as a result of the poor welding performance of aluminum alloy and the complicated influential factors of spot welding quality. At present, it is insufficient in the two aspect of research on quality of spot welding, one is feature extraction, now the emphasis of feature extraction in spot welding is put on the extraction of the macroscopic feature and singularity, due to the process of spot welding is influenced by a large number of factors, the characteristic signal of welding spot is interfered by noise and changed. But the common method can not extract the change of feature of signal precisely. The other deficiency is existed in detection method, now the quality detection model of welding spot is emphasized on the model construction based on relation of feature between signal and nugget quality, but the deficiency of spot welding is influenced by a large number of factors, there is not a one to one correspondence relation between the deficiency of nugget and spot welding signals, as a result the above reason lead to the low percentage of accuracy of detection of detection model of spot welding, though the theory of pattern recognition has been introduced to quality detection of spot welding by some researcher, the application of this method should be researched in profound direction. The below work is done aim to the deficiency existed in present detection method of spot welding:
     (1) The data acquisition system based on multi-information fusion is constructed, and four sync signals is obtained.
     The data acquisition is used in dissertation to collect the four variables: electrode voltage, welding current, welding sound and electrode displacement. This system based on multi-information fusion can complete independently data collection, A/D transfer and data local save. Each intelligent terminal communicates with computer by digital management module. The signals can be collected by the data acquisition system based on multi-information fusion quickly efficiently and synchronously.
     (2) The eigenvalue of signals is extracted using theory of signal analysis and nonlinear dynamics.
     Because the change of signals is complex and the amplitude narrow in the process of spot welding, the common extraction method will be inaccuracy, based on the theory of signal and nonlinear dynamics, considering the better noise immunity and express ability to change feature of signal as a whole, the fractal dimension from the signals of electrode voltage, welding current, welding sound and electrode displacement are extracted in the paper; according to the input feature of energy of voltage to nucleation of spot welding, the high-order spectrum is used to analysis the voltage signal, and the five max spectral line of line spectrum of three-order cumulant slice of voltage signal. Through analyzing to non-linear feature of welding current, the chaotic characteristic is discovered, and the chaotic characteristic can reflect the weak change of signal, Lyapunov exponent is the characterization value of chaotic characteristics of signal, because of the great effect of current signal to nugget size and spatter, the Lyapunov exponent of current signal is extracted as the second feature. In the process of spot welding, nucleation and spatter can emit sound, so the change rate of energy of sound is extracted as the second feature of sound. The change trace of electrode displacement can be greatly influenced by nucleation and spatter, the Renyi entropy, which can attribute the uncertainty of electrode displacement, is extracted as the second feature of electrode displacement signal. as a result, each spot weld can correspond to 8 features.
     (3) The fuzzy grey information system, the support vector machine and the hidden Markov chain are introduced to the quality detection of resistance spot welding by using the artificial intelligence theory, pattern recognition theory and application mathematics knowledge. The detection effect of each model and the influence of each data feature which is extracted in this paper on the percent of accuracy of detection are discussed.
     The fuzzy grey information system is introduced to the field of quality detection of resistance spot welding for the first time. According to the concept of fuzzy-gray relational degree, the fuzzy grey information system model of resistance spot welding is constructed, and effects of every signal characteristic on the percent of accuracy of detection of the model is discussed. The fuzzy grey information system has a better detection effect on defects of resistance spot welding. When the eight eignvalues are inputted, the maximum percent of accuracy of detection is obtained, the percent of accuracy of detection of nugget size is 91% and the percent of accuracy of detection of spatter is 92%. The support vector machine model of resistance spot welding signal is constructed and the effect of each feature on the detection accuracy is analyzed. The optimal detection result of nugget size is 86% when five or six eignvalues are inputted in the support vector machine model. The optimal detection result of spatter is 88% which can be achieved when five eignvalues are inputted. The hidden Markov chain model of resistance spot welding is constructed for the first time and effects of every feature combination on this model is analyzed. The optimal detection result of nugget size is 93% and the optimal detection result of spatter is 87%, both of which can be achieved when seven eignvalues are inputted.
     (4) In order to inspect nugget size and spatter simultaneously, the model array of nugget size detection and spatter detection is constructed.
     An detection model array is constructed which is composed of an eight eignvalues fuzzy grey system nugget size detection model and a six eignvalues fuzzy grey system spatter detection model, and the optimal detection effect can be increased to 89%. The optimal percent of accuracy of detection of the support vector machine model array is 80% and the optimal percent of accuracy of detection of the hidden Markov chain model is 81%. Through comparison, it has been found that the fuzzy grey information system inspection model is the best resistance spot welding defects detection model, another two methods can be used as assistant detection methods.
引文
[1]管学理,汽车节能(节油)技术发展动态[J],水利电力科技,1995,22(2): 40~45
    [2]程振彪,轻材料中汽车上的应用[J],世界汽车,2000,4:14~15
    [3]W.S.Miller,L.Zhang, J. Bottenna, et al, Recent Development in Aluminum Alloys for the Automotive Industry,Materials Science and Engineering[J], 2000, A280:27~49
    [4]Masaaki Saito, Shuuichiro Iwatsuki, Kunihiro Yasunaga, et al, Development of Aluminum Body for the most Fuel Efficient[J], Vehicle,JSAE Review,2000,21:511~516.
    [5]杨丽华,21世纪汽车发展趋势[J],汽车技术,2000,4:1~3
    [6]陈小复,汽车用轻质材料研究[J],世界汽车,2000,12:13
    [7]孙咏金,汽车车身结构的发展动向[J],世界汽车,1995,6:10~11
    [8]华林,汽车铝板应用新进展[J],世界汽车,1995,4:20~23
    [9]王竑,陈昌明,吴宪,铝在现代汽车轻量化中的作用[J],上海汽车,2004,12:32~34
    [10]肖艳,现代车用金属材料及其发展趋势[J],金属世界,2005,4:48~51
    [11]鞠晓峰,陈昌明,吴宪,现代汽车轻量化技术[J],上海汽车,2006,9
    [12]张屹林,汽车轻量化与铝合金[J],内燃机配件,2004,5:37~40
    [13]Heinz A, et al, Recent development in aluminum alloys for aerospace applications[J], Mater Sci Eng,2000,A280:102
    [14]Staley James T, Liu John, Hunt Warren H Jr,Aluminum alloys for aerostructures[J], Adv Mater Proc,1997,10~17
    [15]李新生,李富仓,现代汽车发展趋势与思考[J],内蒙古公路与运输,2002,74(2):27~30
    [16]张中举,熊铁星,国外城市汽车发展新趋势[J],节能技术,2002,20(3):19~22
    [17]杨晓红,镁合金的研究及其在汽车工业中的应用与发展[J],汽车工程,2002,24(2):94~96
    [18]陈小复,美国对汽车轻质材料应用的评估[J],上海汽车,2003,(5):24~29
    [19]严世英,未来汽车工业的发展趋势[J],世界汽车,1999(4):42~43
    [20]羊秋林,李尹熙,吕莉雯,李子卿,汽车用轻量化材料[M],北京:机械工业出版社,1991
    [21]杨握铨,汽车焊装技术及夹具设计[M],北京:北京理工大学出版社,1996
    [22]黄旺福等,铝及铝合金焊接指南[M],湖南:湖南科学技术出版社,2004
    [23]张忠玉,铝及铝合金工艺与设备[M],长沙:中南大学出版社,2006
    [24]王祝堂,田容璋,铝合金及其加工手册[M],长沙,中南大学出版社,2005
    [25]周万盛,铝及铝合金的焊接[M],北京:机械工业出版社,2006
    [26]王敏,压力焊接专委会综述[M],第十次全国焊接会议论文集,第一册,哈尔滨:龙江人民出版社,2001
    [27]孙丹丹,李文东,车身的铝合金点焊过程[J],山东内燃机,2005,(1):35~39
    [28]孙凌玉,朱壮瑞,陈南等,汽车车身钣金件点焊连接界面特性与建模[J],汽车工程,2000,22(1):72
    [29]韩英淳,于多年,赵静宜,李伟,汽车轻量化的设计与制造新工艺[J],汽车工艺与材料,2003,5:6~8
    [30]Daniel,Carle,The Suitability of Aluminum as an Alternative Material for Car Bodies[J],Material and Design,1999,20:267~272
    [31]Bob Irvin,The search goes on for the perfect resistance welding control[J],Welding journal,1996,75(1):63~68
    [32]D.J. Browne,H.W. Chandler,J.T. Evans etc,Computer simulation of resistance spot welding in aluminum: Part I[J], Welding Journal,1995,74(10):339~344
    [33]H. A. Nied,The finite element modeling of the resistance spot welding process[J], Welding Journal,1984,63(4):123~132
    [34]C. L. Tsai,W.L. Dai,D.W. Dickinson etc,Analysis and development of a real-time control methodology in resistance spot welding[J], Welding Journal,1991,70(12):339~351
    [35]H. Murakawa,H. Kimura,Y. Ueda,Weldability analysis of spot welding on aluminum using FEM[J], Trans JWRI,1995,24(2):101~111
    [36]C. L. Tsai,O.A. Jammal,J.C. Papritan etc,Modeling of resistance spot weld nugget growth[J], Welding Journal,1992,71(2):47~54
    [37]Sun, X.Khaleel, M.A,Resistance spot welding of aluminum alloy to steel with transition material - Part II: Finite element analyses of nugget growth[J],Welding Journal,2004,83(7):197~202
    [38]Cha, B.W. Na, S.J,A study on the relationship between welding conditions and residual stress of resistance spot welded 304-type stainless steels[J],Journal of Manufacturing Systems,2003,22(3):181~189
    [39]De,A.Thaddeus,M.P.Dorn.L,Numerical modelling of resistance spot welding of aluminium alloy[J],ISIJ International,2003,43(2):238~244
    [40]Feng, Z.Babu, S.S.Riemer, B.W.Santella, M.L. Gould, J.E. Kimchi, M,Modeling of resistance spot welds-Process and performance [J], Welding Research Abroad, 2003, 49(2):29~35.
    [41]Hasselman, Timothy.Yap, Keng.Cafeo, John.Cavendish,James, Predictive accuracy of resistance spot welding simulations Proceedings of SPIE[J], The International Society for Optical Engineering, 2002, 4753(2):904~909
    [42]Cavendish, James C. Cafeo, John A,Framework for validation of computer models applied to a resistance spot weld model,American Society of Mechanical Engineers[J], Heat Transfer Division, (Publication) HTD, 2003, 374(1):149~151
    [43]Zhang Wenqi, Industrial applications of computer simulation in resistance welding[J],International Journal for the Joining of Materials,2003,15(3):9~10
    [44]Cho, Yongjoon, Rhee, Sehun.Quality Estimation of Resistance Spot Welding by Using Pattern Recognition With Neural Networks[J],IEEE Transactions on Instrumentation and Measurement, 2004, 53(2):330~334
    [45]Dorn, Lutz, Baker, Shawqi, Extending the electrode life in the spot welding of aluminium alloys by using composite electrodes[J], Schweissen und Schneiden/Welding and Cutting, 2002, 54(1):19~23
    [46]Cho, Y.Hu, S.J.Li, W, Resistance spot welding of aluminium and steel: A comparative experimental study,Proceedings of the Institution of Mechanical Engineers[J], Part B: Journal of Engineering Manufacture, 2003, 217(10):1355~1363
    [47]Otani, Tadayuki,Sasabe, Ken.Characteristics of resistance spot welds of ultra-fine grained high strength steel sheets[J],Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2003, 21(2):243~248
    [48]Otani.Tadayuki, Sasabe.Ken, Shiga.Chiaki, Nagashima.Nobuo, Characteristics of welds of high strength steel sheets with ultra-fine grained microstructure welded by resistance spot heating method [J], Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2002, 20(1):114~119
    [49]Khan,Jamil A.,Broach,Kirk,Kabir,A.A.S.Arefin,Numerical thermal model of resistance spot welding in aluminum[J],Journal of Thermophysics and Heat Transfer, 2000, 14(1):88~95
    [50]Lum, I, Fukumoto, S,Biro, E,Boomer, D.R,Zhou, Y,Electrode Pitting in Resistance Spot Welding of Aluminum Alloy 5182, Metallurgical and Materials[J], Transactions A: Physical Metallurgy and Materials Science, 2004, 35(1):217~226
    [51]Shi. G, Westgate,S.A, Resistance spot welding of high strength steels[J],International Journal for the Joining of Materials, 2004,16(1):9~14
    [52]Fresz.B,Groza.J,Stefensen. S,Copper electrodes for resistance spot welding of aluminum[C],4th International Conference COPPER 99-COBRE 99, 1999:411~415
    [53]Sari.H, Sonmez.H, Gultekin. N, The investigation of the relation between resistance components and nugget dimensions in the resistance spot welding of aluminum alloys[J],Technical Paper - Society of Manufacturing Engineers, AD, n AD02-247, 2002, 12
    [54]Cho. Y, Rhee,. S, Experimental study of nugget formation in resistance spot welding[J].Welding Journal (Miami,Fla), 2003, 82(8):195~201
    [55]Garza, Frank, Das, Manohar, On real time monitoring and control of resistance spot welds using dynamic resistance signatures[C],Midwest Symposium on Circuits and Systems, 2001, 1:41~44
    [56]Tang. H, Hou. W, Hu. S. J, Zhang.H.Y, Feng.Z, Kimchi. M, Influence of welding machine mechanical characteristics on the resistance spot welding process and weld quality[J], Welding Journal (Miami, Fla), 2003, 82(5):116~124
    [57]罗震,铝合金点焊质量控制发展状况与材料接触电阻的研究[D],天津:天津大学,2002
    [58]M. J. karagoulis,A Nuts and Bolts Approach to the Control of Resistance Spot Welding[J], Welding journal, 1994, 73(6):27~31
    [59]吴林,陈善本,智能化焊接技术[M],北京:国防工业出版社,2000
    [60]C.L.Tsai,O.A.Jammal,J.C.Papritan,Modeling of Resistance Spot Weld Nugget Growth[J],Welding Journal,1992, 71(2):47~54
    [61]C.L.Tsai,W.L.Dai,D.W.Dickinson,J.C.Papritan,Analysis and Development of a Real-Time Control Methodology in Resisitance Spot Welding [J], Welding Journal,1991,70(12):339~351
    [62]Shinobu. S,Kin-ichi M,Review on inspection techniques for spot welds[J],Welding in the World,2000(3):29~36
    [63]胡仕新,美国汽车体装配与焊接研究现状[J],中国机械工程,1997(1):24~26
    [64]Cho. Y, Rhee. S,Experimental study of nugget formation in resistance spot welding[J],Welding Journal,2003,82(8):195~201
    [65]Matsuyama. K,Obert. R,Chun.J.H,A real-time monitoring and control system for resistance spot welding[J],Technical Paper - Society of Manufacturing Engineers. AD, n AD02-270, 2002:1~18
    [66]Jou, Min,Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies[J] , Journal of Materials Processing Technology,2003,132(1-3):102~113
    [67]Garza, Frank,Das, Manohar,On real time monitoring and control of resistance spot welds using dynamic resistance signatures[C],Midwest Symposium on Circuits and Systems, 2001, 1:41~44
    [68]Cho. Y, Rhee.S, Primary circuit dynamic resistance monitoring and its application to quality estimation during resistance spot welding[J], Welding Journal,(Miami, Fla), 2002,81(6):104~111
    [69]Senkara. J, Zhang. H, Hu. S.J,Expulsion prediction in resistance spot welding[J],Welding Journal, 2004, 83(4):123~132
    [70]Tang. H, Hou.W, Hu S, J.Zhang, H.Y, Feng.Z, Kimchi.M, Influence of welding machine mechanical characteristics on the resistance spot welding process and weld quality[J],Welding Journal (Miami, Fla),2003, 82(5):116~124
    [71]Wu.Pei, Zhang.Wenqi, Bay.Niels,A Method for Identifying the Mechanical Parameters in Resistance Spot Welding Machines[J],International Journal for the Joining of Materials, 2003, 15(4):26~29
    [72]Wang.S.C,Wei.P.S,Modeling dynamic electrical resistance during resistance spot welding[J],Journal of Heat Transfer, 2001, 123(3):576~585
    [73]Cho,Yong, joon,Rhee.Sehun,Quality Estimation of Resistance Spot Welding by Using Pattern Recognition With Neural Networks[J],IEEE Transactions on Instrumentation and Measurement,2004,53(2):330~334
    [74]Podrzaj, Primoz, Polajnar .Ivan, Diaci,Janez,Kariz,Zoran,Expulsion,detection system for resistance spot welding based on a neural network[J],Measurement Science and Technology,2004,15(3):592~598
    [75]Paul B.Dickerson, Bob Irving,Welding Aluminum: It’s not as Difficult as it Sounds[J]. Welding Journal, 1992, 71(4):45~50
    [76]C.E.Bull, K.A.Stacey,R.Calcraft, On-line Monitoring Using Ultrasonics[J], British Jopurnal of NDT, 1993, 2:57~64
    [77]J.Chen,Y.Shi,S.Shi , Noise Analysis of Digital Ultrasonic Nondestructive Evaluation System[J], International Journal of Pressure Vessels and Piping, 1999, 76:619~630
    [78]伊万诺夫,别洛夫,焊接和焊接接头的声发射检测[M],北京:机械工业出版社,1986
    [79]祝诗平,传感器与检测技术[M],北京:中国林业出版社,2006
    [80]谢志萍,传感器与检测技术[M],北京:电子工业出版社,2004
    [81]彭军,传感器与检测技术[M],西安:西安电子科技大学出版社,2003
    [82]蔡萍,赵辉,现代检测技术和系统[M],北京:高等教育出版社,2003
    [83]赵负图,信号采集与处理集成电路手册[M],北京:化学工业出版社,2003
    [84]何希才,刘红梅,传感器应用接口电路[M],北京:机械工业出版社,1997
    [85]高光天,传感器与信号调理器件及应用技术[M],北京:科学出版社,2002
    [86]申焱华,王汝杰,雷震山,Labview入门与提高范例教程[M],中国铁道出版社,2007
    [87]杨乐平,LabVIEW程序设计与应用[M],第二版,北京,电子工业出版社,2005
    [88]雷振山,LabVIEW 7 Express实用技术教程[M],第一版,北京:中国铁道出版社,2004
    [89]李文军,田瑞利,易利鹏,基于LabVIEW的数据采集与信号处理系统[M],现代电子技术,2005,20:10~11
    [90]National Instruments,The Measurement and Automation Catalogue[M],2001,深圳:Nidays,2001~2002
    [91]AH Tanner,NM White,Virtual Instrumentation: a solution to the problem of design complexity in intelligent instruments[J],Measurement and Control,1996, 29(7):165~171
    [92]Alfonso Carkisena, Carlos Macua, Miroslav zivanovic. Instrument for the Measurement of the Instantaneous Frequency[J], Instrumentation and Measurement,2000,49(4):783~789.
    [93]程虎,虚拟仪器的现状和发展趋势[D],现代科学仪器,1999,4:6~9
    [94]邓焱,王磊,LabVIEW 7 Express实用技术教程[M],北京:机械工业出版社,2004
    [95]程学庆,房晓溪,韩薪莘,张建.LabVIEW图形化编程与实例应用[M].北京:中国铁道出版社,2005
    [96]侯国屏,王坤,叶齐鑫,LabVIEW7.1编程与虚拟仪器设计[M],北京:清华大学出版社,2005
    [97]刘明华,Photoshop 7实用教程[M],北京:电子工业出版社,2002
    [98]沈洪,朱军,朱辉,Photoshop图像处理技术[M],北京:中国铁道出版社,2006
    [99]石博强,申炎华,机械故障诊断的分形方法[M],北京:冶金工业出版社,2001
    [100]Tian Juping, Yao Kailun,Hausdrff dimension and scaling nature of anisotropy diffusion DLA cluster[J],Indian Journal of Pure & Applied Physics,1998,36:380~385
    [101]T. Buzug, G. pfister,Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors,Phy.Rev. A,1992,45:7073~7084
    [102]ZHANG.Zhao-hui, HUANG.Wei-yi, Fractal determination and feature extraction from vibration waveform[J],Journal of Southeast University,1999,29(4):6~10
    [103]刘式达,刘式适,分形与分维引论[M],北京:气象出版社,1992,56~58
    [104]鄂春盛,蒋东翔,倪维光,分形几何及其在汽轮机组振动故障征兆提取中的应用[J].汽轮机技术,1999,41(6):321~324
    [105]吴敏金,分形信息导论[M],上海:上海科学技术文献出版社,1994,87~89
    [106]汪富泉,李后强,分形几何与动力系统[M],哈尔滨:黑龙江教育出版社,1993
    [107]谢文录,谢维信,时间序列的分形分析贺参数提取[J],信号处理,1997,13(2):97~104
    [108]Sarkar. N, Chaudhuri. B. B,An efficient differencial box-counting approach to compute fractal dimension of image,IEEE Transactions on Systes. Man and Cybernetics, 1994, 24(1):115~120
    [109]滕丽娜,刘天雄等,关联维数在设备状态监测中的应用研究[J],振动工程学报,2002,15(4):399~403
    [110]李娜,方彦军,利用局部关联维数分析机械系统故障信号[J],汽轮机技术,2007,49(6): 471~475
    [111]王炳雪,史忠科,吴方向,时间序列曲线盒维数的一种快速算法[J],系统工程,2002,7(18):68~72
    [112]贺国光,马寿峰,冯蔚东,对交通流分形问题的初步研究[J],中国公路学报,2002,15(4):82~85
    [113]Wornell G. W, Oppenheim A V,Estimation of fractal signals from noisy measurements using wavelets,IEEE Transaction Siglan Processing, 1992, 40(3):611~623
    [114]唐明,陈宝兴,刘伍生,基于相空间重构的短时交通流分形研究[J],山东交通学院学报,2004,12(1):50~54
    [115]张贤达,时间序列分析-高阶统计量方法(M),北京:清华大学出版社,1996
    [116]何海平,基于高阶统计量的信号分析与处理[J],机电工程,2003,5:85~86
    [117]吴国正,夏立,尹为民,现代信号处理技术[M],武汉:武汉大学出版社,2003
    [118]彭圆,申丽然,李雪耀等,基于双谱的水下目标噪声的特征提取与分类研究[J],哈尔滨工程大学学报,2003,24(4):390~394
    [119]景志宏,基于高阶统计量的舰船辐射噪声特征提取与分类识别研究[D],西北工业大学,1999
    [120]Mendel J M. Tutorial on higher-order statistics (spectra) in signal processing and systems theory:theoretical results and some applications[J],Proc of IEEE, 1991, 79(3):278~305
    [121]沈民奋,孙丽莎,现代随机信号与系统分析[J],北京,科学出版社,1998
    [122]赵阳明,黄志尧,王保良,高阶统计量在气固流化床中的应用研究[J],浙江大学学报,工学版,2002,36(6):680~684
    [123]J. M. Anderson, G. B. Giannakis,Harmonic Retrival Using Higher-order Statistics: A Deterministic Fomulation[J],IEEE Trans On Signal Processing. 1995,43(3):1880~1889
    [124]Collis W B, White P R, Hammond J K, Higher-order spectra: the bispectrum and trispectrum[J], Mechanical Systems and Signal Processing, 1998, 12(3): 375~394
    [125]H. M. Ibrahim, R. R. Gharieb, M. M. Hssan. A Higher Order Statistics-based Adaptive Algorithm for Line Enhancement,IEEE[J] Trans. On Signal Processing, 1999, 47(2):526~532
    [126]李亚安,冯西安,樊养余,黄建国,基于3/2维谱的舰船辐射噪声低频线谱成分提取[J],兵工学报,2004,25(2):238~241
    [127]董连科,分形动力学[M],沈阳:辽宁科技出版社,1994:25~26
    [128]龙运佳,混沌振动研究-方法与实践[M],北京:清华大学出版社,1997
    [129]Holger Kantz, Nonlinear Time Series Analysis[J], Cambridge university Press,1997
    [130]王东生,曹磊,混沌、分形及其应用[M],合肥:中国科学技术大学出版社,1995
    [131]黄润生,混沌及其应用[M],武汉:武汉大学出版社,2000
    [132]李继彬,冯贝叶,稳定性、分支与混沌[M],昆明:云南科技出版社,1995
    [133]陈奉苏,混沌学及其应用[M],北京:中国电力出版社,1998
    [134]陈式刚,映象与混沌[M],北京:中国电力出版社,1998
    [135]王树禾,微分方程模型与混沌麻烦[M],合肥:中国科学技术大学出版社,1999
    [136]张文超,杨鼎才,语音信号相空间重构中时间延迟的选择方法[J],2007,30(5):35~37
    [137]陈铿,韩伯棠,混沌时间序列分析中的相空间重构技术综述[J],计算机科学,2005,32(4),103~106
    [138]王海燕,盛昭瀚,混沌时间序列相空间重构选取分析[J],东南大学学报(自然科学版),2000,30(5):113~117
    [139]郁俊莉,王其文,韩文秀,经济时间序列相空间重构与混沌特性判定研究,武汉大学学报[J](理学版),2004,50(1):33~37
    [140]刘鹏飞,单平,罗震,邓环,高占蛟,电阻点焊焊接过程中电流信号时间序列混沌特征研究[J],中国机械工程,2007,18(21):2596~2599
    [141]H.S.Kim, R. Eykholt, J.D.Salas, Nonlinear dynamics delay times and embedding windows[J], Physica D, 1999,127:48~60
    [142]Matthew B.Kennel, Reggie Brown, Henry D.I.Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction[J], Physica D, 1992, 45(6):3403~3411
    [143]Cao. L, Practical method for determining the minimum embedding dimension of a scalar time series[J], Physica D, 1997, 110:43~50
    [144]Grassberger P, Procacia I, Measuring the strangeness of strange attractors[J],Physica D,1983,9(2):189~208
    [145]刘鹏飞,单平,罗震,信号分形与支持相量机的点焊检测方法[J],焊接学报,2007,12,28(12)38~42
    [146]刘鹏飞,单平,罗震,铝合金点焊电极位移时序相空间重构及混沌特征分析[J],焊接学报,2008,29(1):1~4
    [147]Alan WOLF, Jack B.SWIFT, Harry L.SWINNEY, John A. VASTANO, Determining Lyapunov Exponents from a time series, Physica D,1985,285~317
    [148] Michael T.Rosenstein,A practical method for calculating largest lyapunov exponents from small sets[J], Physica D,1993,65:117~134
    [149]胡航,语音信号处理[M],哈尔滨:哈尔滨工业大学出版社,2000
    [150]蒋孝煜,连小珉,声强技术及其子汽车工程中的应用[M],北京:清华大学出版社,2001
    [151]何祚镛,赵玉芳,声音理论基础[M],上海:上海科学出版社,1981
    [152]胡昌华,周涛,夏启兵,张伟,基于MATLAB的系统分析与设计[M],西安:西安电子科技大学出版社,2002
    [153]李洪兴,汪培庄,模糊数学[M],武汉:国防工业出版社,1994
    [154]王彩华,宋连天,模糊论方法学[M],北京:中国建筑工业出版社,1998
    [155]邓聚龙,灰色系统基本方法[M],武汉:华中理工大学出版社,1987
    [156]邓聚龙.灰色系统理论教程[M],武汉:武汉理工大学出版社,1990.
    [157]陈大为,灰色模糊集合引论[M],哈尔滨:黑龙江科学技术出版社,1994
    [158]王清印等,灰色模糊数学基础[M],武汉:华中理工大学出版社,1996
    [159]刘思峰,郭天榜,党耀国,灰色系统理论及其应用[M],北京:科学出版社,1999
    [160]曾庆虎,常汉宝,柴油机故障的模糊灰色关联度诊断法[J],海军工程大学学报,2000,4:41~44
    [161]李兵,张培林,傅建平,曹征,发动机磨损模式的FGRD识别模型[J],内燃机工程,2006,27(2):71~74
    [162]卜广志,张宇文,基于灰色模糊关系的灰色模糊综合评判[J],系统工程理论与实践,2002,4:41~44
    [163]李兵,张培林,傅建平,曹征,基于模糊灰色信息集成理论的摩粒识别研究[J],润滑与密封,2006,2:124~126
    [164]张学工,关于统计学习理论与支持向量机[J],自动化学报,2000,26(1):32~42
    [165]邓乃扬,田英杰,数据挖掘中的新方法-支持向量机[M],北京:科学出版社,2004
    [166]Cristianini N,An Introduction to Support Vector Machines[J],Cambridge: Cambridge University Press,2000
    [167]祝海龙,统计学习理论的工程应用[M],西安:西安交通大学机械工程学院,2002
    [168]陈永义,俞小鼎,高学浩,冯汉中,处理非线性分类和回归问题的一种新方法[J],应用气象学报,2004,15(3):345~354
    [169]Vapnik V N,An overview of statistical learning theory,Neural Networks[J],IEEE Transactions on,1999,10(5):988~999
    [165]Jack L B,Nandi A K,Fault detection using support vector Discovery[J],Machine Learning, 1998,2(2):121~167
    [170]何学文,赵海鸣,支持向量机及其在机械故障诊断中的应用[J],中南大学学报(自然科学版),2005,36(1):97~101
    [171]GUYON.I, WESTON.J, BARNHILL.S,Gene Selection for Cancer Classification Using Support Vector Machines[J],Machine Learning, 2002, 46(1-3):389~422
    [172] Sanna Poyhonen,Fault Diagnostics of an Electrical Machine with Multiple Support Vector Classifiers[C],In Proceedings of 2002 IEEE International Symposium on Intelligent control,Vancouver: Canada. 2002, 373~378
    [173]Fielding K H, Rck D W,Spation-temporal attern recongnition using hidden markov models[J],IEEE Trans on AES,1995,31(4):1292~1300
    [174]KWON Kee-choon, KIM Jin-hyung,Accident identification in nuclear power plants using hidden markov models[J], Engineering Applications of Artivicial Intelligence, 1999, 12:491~501
    [175]OWSLEY L M D, Self-organizing feature maps and hidden markov models for machine tool monitoring,Signal Processing[J], IEEE Transactions on. 1997, 45(11): 2787~2798
    [176] Ertunc H M, Loparo K A, Ocak H,Tool wear condition monitoring in drilling operations using hidden markov model[J], International Journal of Machine tool & Manufacture, 2001, 41(3):1348~1363
    [177]Lee J M, Kim S J, Hwang Y,Mechanical signal analysis using hidden markov model[J], Ninth International Congress on Sound and Vibration, Orlando, FL, 2002
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.