新型Bcr-Abl和Src/Abl抑制剂抗慢性髓性白血病的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性髓性白血病(chronic myelogenous leukemia,CML)是一种血液系统恶性增生性疾病。以细胞内出现嵌合蛋白Bcr-Abl为主要特征。Bcr-Abl蛋白具有持续活化的酪氨酸激酶活性,激活下游多条信号传导通路,引起疾病的发生。
     伊马替尼(Imatinib,Gleevec,STI-571)属一种Abl酪氨酸激酶抑制剂,它是第一个小分子靶向性治疗药物。体内、外实验表明,Imatinib通过抑制Bcr-Abl自身磷酸化和底物磷酸化,而抑制细胞增殖和诱导凋亡。Imatinib在临床上用于费城染色体阳性(Philadelphia chromosome positive,Ph~+)的CML患者。由于其所产生的较好血液学和细胞遗传学缓解(尤其是慢性期CML患者),Imatinib已经作为新近诊断的CML患者的一线药物。但是Imatinib在治疗CML急变期及Ph~+的急性淋巴细胞白血病患者时效果却并不理想,而且随着临床的用药,Imatinib逐渐出现耐药。因此,这促使人们寻找新的治疗CML和Imatinib耐药的CML的药物。
     AMN107属第二代Abl抑制剂,许多临床前研究结果已经显示出非常好的效果。研究表明,在许多Bcr-Abl转化的造血细胞系,AMN107对Bcr-Abl自身磷酸化和增殖的抑制较Imatinib高20-50倍。而且AMN107对很多Imatinib耐药的Bcr-Abl蛋白突变株有很强的抑制作用。目前AMN107正在进行临床试验,但已有些病例出现AMN107耐药,其机制是否与Imatinib耐药相同还在进一步研究中,因此Novartis制药公司又继续研发更强的Abl抑制剂,其中368485就是Novartis制药公司研制的一种新型此类化合物,其药物活性尚没有相关报道。
     本研究就是探讨一种新型苯胺嘧啶类衍生物FAB107在体内、外对CML细胞系K562细胞和K562耐Imatinib细胞系K562/G3.0的抑制作用。
     本研究采用MTT方法观察了FAB107与Imatinib和368485相比较对K562和K562/G3.0细胞的生长抑制作用。研究结果表明,FAB107抑制K562和K562/G3.0细胞生长,IC_(50)分别为0.03μmol/L和0.07μmol/L。FAB107对2种细胞的抑制作用强于Imatinib(IC_(50)分别为0.31μmol/L和6.32μmol/L),而与368485(IC_(50)分别为0.02μmol/L和0.082μmol/L)相当。
     裸鼠中空纤维模型实验进一步证实,FAB107可以抑制K562和K562/G3.0细胞在裸鼠体内的生长。给药7天后,与对照组相比,FAB107的3个剂量组(15μmol/kg、30μmol/kg和45μmol/kg)在体内对K562及K562/G3.0细胞生长均呈剂量依赖性的抑制作用(P<0.01),并且抑制强度强于等摩尔浓度的Imatinib,与等摩尔浓度的368485相当。
     流式细胞术结果表明,FAB107可以剂量依赖性地诱导K562和K562/G3.0细胞凋亡,与等摩尔浓度的368485相当。
     为了阐明FAB107对K562和K562/G3.0细胞生长抑制作用的机制,我们检测了FAB107对K562和K562/G3.0细胞Bcr-Abl蛋白自身磷酸化的抑制作用。FAB107可以明显抑制K562和K562/G3.0细胞Bcr-Abl蛋白自身磷酸化。其作用优于等摩尔浓度的Imatinib,与等摩尔浓度的368485相当。
     总而言之,新型苯胺嘧啶类衍生物FAB107在体内外可以明显抑制K562和K562/G3.0细胞的生长,其作用机制可能与抑制Bcr-Abl蛋白自身磷酸化有关。上述研究提示,FAB107将是治疗Imatinib敏感和耐药的CML的较好候选化合物。
     慢性髓系白血病(chronic myelogenous leukemia,CML)是一种多能造血干细胞恶性克隆增殖性疾病,其恶性克隆标志是费城染色体(Philadelphia chromosome,Ph)及Bcr-Abl融合基因。后者编码产生的Bcr-Abl融合蛋白,即P210~(Bcr-Abl)蛋白,具有异常增高的蛋白酪氨酸激酶(proteinty rosineki nase,PTK)活性,被认为是导致CML发病的根本原因。
     Imatinib(又称Gleevec,STI-571)是Bcr-Abl的抑制剂。该药用于CML的治疗以来,取得了显著的临床疗效。但随着它的广泛应用,人们发现部分患者对Imatinib存在原发或继发耐药。如此高度靶向性治疗药物如同其它抗肿瘤化疗药物一样,很快出现了耐药现象,这引起了人们的关注,并成为CML研究的又一热点。
     目前,关于Imatinib耐药的机制仍不完全清楚,主要包括以下几个观点:首先是血浆蛋白结合;第二是药泵;第三是BCR-ABL激酶突变;第四为不依赖BCR-ABL的耐药机制,如SRC家族;第五为基因扩增。
     Src激酶参与了Bcr-Abl介导的白血病的发生,并与一些Imatinib耐药病例有关。Dasatinib(Bristol-Myers Squibb,布迈-施贵宝)属噻唑类Src/Abl双靶点抑制剂。2006年6月已通过美国FDA批准上市,用于包括慢性、加速期、原发粒细胞性、原发淋巴细胞性白血病以及耐药的白血病病例(如对Imatinib耐药)在内的各类成人白血病的治疗。
     本研究试图在体外建立Imatinib耐药CML细胞系,并对其耐药机制进行初步探讨。同时探讨一种新型噻唑类衍生物FB2在体内外对K562细胞和K562耐Imatinib细胞系K562/G5.0的生长抑制作用及其作用机制。
     一、Imatinib耐药株K562/G5.0细胞系的建立和鉴定
     采用逐步递增药物浓度的方法培养K562细胞,进行耐药细胞的诱导;采用MTT法检测不同浓度Imatinib对K562和K562/G5.0的细胞毒作用;采用流式细胞术分析K562和K562/G5.0的细胞周期;MTT法检测阿霉素(doxorubicin)对两种细胞的细胞毒作用;测序分析Abl酪氨酸激酶ATP结合区基因点突变;MTT法检测Dasatinib对两种细胞的抑制作用;RT-PCR法检测K562和K562/G5.0细胞LynmRNA的表达;Western blot法检测K562、K562/G3.0和K562/G5.0细胞的C-Abl、P-C-Abl、Lyn和P-Lyn的表达;Western blot法检测Dasatinib对Lyn自身磷酸化的影响。
     研究结果表明,MTT法检测了Imatinib对K562和K562/G5.0的半数抑制浓度(50%inhibiting concentration,IC_(50))分别为0.37μmol/L和44.40μmol/L,K562/G5.0的耐药倍数为122.5倍。细胞周期分析表明K562/G5.0耐药细胞中G0/G1期和G2/M期细胞均稍有减少,而S期细胞有所增加。RT-PCR结果表明,MDR-1和BCRP在耐药株中的mRNA表达与K562和KB/V相比都有明显下降,进一步用阿霉素处理两种细胞,发现阿霉素对两种细胞的细胞毒作用相当。Abl激酶ATP结合区基因测序结果表明,两者序列完全一致。进一步我们还发现,耐药株的Lyn mRNA表达水平增高,Lyn和P-Lyn的蛋白表达水平也增高,但是C-Abl和p-C-Abl表达水平下降。同时,我们发现Lyn和P-Lyn的蛋白表达水平随着耐药浓度的增加而增高,而C-Abl和p-C-Abl的表达水平在耐药浓度低的细胞(K562/G3.0)中表达增高,而在耐药浓度高的细胞(K562/G5.0)中表达降低,Src/Abl双靶点抑制剂Dasatinib对K562/G5.0仍具有非常强的抑制作用。
     二、FB2在体内外对CML和Imatinib耐药的CML细胞的生长抑制作用
     MTT法检测FB2对K562和K562/G5.0细胞的生长抑制作用;MTT法检测FB2对MDA-MB-231和DU145细胞的生长抑制作用;采用Western blot法检测FB2对K562和K562/G5.0的C-Abl、Lyn和C-Src自身磷酸化水平的抑制作用;采用荷人CML的Imatinib耐药株K562/G5.0细胞的NOD/SCID小鼠,观察FB2对其生存期的影响。
     研究结果表明,MTT法检测了FB2对K562、K562/G01和K562/G5.0的IC_(50)分别为0.03nmol/L、0.10nmol/L和0.38nmol/L。FB2还可以抑制其它上皮来源的实体肿瘤细胞MDA-MB-231和DU145细胞的生长。FB2可以明显抑制C-Abl、C-Src和Lyn蛋白的自身磷酸化。FB2还可以延长荷CML的Imatinib耐药株K562/G5.0细胞的NOD/SCID小鼠的生存期。
     总之,本研究在体外成功地建立起Imatinib耐药的K562细胞系,K562/G5.0,耐药浓度为5μmol/L,耐药倍数为122.5倍。K562/G5.0细胞的耐药机制属Bcr-Abl非依赖性,与Lyn激酶过度表达和激活有关。
     FB2作为一种新型Src/Abl双激酶抑制剂,可能成为治疗CML、Imatinib耐药的CML以及Src激酶过表达的肿瘤的较好候选化合物。
Chronic myelogenous leukemia(CML) is a myeloproliferative disorder of hematopoietic stem cells.The pathologic hallmark of this disease is the Philadelphia chromosome(Ph),which is seen in>90%of CML patients.The Ph produces Bcr-Abl fusion protein,which displays constitutive tyrosine kinase activity and activates several signaling transduction pathways.
     The 2-phenylamino-pyrimidine derivative Imatinib(Gleevec,STI571) was developed as the first molecularly targeted therapy that specifically inhibits the Bcr-Abl tyrosine kinase activity in patients with Ph positive(Ph~+) CML.Imatinib acts by revoking the effects of the Bcr-Abl oncoprotein through inhibition of Bcr-Abl autophosphorylation,inhibition of proliferation,and induction of apoptosis.Due to its excellent hematologic and cytogenetic responses,particularly in patients with chronic phase CML,Imatinib has moved towards first-line treatment for newly diagnosed CML. However,reponses to Imatinib in patients with more advanced disease are generally transient.Nevertheless,resistance to the drug has been frequently reported.As a result,a variety of strategies derived from structural studies of the Abl-Imatinib complex have been developed,resulting in the design of novel Abl inhibitors.
     Several preclinical studies have shown promising results for second generation Abl inhibitor AMN107.Using numerous Bcr-Abl tranformed hematopoietic cell lines, AMN107 was found to be 20-50 fold more potent compared with Imatinib in reduction of both autophosphorylation and proliferation.Nevertheless,cell lines expressing the Imatinib-resistant Bcr-Abl mutants can be inhibited by AMN107.AMN107 has made its way into clinical trial.Unfortunately,resistance to AMN107 reduced inhibition of cell growth.The molecular mechanisms underlying resistance still need to be determined.
     In this study,we investigated the activity of a novel phenylamino pyrimidine derivative FAB107,compared with Imatinib and 368485,in both K562 and K562/G3.0 cells.
     Effects of FAB107 on the growth of K562 and K562/G3.0 cells were analyzed by MTT assay.The growth of K562 and K562/G3.0 cells was inhibited by FAB 107 with the IC_(50) value of 0.03μmol/L and 0.07μmol/L,respectively.The inhibition was stronger than that of Imatinib(IC_(50):0.31μmol/L and 6.32μmol/L) and equal to 368485(IC_(50): 0.02μmol/L and 0.082μmol/L).
     In vivo result from nude mice bearing hollow fibers with leukemia cells showed that FAB107 inhibited growth of K562 and K562/G3.0 cells in nude mice.The inhibitory effects of FAB107 were in a dose-dependent manner and 15μmol/kg,30μmol/kg and 45μmol/kg on FAB107 had P values less than 0.01,compared with control group.The inhibitory activity was stronger than that of Imatinib and equal to 368485.
     Flow cytometric assay was perfomed to evaluate the cell cycle and apoptosis. Exposure of K562 and K562/G3.0 cells to FAB107,Imatinib and 368485 resulted in an increase of percentage of apoptotic cells.The potency of inhibition was stronger than that of Imatinib and equral to 368485.
     To investigate the mechanism of FAB107 on the growth inhibition of K562 and K562/G3.0 cells,we tested the effect of FAB107 on the autophosphorylation to Bcr-Abl in K562 and K562/G3.0 cells.FAB107 inhibited autophorylation of Bcr-Abl kinase more effectively than that of Imatinib in both cell lines,and its potency of inhibition was equal to 368485.
     In conclusion,FAB107,a novel phenylamino pyrimidine class derivative,inhibited growth of K562 and K562/G3.0 cells in vitro and in vivo,and the probAble mechanisms was inhibition on autophosphorylation to Bcr-Abl kinase.These results suggest that FAB107 is a promising candidate as a novel therapeutic agent for Imatinib-sensitive and Imatinib-resistance CML.
     Chronic myelogenous leukemia(CML) is a hematopoietic disorder characterizd by the malignant expansion of bone marrow stem cells.Its malignant clonal marker is Philadelphia chromosome(Ph) which harbors the Bcr-Abl fusion gene.The latter encdes a chimeric Bcr-Abl protein,P210~(Bcr-Abl),with a deregulated tyrosine kinase activity and identified as having a central role in the pathogenesis of CML.
     Imatinib(Gleevec,STI-571;Novartis,Inc.) is a tyrosine kinase inhibitor that competitively inhibitis Bcr-Abl kinases.It inhibits proliferation and induces apoptosis in Bcr-Abl positive cells and has shown remarkAble clinical activity in patients with CML. However,a significant proportion of patients treated with Imatinib develop resistance and some of them have primitive resistance,which usually are found in patients treated with other chemotherapeutic drugs.So the potential mechanisms of Imatinib resistance become a new focal point.
     There are 5 main mechanisms currently known that may result in Imatinib resistance.The first is plasma protein binding.The second mechanism is drug efflux.The third mechanism is the mutation of the Bcr-Abl kinase.The fourth mechanism is independent of Bcr-Abl.The fifth mechanism is gene amplification.
     Src family kinase activation is involved in leukemia mediated by Bcr-Abl,and may function in cases of resistance to Imatinib.Dasatinib(Bristol-Myers Squibb Inc.) is a thiazole-based dual Src/Abl kinase inhibitor.Dasatinib has recently been approved by U.S.Food and Drug Administration in 2006 for use in patients with CML or Philadelphia chromosome-positive acute lympho-blastic leukemia(ALL) who are unable to tolerate or have not responded to other treatments.
     To investigate possible mediators of acquired Imatinib resistance,K562 cells of resistant to 5μM Imatinib(K562/G5.0) were cloned and compared with the parental cell population.In this study,We also investigated the activity of a novel thiazole-based derivative FB2,relative to Dasatinib,in both K562 and K562/G5.0 cells.
     1.The induction of Imatinib resistance cell line(K562/G5.0) and analysis of the induced-resistane mechanisms
     The wild-type K562 cells were cultured in gradually increased concentrations of Imatinib.The cytotoxic effects of K562 and K562/G5.0 treated with different concentration of Imatinib were analyed by MTT assay and the cell cycle was evaluated by flow cytometric assay.Effects of Imatinib,doxorubicin and Dasatinib on the growth of K562 and K562/G5.0 cells were analyzed by MTT assay.C-Abl,P-C-Abl,Lyn and P-Lyn protein expression,sequence analysis were used to study the potential mechanisms of acquired resistance of K562/G5.0.
     IC_(50)s(50%inhibiting concentration) of K562 and K562/G5.0 were 0.37μmol/L and 44.40μmol/L respectively by MTT assay and the resistance to Imatinib increased to 122.5 fold.The analysis to the cell cycle in K562/G5.0 cells indicated that the cells of G0/G1 and G2/M phase decreased and the cells of S phase increased.In contrast with K562 and KB/V,the MDR-1 and BCRP mRNA expression in K562/G5.0 cells decreased. It was testified that there was no statistic difference after comparing the cytotoxic effects of K562 and K562/G5.0 treated with different concentration of doxorubicin by MTT assay.No point mutant in the Bcr-Abl ATP-binding site was detected.By comparison with K562,expression of Lyn mRNA in K562/G5.0 cells increased.Interesting,the expression of Lyn and p-Lyn increasd following the increase of the Imatinib resistance fold in K562 resistance cell lines.However,the expression of c-Abl and p-c-Abl increased at lower level in K562/G3.0 cells and decreased at higer resistance fold in K562/G5.0 cells.Furthermore,Dasatinib,the dual Src/Abl tyrosine kinase inhibitor,was still effective in K562/G5.0 cells,with resistance presumed due to expressing a high number of Lyn gene copies and transcripts.
     2.The inhibition of FB2 on Imatinib-resistant chronic myeloid leukemia in vitro and in vivo
     The cytotoxic effects in K562,K562/G5.0,MDA-MB-231 and DU145 treated with different concentrations of FB2 were analyed by MTT assay.Western blot analysis was used to evaluate the effects of FB2 on the inhibitions of c-Abl,c-Src,and Lyn protein autophosphorylation in K562 and K562/G5.0 cells.The efficacy of FB2 was assessed in a nonobese diabetic/severe combined immunodeficient(NOD/SCID) mouse model bearing of Imatinib-resistant CML cells.
     IC_(50)s of K562,K562/G01 and K562/G5.0 were 0.03nmol/L,0.10nmol/L and 0.38nmol/L respectively by MTT assay.Besides Imatinib-sensitive cell line(K562),FB2 significantly inhibited the growth of Imatinib-resistant cell lines with different resistance mechanisms(K562/G5.0 and K562/G01),and decreased the expressions of autophosphorylation of Bcr-Abl,c-Src and Lyn kinases in them.It also inhibited the proliferations of Src overactivated cells DU145 and MDA-MB-231.Furthermore,FB2 potently prolonged the survival time of NOD/SCID mice harbored K562/G5.0 cells.
     In vitro,we successfully established a resistant cell line(K562/G5.0) with resistance to 5μmol/L and 122.5 fold resistance as compared with that of K562.The potential mechanism of the resistant cell line above established was the Bcr-Abl-independent and Lyn-activated phenotype.
     Our results also indicated that FB2,an Abl/Src dual tyrosine kinase inhibitor,is a promising candidate for Imatinib-resistant CML and Src overactivated cancer.
引文
[1] Faderl S, Talpaz M, Estrov Z, et al. The biology of chronic myeloid leukemia[J]. N Engl J Med, 1999, (341):164-172.
    [2] Huettner CS, Zhang P, Van Etten RA, et al. Reversibility of acute B-cell leukaemia induced by BCR-ABL1 [J]. Nat Genet, 2000, (24):57-60.
    [3] Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells[J]. Nat Med, 1996, (2):561-566.
    [4] Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative [J]. Cancer Res, 1996, (56):100-104.
    [5] Kantarjian HM, Cortes JE, O'Brien S, et al. Imatinib mesylate therapy in newly diagnosed patients with Philadelphia chromosome-positive chronic myelogenous leukemia: high incidence of early complete and major cytogenetic responses[J]. Blood, 2003, (101):97-100.
    [6] Kantarjian H, O'Brien S, Cortes J, et al. Survival advantage with imatinib mesylate therapy in chronic-phase chronic myelogenous ;eukemia (CML-CP) after IFN-alpha failure and in late CML-CP, comparison with historical controls[J]. Clin Cancer Res, 2004,(10):68-75.
    [7] Kantarjian HM, Cortes JE, O'Brien S, et al. Long-term survival benefit and improved complete cytogenetic and molecular response rates with imatinib mesylate in Philadelphia chromosome-positive chronic-phase chronic myeloid leukemia after failure of interferon-alpha[J]. Blood, 2004, (104):1979-1988.
    [8] Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome[J]. N Engl J Med, 2001, (344):1038-1042.
    [9] Nardi V, Azam M, Daley GQ. Mechanisms and implications of imatinib resistance mutations in BCR-ABL[J]. Curr Opin Hematol, 2004, (11):35-43.
    [10] Cowan-Jacob SW, Guez V, Fendrich G, et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment[J]. Mini Rev Med Chem, 2004, (4):285-299.
    [11] Weisberg E, Griffin JD. Resistance to imatinib (Glivec): update on clinical mechanisms[J]. Drug Resist Updat, 2003, (6):231-238.
    [12] Hochhaus A. Cytogenetic and molecular mechanisms of resistance to imatinib[J]. Semin Hematol, 2003, (40):69-79.
    [13] Branford S, Rudzki Z, Walsh S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis[J]. Blood, 2003, (102):276-283.
    [14] Gorre ME, Mohammed M, Ellwood K, et al. Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification[J]. Science, 2001, (293):876.
    [15]Thomas J, Wang L, Clark RE, et al. Active transport of imatinib into and out of cells: implications for drug resistance[J]. Blood, 2004, (104):3739-3745.
    [16] Gambacorti-Passerini C, Zucchetti M, Russo D, et al. Alphal acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients[J]. Clin Cancer Res, 2003, (9):625-632.
    [17] Kantarjian HM, Cortes J. New strategies in chronic myeloid leukemia[J]. Int J Hematol, 2006, (83):289-293.
    [18] Scappini B, Gatto S, Onida F, et al. Changes associated with the development of resistance to imatinib (STI571) in two leukemia cell lines expressing p210 Bcr/Abl protein[J]. Cancer, 2004, (100): 1459-1471.
    [19] Kantarjian H, Talpaz M, O'Brien S, et al. High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia[J]. Blood, 2004, (103):2873-2878.
    [20] Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor[J]. Science, 2004, (305):399-401.
    [21] Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl[J]. Cancer Cell, 2005, (7):129-141.
    [22] Gumireddy K, Baker SJ, Cosenza SC, et al. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance [J]. Proc Natl Acad Sci U S A, 2005, (102): 1992-1997.
    [23] Ko CH, Shen SC, Lin HY, et al. Flavanones structure-related inhibition on TPA-induced tumor promotion through suppression of extracellular signal-regulated protein kinases: involvement of prostaglandin E2 in anti-promotive process[J]. J Cell Physiol, 2002, (193):93-102.
    [24] HoUingshead MG, Alley MC, Camalier RF, et al. In vivo cultivation of tumor cells in hollow fibers[J]. Life Sci, 1995, (57):131-141.
    [25] Berger U, Engelich G, Reiter A, et al. Imatinib and beyond—the new CML study IV. A randomized controlled comparison of imatinib vs imatinib/interferon-alpha vs imatinib/low-dose AraC vs imatinib after interferon-alpha failure in newly diagnosed chronic phase chronic myeloid leukemia[J]. Ann Hematol, 2004, (83):258-264.
    [26] Quintas-Cardama A, Cortes J. Nilotinib therapy in chronic myelogenous leukemia[J]. Drugs Today (Barc), 2007, (43):691-702.
    [27] Golemovic M, Verstovsek S, Giles F, et al. AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia[J]. Clin Cancer Res, 2005, (11):4941-4947.
    [1] Faded S, Talpaz M, Estrov Z, et al. The biology of chronic myeloid leukemia[J]. N Engl J Med, 1999, (341):164-172.
    [2] Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative [J]. Cancer Res, 1996, (56): 100-104.
    [3] Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells[J]. Nat Med, 1996, (2):561-566.
    [4] Kantarjian HM, Cortes JE, O'Brien S, et al. Imatinib mesylate therapy in newly diagnosed patients with Philadelphia chromosome-positive chronic myelogenous leukemia: high incidence of early complete and major cytogenetic responses[J]. Blood, 2003, (101):97-100.
    [5] Kantarjian H, O'Brien S, Cortes J, et al. Survival advantage with imatinib mesylate therapy in chronic-phase chronic myelogenous ;eukemia (CML-CP) after IFN-alpha failure and in late CML-CP, comparison with historical controls[J]. Clin Cancer Res, 2004,(10):68-75.
    [6] Kantarjian HM, Cortes JE, O'Brien S, et al. Long-term survival benefit and improved complete cytogenetic and molecular response rates with imatinib mesylate in Philadelphia chromosome-positive chronic-phase chronic myeloid leukemia after failure of interferon-alpha[J]. Blood, 2004, (104):1979-1988.
    [7] Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome [J]. N Engl J Med, 2001, (344):1038-1042.
    [8] Nardi V, Azam M, Daley GQ. Mechanisms and implications of imatinib resistance mutations in BCR-ABL[J]. Curr Opin Hematol, 2004, (11):35-43.
    [9] Cowan-Jacob SW, Guez V, Fendrich G, et al. Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment[J]. Mini Rev Med Chem, 2004, (4):285-299.
    [10] Weisberg E, Griffin JD. Resistance to imatinib (Glivec): update on clinical mechanisms[J]. Drug Resist Updat, 2003, (6):231-238.
    [11] Deininger MW. Management of early stage disease[J]. Hematology Am Soc Hematol Educ Program, 2005:174-182.
    [12] Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias[J]. N Engl J Med, 2006, (354):2531-2541.
    [13] Reed SD, Anstrom KJ, Ludmer JA, et al. Cost-effectiveness of imatinib versus interferon-alpha plus low-dose cytarabine for patients with newly diagnosed chronic-phase chronic myeloid leukemia[J]. Cancer, 2004, (101):2574-2583.
    [14] Skrepnek GH, Ballard EE. Cost-efficacy of imatinib versus allogeneic bone marrow transplantation with a matched unrelated donor in the treatment of chronic myelogenous leukemia: a decision-analytic approach[J]. Pharmacotherapy, 2005, (25):325-334.
    [15] Gambacorti-Passerini C, Zucchetti M, Russo D, et al. Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients[J]. Clin Cancer Res, 2003, (9):625-632.
    [16]Thomas J, Wang L, Clark RE, et al. Active transport of imatinib into and out of cells: implications for drug resistance[J]. Blood, 2004, (104):3739-3745.
    [17] Gorre ME, Mohammed M, Ellwood K, et al. Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification Clinical Resistance to STI-571 Cancer Therapy Caused by BCR-ABL Gene Mutation or Amplification[J]. Science, 2001, (293):876.
    [18] Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy [J]. Leukemia, 2002, (16):2190-2196.
    [19] Kantarjian HM, Cortes J. New strategies in chronic myeloid leukemia[J]. Int J Hematol, 2006, (83):289-293.
    [20] Scappini B, Gatto S, Onida F, et al. Changes associated with the development of resistance to imatinib (STI571) in two leukemia cell lines expressing p210 Bcr/Abl protein[J]. Cancer, 2004, (100): 1459-1471.
    [21] Branford S, Rudzki Z, Walsh S, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis[J]. Blood, 2003, (102):276-283.
    [22] Kantarjian H, Talpaz M, O'Brien S, et al. High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia[J]. Blood, 2004, (103):2873-2878.
    [23] Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor[J]. Science, 2004, (305):399-401.
    [24] Donato NJ, Wu JY, Stapley J, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571[J]. Blood, 2003, (101):690-698.
    [25] Dai Y, Rahmani M, Corey SJ, et al. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate (STI-571) resistance is associated with altered expression of Bcl-2[J]. J Biol Chem, 2004, (279):34227-34239.
    [26] Donato NJ, Wu JY, Stapley J, et al. Imatinib mesylate resistance through BCR-ABL independence in chronic myelogenous leukemia[J]. Cancer Res, 2004, (64):672-677.
    [27] Danhauser-Riedl S, Warmuth M, Druker BJ, et al. Activation of Src kinases p53/561yn and p59hck by p210bcr/abl in myeloid cells[J]. Cancer Res, 1996, (56):3589-3596.
    [28] Nagar B, Bornmann WG, Pellicena P, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571)[J]. Cancer Res, 2002, (62):4236-4243.
    [29] Mahon FX, Deininger MW, Schultheis B, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance[J]. Blood, 2000, (96): 1070-1079.
    [30] Miyoshi T, Nagai T, Ohmine K, et al. Relative importance of apoptosis and cell cycle blockage in the synergistic effect of combined R115777 and imatinib treatment in BCR/ABL-positive cell lines[J]. Biochem Pharmacol, 2005, (69):1585-1594.
    [31] Golemovic M, Verstovsek S, Giles F, et al. AMN107, a novel aminopyrimidine inhibitor of Bcr-Abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia[J]. Clin Cancer Res, 2005, (11):4941-4947.
    [32] Blanke CD, Eisenberg BL, Heinrich MC. Gastrointestinal stromal tumors[J]. Curr Treat Options Oncol, 2001, (2):485-491.
    [33] de Mestier P, des Guetz G. Treatment of gastrointestinal stromal tumors with imatinib mesylate: a major breakthrough in the understanding of tumor-specific molecular characteristics[J]. World J Surg, 2005, (29):357-361; discussion 362.
    [34] Krystal GW, Honsawek S, Litz J, et al. The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth[J]. Clin Cancer Res, 2000, (6):3319-3326.
    [35] O'Dwyer ME, Druker BJ. The role of the tyrosine kinase inhibitor STI571 in the treatment of cancer[J]. Curr Cancer Drug Targets, 2001, (1):49-57.
    [36] Wang WL, Healy ME, Sattler M, et al. Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571 [J]. Oncogene, 2000, (19):3521-3528.
    [37] Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia[J]. N Engl J Med, 2001, (344):1031-1037.
    [38] Weisberg E, Griffin JD. Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines[J]. Blood, 2000, (95):3498-3505.
    [39] Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification[J]. Science, 2001, (293):876-880.
    [40] Hofmann WK, Jones LC, Lemp NA, et al. Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation[J]. Blood, 2002, (99): 1860-1862.
    [41] Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment[J]. Blood, 2002, (100):1014-1018.
    [42] Shah NP, Nicoll JM, Nagar B, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia[J]. Cancer Cell, 2002, (2):117-125.
    [43] Ferrao PT, Frost MJ, Siah SP, et al. Overexpression of P-glycoprotein in K562 cells does not confer resistance to the growth inhibitory effects of imatinib (STI571) in vitro[J]. Blood, 2003, (102):4499-4503.
    [44] Mahon FX, Belloc F, Lagarde V, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models[J]. Blood, 2003, (101):2368-2373.
    [45] Warmuth M, Simon N, Mitina O, et al. Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases[J]. Blood, 2003, (101):664-672.
    [46] Brown MT, Cooper JA. Regulation, substrates and functions of src[J]. Biochim Biophys Acta, 1996, (1287):121-149.
    [47] Tsygankov AY, Shore SK. Src: regulation, role in human carcinogenesis and pharmacological inhibitors[J]. Curr Pharm Des, 2004, (10):1745-1756.
    [48] Levin VA. Basis and importance of Src as a target in cancer [J]. Cancer Treat Res, 2004, (119):89-119.
    [49] Torigoe T, O'Connor R, Santoli D, et al. Interleukin-3 regulates the activity of the LYN protein-tyrosine kinase in myeloid-committed leukemic cell lines[J]. Blood, 1992,(80):617-624.
    [50] Ishikawa H, Tsuyama N, Abroun S, et al. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6[J]. Blood, 2002, (99):2172-2178.
    [51] Choi SH, Yamanashi Y, Shiota M, et al. Expression of Lyn protein on human malignant lymphomas[J]. Lab Invest, 1993, (69):736-742.
    [52] Myers DE, Jun X, Waddick KG, et al. Membrane-associated CD19-LYN complex is an endogenous p53-independent and Bc1-2-independent regulator of apoptosis in human B-lineage lymphoma cells[J]. Proc Natl Acad Sci U S A, 1995, (92):9575-9579.
    [53] Hallek M, Neumann C, Schaffer M, et al. Signal transduction of interleukin-6 involves tyrosine phosphorylation of multiple cytosolic proteins and activation of Src-family kinases Fyn, Hck, and Lyn in multiple myeloma cell lines[J]. Exp Hematol, 1997, (25): 1367-1377.
    [54] Warmuth M, Bergmann M, Priess A, et al. The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb2-binding site of Bcr[J]. J Biol Chem, 1997, (272):33260-33270.
    [55] Klejman A, Schreiner SJ, Nieborowska-Skorska M, et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells[J]. Embo J, 2002, (21):5766-5774.
    [56] Stanglmaier M, Warmuth M, Kleinlein I, et al. The interaction of the Bcr-Abl tyrosine kinase with the Src kinase Hck is mediated by multiple binding domains [J]. Leukemia, 2003, (17):283-289.
    [57] Lionberger JM, Wilson MB, Smithgall TE. Transformation of myeloid leukemia cells to cytokine independence by Bcr-Abl is suppressed by kinase-defective Hck[J]. J Biol Chem, 2000, (275):18581-18585.
    [58] Wilson MB, Schreiner SJ, Choi HJ, et al. Selective pyrrolo-pyrimidine inhibitors reveal a necessary role for Src family kinases in Bcr-Abl signal transduction and oncogenesis[J]. Oncogene, 2002, (21):8075-8088.
    [59] Roginskaya V, Zuo S, Caudell E, et al. Therapeutic targeting of Src-kinase Lyn in myeloid leukemic cell growth[J]. Leukemia, 1999, (13):855-861.
    [60] Martin GS. The road to Src[J]. Oncogene, 2004, (23):7910-7917.
    [61] Soriano P, Montgomery C, Geske R, et al. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice[J]. Cell, 1991, (64).693-702.
    [62] Schlaepfer DD, Mitra SK. Multiple connections link FAK to cell motility and invasion[J]. Curr Opin Genet Dev, 2004, (14):92-101.
    [63] Ram PT, Iyengar R. G protein coupled receptor signaling through the Src and Stat3 pathway: role in proliferation and transformation[J]. Oncogene, 2001, (20):1601-1606.
    [64] Ann S, Maudsley S, Luttrell LM, et al. Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling [J]. J Biol Chem, 1999, (274): 1185-1188.
    [65] Holmes TC, Fadool DA, Ren R et al. Association of Src tyrosine kinase with a human potassium channel mediated by SH3 domain[J]. Science, 1996, (274):2089-2091.
    [66] Mohamed AS, Swope SL. Phosphorylation and cytoskeletal anchoring of the acetylcholine receptor by Src class protein-tyrosine kinases. Activation by rapsyn[J]. J Biol Chem, 1999, (274):20529-20539.
    [67] Lee M, Kim JY, Koh WS. Apoptotic effect of PP2 a Src tyrosine kinase inhibitor, in murine B cell leukemia[J]. J Cell Biochem, 2004, (93):629-638.
    [68] Contri A, Brunati AM, Trentin L, et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis[J]. J Clin Invest, 2005, (115):369-378.
    [69] Robinson LJ, Xue J, Corey SJ. Src family tyrosine kinases are activated by Flt3 and are involved in the proliferative effects of leukemia-associated Flt3 mutations[J]. Exp Hematol, 2005, (33):469-479.
    [70] Tilbrook PA, Palmer GA, Bittorf T, et al. Maturation of erythroid cells and erythroleukemia development are affected by the kinase activity of Lyn[J]. Cancer Res, 2001, (61):2453-2458.
    [71] Abts H, Jucker M, Diehl V, et al. Human chronic lymphocytic leukemia cells regularly express mRNAs of the protooncogenes lck and c-fgr[J]. Leuk Res, 1991, (15):987-997.
    [72] Waddick KG, Chae HP, Tuel-Ahlgren L, et al. Engagement of the CD19 receptor on human B-lineage leukemia cells activates LCK tyrosine kinase and facilitates radiation-induced apoptosis[J]. Radiat Res, 1993, (136):313-319.
    [73] Majolini MB, D'Elios MM, Galieni P, et al. Expression of the T-cell-specific tyrosine kinase Lck in normal B-1 cells and in chronic lymphocytic leukemia B cells[J]. Blood, 1998, (91):3390-3396.
    [74] Shah NP. Loss of response to imatinib: mechanisms and management[J]. Hematology Am Soc Hematol Educ Program, 2005:183-187.
    [75] Qi J, Peng H, Gu ZL, et al. [Establishment of an imatinib resistant cell line K562/G01 and its characterization][J]. Zhonghua Xue Ye Xue Za Zhi, 2004, (25):337-341.
    [76] Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1 -yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays[J]. J Med Chem, 2004, (47):6658-6661.
    [77] Rosen N, Bolen JB, Schwartz AM, et al. Analysis of pp60c-src protein kinase activity in human tumor cell lines and tissues[J]. J Biol Chem, 1986, (261):13754-13759.
    [78] Jacobs C, Rubsamen H. Expression of pp60c-src protein kinase in adult and fetal human tissue: high activities in some sarcomas and mammary carcinomas[J]. Cancer Res, 1983, (43):1696-1702.
    [79] Ottenhoff-Kalff AE, Rijksen G, van Beurden EA, et al. Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product[J]. Cancer Res, 1992, (52):4773-4778.
    [80] Verbeek BS, Vroom TM, Adriaansen-Slot SS, et al. c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis[J]. J Pathol, 1996, (180):383-388.
    [81] Reissig D, Clement J, Sanger J, et al. Elevated activity and expression of Src-family kinases in human breast carcinoma tissue versus matched non-tumor tissue [J]. J Cancer Res Clin Oncol, 2001, (127):226-230.
    [82] Belsches-Jablonski AP, Biscardi JS, Peavy DR et al. Src family kinases and HER2 interactions in human breast cancer cell growth and survival[J]. Oncogene, 2001, (20):1465-1475.
    [83] Diaz N, Minton S, Cox C, et al. Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression[J]. Clin Cancer Res, 2006, (12):20-28.
    [84] Cabioglu N, Summy J, Miller C, et al. CXCL-12/stromal cell-derived factor-1 alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation[J]. Cancer Res, 2005, (65):6493-6497.
    [85] Migliaccio A, Di Domenico M, Castoria G, et al. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells[J]. Embo J, 1996, (15):1292-1300.
    [86] Migliaccio A, Di Domenico M, Castoria G, et al. Steroid receptor regulation of epidermal growth factor signaling through Src in breast and prostate cancer cells: steroid antagonist action[J]. Cancer Res, 2005, (65): 10585-10593.
    [87] Luttrell DK, Lee A, Lansing TJ, et al. Involvement of pp60c-src with two major signaling pathways in human breast cancer[J]. Proc Natl Acad Sci U S A, 1994, (91):83-87.
    [88] Oude Weernink PA, Ottenhoff-Kalff AE, Vendrig MP, et al. Functional interaction between the epidermal growth factor receptor and c-Src kinase activity[J]. FEBS Lett, 1994, (352):296-300.
    [89] Muthuswamy SK, Muller WJ. Activation of the Src family of tyrosine kinases in mammary tumorigenesis[J]. Adv Cancer Res, 1994, (64): 111-123.
    [90] Muthuswamy SK, Siegel PM, Dankort DL, et al. Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity [J]. Mol Cell Biol, 1994, (14):735-743.
    [91] Muthuswamy SK, Muller WJ. Activation of Src family kinases in Neu-induced mammary tumors correlates with their association with distinct sets of tyrosine phosphorylated proteins in vivo[J]. Oncogene, 1995, (11): 1801-1810.
    [92] Tan M, Li P, Klos KS, et al. ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis[J]. Cancer Res, 2005, (65):1858-1867.
    [93] Bjorge JD, Pang A, Fujita DJ. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines[J]. J Biol Chem, 2000, (275):41439-41446.
    [94] Egan C, Pang A, Durda D, et al. Activation of Src in human breast tumor cell lines: elevated levels of phosphotyrosine phosphatase activity that preferentially recognizes the Src carboxy terminal negative regulatory tyrosine 530[J]. Oncogene, 1999, (18):1227-1237.
    [95] Webster MA, Cardiff RD, Muller WJ. Induction of mammary epithelial hyperplasias and mammary tumors in transgenic mice expressing a murine mammary tumor virus/activated c-src fusion gene[J]. Proc Natl Acad Sci U S A, 1995, (92):7849-7853.
    [96] Amundadottir LT, Leder P. Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes[J]. Oncogene, 1998, (16):737-746.
    [97] Moasser MM, Srethapakdi M, Sachar KS, et al. Inhibition of Src kinases by a selective tyrosine kinase inhibitor causes mitotic arrest[J]. Cancer Res, 1999, (59):6145-6152.
    [98] Lee HJ, Kim E, Jee B, et al. Functional involvement of src and focal adhesion kinase in a CD99 splice variant-induced motility of human breast cancer cells[J]. Exp Mol Med, 2002, (34): 177-183.
    [99] Reginato MJ, Mills KR, Becker EB, et al. Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes[J]. Mol Cell Biol, 2005, (25):4591-4601.
    [100] Johnson FM, Saigal B, Talpaz M, et al. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells [J]. Clin Cancer Res, 2005, (11):6924-6932.
    [101] Slack JK, Adams RB, Rovin JD, et al. Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells[J]. Oncogene, 2001, (20):1152-1163.
    [102] Nam S, Kim D, Cheng JQ, et al. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells[J]. Cancer Res, 2005, (65):9185-9189.
    [103] Chang YM, Kung HJ, Evans CP. Nonreceptor tyrosine kinases in prostate cancer[J]. Neoplasia, 2007, (9):90-100.
    
    [104] Fizazi K. The role of Src in prostate cancer[J]. Ann Oncol, 2007.
    [105] Hiscox S, Morgan L, Green T, et al. Src as a therapeutic target in anti-hormone/anti-growth factor-resistant breast cancer [J]. Endocr Relat Cancer, 2006,(13 Suppl 1):S53-59.
    [1]Martin GS.The road to Src[J].Oncogene,2004,(23):7910-7917.
    [2]Sato K,Iwasaki T,Hirahara S,et al.Molecular dissection of egg fertilization signaling with the aid of tyrosine kinase-specific inhibitor and activator strategies[J].Biochim Biophys Acta,2004,(1697):103-121.
    [3]Lin X,Wang Y,Ahmadibeni Y,et al.Structural basis for domain-domain communication in a protein tyrosine kinase,the C-terminal Src kinase[J].J Mol Biol,2006,(357):1263-1273.
    [4]Martin GS.The hunting of the Src[J].Nat Rev Mol Cell Biol,2001,(2):467-475.
    [5]Roskoski R,Jr.Structure and regulation of Kit protein-tyrosine kinase--the stem cell factor receptor[J].Biochem Biophys Res Commun,2005,(338):1307-1315.
    [6]Alper O,Bowden ET.Novel insights into c-Src[J].Curr Pharm Des,2005,(11):1119-1130.
    [7]Thomas JE,Guernsey DL.Altered oncogenes in UV-transformed C3H 10T1/2mouse cells:identification of mutated H-ras allele(s)[J].Int J Radiat Biol,1991,(59):15-29.
    [8]Brown MT,Cooper JA.Regulation,substrates and functions of src[J].Biochim Biophys Acta,1996,(1287):121-149.
    [9]Tsygankov AY,Shore SK.Src:regulation,role in human carcinogenesis and pharmacological inhibitors[J].Curr Pharm Des,2004,(10):1745-1756.
    [10]Soriano P,Montgomery C,Geske R,et al.Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice[J].Cell,1991,(64):693-702.
    [11]Levin VA.Basis and importance of Src as a target in cancer[J].Cancer Treat Res,2004,(119):89-119.
    [12]Schlaepfer DD,Mitra SK.Multiple connections link FAK to cell motility and invasion[J].Curr Opin Genet Dev,2004,(14):92-101.
    [13]Ram PT,Iyengar R.G protein coupled receptor signaling through the Src and Stat3pathway:role in proliferation and transformation[J].Oncogene,2001,(20):1601-1606.
    [14]Ahn S,Maudsley S,Luttrell LM,et al.Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling[J]. J Biol Chem, 1999, (274): 1185-1188.
    [15] Holmes TC, Fadool DA, Ren R, et al. Association of Src tyrosine kinase with a human potassium channel mediated by SH3 domain[J]. Science, 1996, (274):2089-2091.
    [16] Mohamed AS, Swope SL. Phosphorylation and cytoskeletal anchoring of the acetylcholine receptor by Src class protein-tyrosine kinases. Activation by rapsyn[J]. J Biol Chem, 1999, (274):20529-20539.
    [17] Rosen N, Bolen JB, Schwartz AM, et al. Analysis of pp60c-src protein kinase activity in human tumor cell lines and tissues[J]. J Biol Chem, 1986, (261):13754-13759.
    [18] Bolen JB, Veillette A, Schwartz AM, et al. Analysis of pp60c-src in human colon carcinoma and normal human colon mucosal cells[J]. Oncogene Res, 1987, (1):149-168.
    [19] Cartwright CA, Kamps MP, Meisler AI, et al. pp60c-src activation in human colon carcinoma[J]. J Clin Invest, 1989, (83):2025-2033.
    [20] Talamonti MS, Roh MS, Curley SA, et al. Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer[J]. J Clin Invest, 1993, (91):53-60.
    [21] Termuhlen PM, Curley SA, Talamonti MS, et al. Site-specific differences in pp60c-src activity in human colorectal metastases[J]. J Surg Res, 1993, (54):293-298.
    [22] Aligayer H, Boyd DD, Heiss MM, et al. Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis[J]. Cancer, 2002, (94):344-351.
    [23] Weber TK, Steele G, Summerhayes IC. Differential pp60c-src activity in well and poorly differentiated human colon carcinomas and cell lines[J]. J Clin Invest, 1992, (90):815-821.
    [24] Irby R, Mao W, Coppola D, et al. Overexpression of normal c-Src in poorly metastatic human colon cancer cells enhances primary tumor growth but not metastatic potential[J]. Cell Growth Differ, 1997, (8):1287-1295.
    [25] Windham TC, Parikh NU, Siwak DR, et al. Src activation regulates anoikis in human colon tumor cell lines[J]. Oncogene, 2002, (21):7797-7807.
    [26] Nakagawa T, Tanaka S, Suzuki H, et al. Overexpression of the csk gene suppresses tumor metastasis in vivn[J]. Tnt J Cancer. 2000. (88):384-391.
    [27] Boyer B, Bourgeois Y, Poupon MF. Src kinase contributes to the metastatic spread of carcinoma cells[J]. Oncogene, 2002, (21):2347-2356.
    [28] Staley CA, Parikh NU, Gallick GE. Decreased tumorigenicity of a human colon adenocarcinoma cell line by an antisense expression vector specific for c-Src[J]. Cell Growth Differ, 1997, (8):269-274.
    [29] Ellis LM, Staley CA, Liu W, et al. Down-regulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-src[J]. J Biol Chem, 1998, (273):1052-1057.
    [30] Nam JS, Ino Y, Sakamoto M, et al. Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis[J]. Clin Cancer Res, 2002, (8):2430-2436.
    [31] Boyd DD, Wang H, Avila H, et al. Combination of an SRC kinase inhibitor with a novel pharmacological antagonist of the urokinase receptor diminishes in vitro colon cancer invasiveness[J]. Clin Cancer Res, 2004, (10): 1545-1555.
    [32] Coluccia AM, Benati D, Dekhil H, et al. SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp60(c-Src)-dependent tyrosine phosphorylation of beta-catenin and its nuclear signaling[J]. Cancer Res, 2006, (66):2279-2286.
    [33] Golas JM, Lucas J, Etienne C, et al. SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models[J]. Cancer Res, 2005, (65):5358-5364.
    [34] Lutz MP, Esser IB, Flossmann-Kast BB, et al. Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma[J]. Biochem Biophys Res Commun, 1998, (243):503-508.
    [35] Hakam A, Fang Q, Karl R et al. Coexpression of IGF-1R and c-Src proteins in human pancreatic ductal adenocarcinoma[J]. Dig Dis Sci, 2003, (48): 1972-1978.
    [36] Duxbury MS, Ito H, Benoit E, et al. Overexpression of CEACAM6 promotes insulin-like growth factor I-induced pancreatic adenocarcinoma cellular invasiveness[J]. Oncogene, 2004, (23):5834-5842.
    [37] Ito H, Gardner-Thorpe J, Zinner MJ, et al. Inhibition of tyrosine kinase Src suppresses pancreatic cancer invasiveness[J]. Surgery, 2003, (134):221-226.
    [38] Yezhelyev MV, Koehl G, Guba M, et al. Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice[J]. Clin Cancer Res, 2004, (10):8028-8036.
    [39] Summy JM, Trevino JG, Lesslie DP, et al. AP23846, a novel and highly potent Src family kinase inhibitor, reduces vascular endothelial growth factor and interleukin-8 expression in human solid tumor cell lines and abrogates downstream angiogenic processes[J]. Mol Cancer Ther, 2005, (4):1900-1911.
    [40] Gray MJ, Zhang J, Ellis LM, et al. HIF-1 alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas[J]. Oncogene, 2005, (24):3110-3120.
    [41] Summy JM, Trevino JG, Baker CH, et al. c-Src regulates constitutive and EGF-mediated VEGF expression in pancreatic tumor cells through activation of phosphatidyl inositol-3 kinase and p38 MAPK[J]. Pancreas, 2005, (31):263-274.
    [42] Trevino JG, Summy JM, Lesslie DP, et al. Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model[J]. Am J Pathol, 2006, (168):962-972.
    [43] Masaki T, Okada M, Shiratori Y, et al. pp60c-src activation in hepatocellular carcinoma of humans and LEC rats[J]. Hepatology, 1998, (27):1257-1264.
    [44] Masaki T, Okada M, Tokuda M, et al. Reduced C-terminal Src kinase (Csk) activities in hepatocellular carcinoma[J]. Hepatology, 1999, (29):379-384.
    [45] Ito Y, Kawakatsu H, Takeda T, et al. Activation of c-Src gene product in hepatocellular carcinoma is highly correlated with the indices of early stage phenotype[J]. J Hepatol, 2001, (35):68-73.
    [46] Park SS, Eom YW, Kim EH, et al. Involvement of c-Src kinase in the regulation of TGF-betal-induced apoptosis[J]. Oncogene, 2004, (23):6272-6281.
    [47] Jacobs C, Rubsamen H. Expression of pp60c-src protein kinase in adult and fetal human tissue: high activities in some sarcomas and mammary carcinomas[J]. Cancer Res, 1983, (43):1696-1702.
    [48] Ottenhoff-Kalff AE, Rijksen G, van Beurden EA, et al. Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product[J]. Cancer Res, 1992, (52):4773-4778.
    [49] Verbeek BS, Vroom TM, Adriaansen-Slot SS, et al. c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis[J]. J Pathol, 1996, (180):383-388.
    [50] Reissig D, Clement J, Sanger J, et al. Elevated activity and expression of Src-family kinases in human breast carcinoma tissue versus matched non-tumor tissue [J]. J Cancer Res Clin Oncol, 2001, (127):226-230.
    [51] Belsches-Jablonski AP, Biscardi JS, Peavy DR, et al. Src family kinases and HER2 interactions in human breast cancer cell growth and survival[J]. Oncogene, 2001, (20):1465-1475.
    [52] Diaz N, Minton S, Cox C, et al. Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression[J]. Clin Cancer Res, 2006, (12):20-28.
    [53] Cabioglu N, Summy J, Miller C, et al. CXCL-12/stromal cell-derived factor-1 alpha transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation[J]. Cancer Res, 2005, (65):6493-6497.
    [54] Migliaccio A, Di Domenico M, Castoria G, et al. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells[J]. Embo J, 1996, (15):1292-1300.
    [55] Migliaccio A, Di Domenico M, Castoria G, et al. Steroid receptor regulation of epidermal growth factor signaling through Src in breast and prostate cancer cells: steroid antagonist action[J]. Cancer Res, 2005, (65):10585-10593.
    [56] Luttrell DK, Lee A, Lansing TJ, et al. Involvement of pp60c-src with two major signaling pathways in human breast cancer [J]. Proc Natl Acad Sci U S A, 1994, (91):83-87.
    [57] Oude Weernink PA, Ottenhoff-Kalff AE, Vendrig MP, et al. Functional interaction between the epidermal growth factor receptor and c-Src kinase activity [J]. FEBS Lett, 1994, (352):296-300.
    [58] Muthuswamy SK, Muller WJ. Activation of the Src family of tyrosine kinases in mammary tumorigenesis[J]. Adv Cancer Res, 1994, (64):111-123.
    [59] Muthuswamy SK, Siegel PM, Dankort DL, et al. Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity[J]. Mol Cell Biol, 1994,(14):735-743.
    [60] Muthuswamy SK, Muller WJ. Activation of Src family kinases in Neu-induced mammary tumors correlates with their association with distinct sets of tyrosine phosphorylated proteins in vivo[J]. Oncogene, 1995, (11): 1801-1810.
    [61] Tan M, Li P, Klos KS, et al. ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis[J]. Cancer Res, 2005, (65):1858-1867.
    [62] Bjorge JD, Pang A, Fujita DJ. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines[J]. J Biol Chem, 2000, (275):41439-41446.
    [63] Egan C, Pang A, Durda D, et al. Activation of Src in human breast tumor cell lines: elevated levels of phosphotyrosine phosphatase activity that preferentially recognizes the Src carboxy terminal negative regulatory tyrosine 530[J]. Oncogene, 1999, (18):1227-1237.
    [64] Webster MA, Cardiff RD, Muller WJ. Induction of mammary epithelial hyperplasias and mammary tumors in transgenic mice expressing a murine mammary tumor virus/activated c-src fusion gene[J]. Proc Natl Acad Sci U S A, 1995, (92):7849-7853.
    [65] Amundadottir LT, Leder P. Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes[J]. Oncogene, 1998, (16):737-746.
    [66] Moasser MM, Srethapakdi M, Sachar KS, et al. Inhibition of Src kinases by a selective tyrosine kinase inhibitor causes mitotic arrest[J]. Cancer Res, 1999, (59):6145-6152.
    [67] Lee HJ, Kim E, Jee B, et al. Functional involvement of src and focal adhesion kinase in a CD99 splice variant-induced motility of human breast cancer cells[J]. Exp Mol Med, 2002, (34): 177-183.
    [68] Reginato MJ, Mills KR, Becker EB, et al. Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes[J]. Mol Cell Biol, 2005, (25):4591-4601.
    [69] Pal S, Datta K, Mukhopadhyay D. Central role of p53 on regulation of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in mammary carcinoma[J]. Cancer Res, 2001, (61):6952-6957.
    [70] Sounni NE, Roghi C, Chabottaux V, et al. Up-regulation of vascular endothelial growth factor-A by active membrane-type 1 matrix metalloproteinase through activation of Src-tyrosine kinases[J]. J Biol Chem, 2004, (279): 13564-13574.
    [71] Hiscox S, Morgan L, Green TP, et al. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells[J]. Breast Cancer Res Treat, 2006, (97):263-274.
    [72] Masaki T, Igarashi K, Tokuda M, et al. pp60c-src activation in lung adenocarcinoma[J]. Eur J Cancer, 2003, (39): 1447-1455.
    [73] Johnson FM, Saigal B, Talpaz M, et al. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells[J]. Clin Cancer Res, 2005, (11):6924-6932.
    [74] Zheng R, Yano S, Matsumori Y, et al. SRC tyrosine kinase inhibitor, m475271, suppresses subcutaneous growth and production of lung metastasis via inhibition of proliferation, invasion, and vascularization of human lung adenocarcinoma cells[J]. Clin Exp Metastasis, 2005, (22): 195-204.
    [75] Sato M, Tanaka T, Maeno T, et al. Inducible expression of endothelial PAS domain protein-1 by hypoxia in human lung adenocarcinoma A549 cells. Role of Src family kinases-dependent pathway [J]. Am J Respir Cell Mol Biol, 2002, (26):127-134.
    [76] Bu R, Purushotham KR, Kerr M, et al. Alterations in the level of phosphotyrosine signal transduction constituents in human parotid tumors[J]. Proc Soc Exp Biol Med, 1996, (211):257-264.
    [77] van Oijen MG, Rijksen G, ten Broek FW, et al. Overexpression of c-Src in areas of hyperproliferation in head and neck cancer, premalignant lesions and benign mucosal disorders[J]. J Oral Pathol Med, 1998, (27):147-152.
    [78] Xi S, Zhang Q, Dyer KF, et al. Src kinases mediate STAT growth pathways in squamous cell carcinoma of the head and neck[J]. J Biol Chem, 2003, (278):31574-31583.
    [79] Inoue S, Branch CD, Gallick GE, et al. Inhibition of Src kinase activity by Ad-mda7 suppresses vascular endothelial growth factor expression in prostate carcinoma cells[J]. Mol Ther, 2005, (12):707-715.
    [80] Slack JK, Adams RB, Rovin JD, et al. Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells[J]. Oncogene, 2001, (20): 1152-1163.
    [81] Nam S, Kim D, Cheng JQ, et al. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells[J]. Cancer Res, 2005, (65):9185-9189.
    [82] Goldenberg-Furmanov M, Stein I, Pikarsky E, et al. Lyn is a target gene for prostate cancer: sequence-based inhibition induces regression of human tumor xenografts[J]. Cancer Res, 2004, (64):1058-1066.
    [83] Paronetto MP, Farini D, Sammarco I, et al. Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer[J]. Am J Pathol, 2004, (164): 1243-1251.
    [84] Loganzo F, Jr., Dosik JS, Zhao Y, et al. Elevated expression of protein tyrosine kinase c-Yes, but not c-Src, in human malignant melanoma[J]. Oncogene, 1993, (8):2637-2644.
    [85] Marchetti D, Parikh N, Sudol M, et al. Stimulation of the protein tyrosine kinase c-Yes but not c-Src by neurotrophins in human brain-metastatic melanoma cells[J]. Oncogene, 1998, (16):3253-3260.
    [86] Niu G, Bowman T, Huang M, et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth[J]. Oncogene, 2002, (21):7001-7010.
    [87] Wiener JR, Nakano K, Kruzelock RP, et al. Decreased Src tyrosine kinase activity inhibits malignant human ovarian cancer tumor growth in a nude mouse model [J]. Clin Cancer Res, 1999, (5):2164-2170.
    [88] Wiener JR, Windham TC, Estrella VC, et al. Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers[J]. Gynecol Oncol, 2003, (88):73-79.
    [89] Bourguignon LY, Zhu H, Shao L, et al. CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration[J]. J Biol Chem, 2001, (276):7327-7336.
    [90] Fanning P, Bulovas K, Saini KS, et al. Elevated expression of pp60c-src in low grade human bladder carcinoma[J]. Cancer Res, 1992, (52): 1457-1462.
    [91] Rodier JM, Valles AM, Denoyelle M, et al. pp60c-src is a positive regulator of growth factor-induced cell scattering in a rat bladder carcinoma cell line[J]. J Cell Biol, 1995, (131):761-773.
    [92] Cattan N, Rochet N, Mazeau C, et al. Establishment of two new human bladder carcinoma cell lines, CAL 29 and CAL 185. Comparative study of cell scattering and epithelial to mesenchyme transition induced by growth factors[J]. Br J Cancer, 2001, (85):1412-1417.
    [93] Takekura N, Yasui W, Yoshida K, et al. pp60c-src protein kinase activity in human gastric carcinomas[J]. Int J Cancer, 1990, (45):847-851.
    [94] Jankowski J, Coghill G, Hopwood D, et al. Oncogenes and onco-suppressor gene in adenocarcinoma of the oesophagus [J]. Gut, 1992, (33):1033-1038.
    [95] Kumble S, Omary MB, Cartwright CA, et al. Src activation in malignant and premalignant epithelia of Barrett's esophagus[J]. Gastroenterology, 1997, (112):348-356.
    [96] Takenaka N, Mikoshiba K, Takamatsu K, et al. Immunohistochemical detection of the gene product of Rous sarcoma virus in human brain tumors[J]. Brain Res, 1985, (337):201-207.
    [97] Bolen JB, Rosen N, Israel MA. Increased pp60c-src tyrosyl kinase activity in human neuroblastomas is associated with amino-terminal tyrosine phosphorylation of the src gene product[J]. Proc Natl Acad Sci U S A, 1985, (82):7275-7279.
    [98] O'Shaughnessy J, Deseau V, Amini S, et al. Analysis of the c-src gene product structure, abundance, and protein kinase activity in human neuroblastoma and glioblastoma cells[J]. Oncogene Res, 1987, (2): 1-18.
    [99] Bjelfman C, Hedborg F, Johansson I, et al. Expression of the neuronal form of pp60c-src in neuroblastoma in relation to clinical stage and prognosis[J]. Cancer Res, 1990, (50):6908-6914.
    [100] Stettner MR, Wang W, Nabors LB, et al. Lyn kinase activity is the predominant cellular SRC kinase activity in glioblastoma tumor cells[J]. Cancer Res, 2005, (65):5535-5543.
    [101] Mellstrom K, Bjelfman C, Hammerling U, et al. Expression of c-src in cultured human neuroblastoma and small-cell lung carcinoma cell lines correlates with neurocrine differentiation[J]. Mol Cell Biol, 1987, (7):4178-4184.
    [102] Pahlman S, Hammerling U. src expression in small-cell lung carcinoma and other neuroendocrine malignancies[J]. Am Rev Respir Dis, 1990, (142):S54-56.
    [103] Munshi N, Groopman JE, Gill PS, et al. c-Src mediates mitogenic signals and associates with cytoskeletal proteins upon vascular endothelial growth factor stimulation in Kaposi's sarcoma cells [J]. J Immunol, 2000, (164): 1169-1174.
    [104] Torigoe T, O'Connor R, Santoli D, et al. Interleukin-3 regulates the activity of the LYN protein-tyrosine kinase in myeloid-committed leukemic cell lines[J]. Blood, 1992, (80):617-624.
    [105] Ishikawa H, Tsuyama N, Abroun S, et al. Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6[J]. Blood, 2002, (99):2172-2178.
    [106] Choi SH, Yamanashi Y, Shiota M, et al. Expression of Lyn protein on human malignant lymphomas[J]. Lab Invest, 1993, (69):736-742.
    [107] Myers DE, Jun X, Waddick KG, et al. Membrane-associated CD19-LYN complex is an endogenous p53-independent and Bc1-2-independent regulator of apoptosis in human B-lineage lymphoma cells[J]. Proc Natl Acad Sci U S A, 1995, (92):9575-9579.
    [108] Hallek M, Neumann C, Schaffer M, et al. Signal transduction of interleukin-6 involves tyrosine phosphorylation of multiple cytosolic proteins and activation of Src-family kinases Fyn, Hck, and Lyn in multiple myeloma cell lines[J]. Exp Hematol, 1997, (25):1367-1377.
    [109] Roginskaya V, Zuo S, Caudell E, et al. Therapeutic targeting of Src-kinase Lyn in myeloid leukemic cell growth[J]. Leukemia, 1999, (13):855-861.
    [110] Lee M, Kim JY, Koh WS. Apoptotic effect of PP2 a Src tyrosine kinase inhibitor, in murine B cell leukemia[J]. J Cell Biochem, 2004, (93): 629-638.
    [111] Contri A, Brunati AM, Trentin L, et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis[J]. J Clin Invest, 2005, (115):369-378.
    [112] Robinson LJ, Xue J, Corey SJ. Src family tyrosine kinases are activated by Flt3 and are involved in the proliferative effects of leukemia-associated Flt3 mutations[J]. Exp Hematol, 2005, (33):469-479.
    [113] Hochhaus A, Kantarjian HM, Baccarani M, et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy [J]. Blood, 2007, (109):2303-2309.
    [114] Cortes J, Rousselot P, Kim DW, et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis[J]. Blood, 2007, (109):3207-3213.
    [115] Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias[J]. N Engl J Med, 2006, (354):2531-2541.
    [116] Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor[J]. Science, 2004, (305):399-401.
    [117] Shah NP. Loss of response to imatinib: mechanisms and management[J]. Hematology Am Soc Hematol Educ Program, 2005:183-187.
    [118] Donato NJ, Wu JY, Stapley J, et al. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571[J]. Blood, 2003, (101):690-698.
    [119] Ptasznik A, Urbanowska E, Chinta S, et al. Crosstalk between BCR/ABL oncoprotein and CXCR4 signaling through a Src family kinase in human leukemia cells[J]. J Exp Med, 2002, (196):667-678.
    [120] Ptasznik A, Nakata Y, Kalota A, et al. Short interfering RNA (siRNA) targeting the Lyn kinase induces apoptosis in primary, and drug-resistant, BCR-ABL1(+) leukemia cells[J]. Nat Med, 2004, (10): 1187-1189.
    [121] Tilbrook PA, Palmer GA, Bittorf T, et al. Maturation of erythroid cells and erythroleukemia development are affected by the kinase activity of Lyn[J]. Cancer Res, 2001, (61):2453-2458.
    [122] Abts H, Jucker M, Diehl V, et al. Human chronic lymphocytic leukemia cells regularly express mRNAs of the protooncogenes lck and c-fgr[J]. Leuk Res, 1991, (15):987-997.
    [123] Waddick KG, Chae HP, Tuel-Ahlgren L, et al. Engagement of the CD19 receptor on human B-lineage leukemia cells activates LCK tyrosine kinase and facilitates radiation-induced apoptosis[J]. Radiat Res, 1993, (136):313-319.
    [124] Majolini MB, D'Elios MM, Galieni P, et al. Expression of the T-cell-specific tyrosine kinase Lck in normal B-1 cells and in chronic lymphocytic leukemia B cells[J]. Blood, 1998, (91):3390-3396.
    [125] Prakash O, Swamy OR, Peng X, et al. Activation of Src kinase Lyn by the Kaposi sarcoma-associated herpesvirus K1 protein: implications for lymphomagenesis[J]. Blood, 2005, (105):3987-3994.
    [126] Sundaramoorthi R, Kawahata N, Yang MG, et al. Structure-based design of novel nonpeptide inhibitors of the Src SH2 domain:phosphotyrosine mimetics exploiting multifunctional group replacement chemistry[J]. Biopolymers, 2003, (71):717-729.
    [127] Shakespeare W, Yang M, Bohacek R et al. Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity [J]. Proc Natl Acad Sci U S A, 2000, (97):9373-9378.
    [128] Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia[J]. Blood, 2005, (105):2640-2653.
    [129] Brown ER, Shepherd FA. Erlotinib in the treatment of non-small cell lung cancer[J]. Expert Rev Anticancer Ther, 2005, (5):767-775.
    [130] Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1 -yl)-2-methylpyrimidin-4- ylamino) thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays[J]. J Med Chem, 2004, (47):6658-6661.
    [131] Schittenhelm MM, Shiraga S, Schroeder A, et al. Dasatinib (BMS-354825), a dual SRC/ABL kinase inhibitor, inhibits the kinase activity of wild-type, juxtamembrane, and activation loop mutant KIT isoforms associated with human malignancies[J]. Cancer Res, 2006, (66):473-481.
    [132] Boschelli DH. 4-anilino-3-quinolinecarbonitriles: an emerging class of kinase inhibitors[J]. Curr Top Med Chem, 2002, (2):1051-1063.
    [133] Berger DM, Dutia M, Birnberg G, et al. 4-Anilino-7,8-dialkoxybenzo[g] quinoline-3-carbonitriles as potent Src kinase inhibitors [J]. J Med Chem, 2005, (48):5909-5920.
    [134] Choi H, Charnsangavej C, de Castro Faria S, et al. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG PET findings[J]. AJR Am J Roentgenol, 2004, (183):1619-1628.
    [135] Pengetnze Y, Steed M, Roby KF, et al. Src tyrosine kinase promotes survival and resistance to chemotherapeutics in a mouse ovarian cancer cell line[J]. Biochem Biophys Res Commun, 2003, (309):377-383.
    [136] Chen T, Pengetnze Y, Taylor CC. Src inhibition enhances paclitaxel cytotoxicity in ovarian cancer cells by caspase-9-independent activation of caspase-3[J]. Mol Cancer Ther, 2005, (4):217-224.
    [137] George JA, Chen T, Taylor CC. SRC tyrosine kinase and multidrug resistance protein-1 inhibitions act independently but cooperatively to restore paclitaxel sensitivity to paclitaxel-resistant ovarian cancer cells[J]. Cancer Res, 2005, (65):10381-10388.
    [138] Duxbury MS, Ito H, Zinner MJ, et al. siRNA directed against c-Src enhances pancreatic adenocarcinoma cell gemcitabine chemosensitivity[J]. J Am Coll Surg, 2004, (198):953-959.
    [139] Duxbury MS, Ito H, Zinner MJ, et al. Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells[J]. Clin Cancer Res, 2004, (10):2307-2318.
    [140] Bates RC, Edwards NS, Burns GF, et al. A CD44 survival pathway triggers chemoresistance via lyn kinase and phosphoinositide 3-kinase/Akt in colon carcinoma cells[J]. Cancer Res, 2001, (61):5275-5283.
    [141] Ishizawar R, Parsons SJ. c-Src and cooperating partners in human cancer[J]. Cancer Cell, 2004, (6):209-214.
    [142] Ishizawar RC, Miyake T, Parsons SJ. c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function[J]. Oncogene, 2007, (26):3503-3510.
    [143] Zhang J, Kalyankrishna S, Wislez M, et al. SRC-family kinases are activated in non-small cell lung cancer and promote the survival of epidermal growth factor receptor-dependent cell lines[J]. Am J Pathol, 2007, (170):366-376.
    [144] Song L, Morris M, Bagui T, et al. Dasatinib (BMS-354825) selectively induces apoptosis in lung cancer cells dependent on epidermal growth factor receptor signaling for survival[J]. Cancer Res, 2006, (66):5542-5548.
    [1] Heisterkamp N, Stephenson JR, Groffen J, et al. Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukaemia[J]. Nature, 1983,306:239-242.
    [2] Druker BJ, Tamura S, Buchdunger E, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells[J]. Nat Med, 1996, 2: 561-566.
    [3] Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative[J]. Cancer Res, 1996,56: 100-104.
    [4] Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome [J]. N Engl J Med, 2001, 344: 1038-1042.
    [5] Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification[J]. Science, 2001, 293: 876-880.
    [6] Hochhaus A, Kreil S, Corbin AS, et al. Molecular and chromosomal mechanisms of resistance to Imatinib (STI571) therapy[J]. Leukemia, 2002, 16: 2190-2196.
    [7] Gambacorti-Passerini C, Barni R, le Coutre P, et al. Role of alphal acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571[J]. J Natl Cancer Inst, 2000, 92: 1641-1650.
    [8] Kantarjian HM, Talpaz M, O'Brien S, et al. Dose escalation of Imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia[J]. Blood, 2003, 101: 473-475.
    [9] Sacchi S, Kantarjian HM, O'Brien S, et al. Chronic myelogenous leukemia in nonlymphoid blastic phase: analysis of the results of first salvage therapy with three different treatment approaches for 162 patients[J]. Cancer, 1999, 86: 2632-2641.
    [10] Schindler T, Bornmann W, Pellicena P, et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase[J]. Science, 2000, 289: 1938-1942.
    
    [11] Weisberg E, Manley PW, Breitenstein W, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl[J]. Cancer Cell, 2005, 7: 129-141.
    [12] Gumireddy K, Baker SJ, Cosenza SC, et al. A non-ATP-competitive inhibitor of BCR-ABL overrides Imatinib resistance[J]. Proc Natl Acad Sci USA, 2005, 102: 1992-1997.
    [13] Yu C, Krystal G, Varticovksi L, et al. Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells[J]. Cancer Res, 2002, 62: 188-199.
    [14] Sattler M, Salgia R, Okuda K, et al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3' kinase pathway[J]. Oncogene, 1996, 12: 839-846.
    [15] Klejman A, Rushen L, Morrione A, et al. Phosphatidylinositol-3 kinase inhibitors enhance the anti-leukemia effect of STI571 [J]. Oncogene, 2002, 21: 5868-5876.
    [16] S.B. Marley, J.L. Lewis, H. Schneider, et al. Phosphatidylinositol-3 kinase inhibitors reproduce the selective antiproliferative effects of Imatinib on chronic myeloid leukaemia progenitor cells[J]. Br J Haematol, 2004, 125: 500-511.
    [17] Tseng PH, Lin HP, Zhu J, et al. Synergistic interactions between Imatinib and the novel phosphoinositide-dependent kinase-1 inhibitor OSU-03012 in overcoming Imatinib resistance [J]. Blood, 2005, 105: 4021-4027.
    [18] Mohi MG, Boulton C, Gu TL, et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs[J]. Proc Natl Acad Sci USA, 2004, 101:3130-3135.
    [19] Snyder DS, Wu Y, Wang JL, et al. Ribozyme-mediated inhibition of Bcr-Abl gene expression in a Philadelphia chromosome-positive cell line[J]. Blood, 1993, 82: 600-605.
    [20] Blagosklonny MV, Fojo T, Bhalla KN, et al. The Hsp90 inhibitor geldanamycin selectively sensitizes Bcr-Abl-expressing leukemia cells to cytotoxic chemotherapy [J]. Leukemia, 2001, 15: 1537-1543.
    [21] Gorre ME, Ellwood-Yen K, Chiosis G, et al. BCR-ABL point mutants isolated from patients with Imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90[J]. Blood, 2002, 100: 3041-3044.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.