不同土壤基质下水分胁迫对刺槐幼苗生理生态特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前由于全球气候变化的影响,导致森林生态系统破坏,生态功能退化日益严重,恢复日益受损和退化的生态系统成为国际社会广泛关注的热点问题。植物通过各种不同的生理生态特征适应日益变化的环境,进行植物与环境之间相互关系及基本机制的研究成为现代植物生理生态学研究的重要内容。
     本研究选用刺槐(Robinia pseudoacacia L.)这种鲁中山区典型植被恢复物种,在房干实验基地,采用现代生理生态学分析方法和测量手段,研究在两种不同土壤基质下水分胁迫对其生理生态特征的影响,目的在于模拟未来可能出现的干旱环境下,待恢复山区和恢复区上刺槐林的适应机制,对于深入探讨刺槐作为鲁中山区恢复优势树种的可能性提供科学依据,并能指导合理抚育和管理不同恢复阶段山区树种以达到避灾减灾和增加成效的目的。
     通过控制实验模拟植被恢复前后变化了的土壤基质,每个基质下设置四个水分梯度,研究一年生刺槐幼苗形态结构、光合荧光、水分利用、生物量积累及其分配等生理生态特征对不同土壤基质及水分胁迫的响应机制。结果表明:
     同一基质下,随干旱胁迫程度的增强,株高、基径、总叶面积、总叶数、冠幅和叶面积指数等形态指标均逐渐降低;以叶面积和叶干重为代表的叶大小明显受到限制,叶片伸展性、叶长/叶柄长、最大宽度分割也存在显著差异;叶片相对含水量逐渐减少的同时,净光合速率、蒸腾速率和气孔导度逐渐减少,光能利用效率降低,同时电子传递速率受到明显抑制,有效量子产量逐渐降低,光化学淬灭和非光化学淬灭系数均显著降低,光系统的保护机制减弱,造成光抑制程度的加剧;相同时间失水率的不同说明严重胁迫下的叶片持水力普遍大于正常供水下的持水力;土壤水分含量的减少降低了各器官的生物量积累,同时影响生物量的分配方式,根生物量比增加,而叶生物量比降低,光合产物向地下部分尤其是侧根迁移,比叶面积逐渐降低。
     不同基质间,充分供水时,养分对于刺槐幼苗生长的制约作用大于水分的影响,腐殖性棕壤基质上幼苗的高度、总叶面积等形态特征,净光合速率、蒸腾速率、气孔导度等光合特征和生物量积累特征高于粗骨性棕壤基质下的幼苗;而在严重水分胁迫下,水分的供应严重不足,此时水分是影响植株生长的主要因素,由于粗骨性棕壤的保水能力要高于腐殖性棕壤,因此粗骨性棕壤基质的叶数,冠幅等指标开始高于腐殖性棕壤基质的相应部分,而粗骨土的净光合速率,蒸腾速率,气孔导度等光合特征也高于腐殖土基质的。两基质间叶形态特征也有不同,腐殖土基质的叶片大于粗骨土基质中的叶片,叶片伸展性也产生了差异;腐殖土基质下的叶绿素含量均高于粗骨土基质的,而叶绿素a/b则低于粗骨土的;粗骨土基质的各部分生物量的相对生长速率低于腐殖土基质的相应部分。
     刺槐幼苗通过多方面的适应调节机制,保证了幼苗在不同生境下的正常生长和生存,适应较大程度的干旱贫瘠环境,并使其能够适应未来较大程度的环境变化,因此也成为植被恢复的理想树种。
Forest ecosystems suffer from severe destroy going with serious degradation of ecological functions just because of global climate changes at present. Restoring the increasing degraded ecosystems has become a hot point that is focused by many international communities. Plants adapt to the changing environment through a variety of physiological and ecological characteristics. In recent years, more and more researches are focused on the relationship and basic mechanism between the plants and environment. It has become an important aspect of modern plant ecophysiological researches.
     In this study, we chose Robinia pseudoacacia L. as the research object. We used modern ecophysiological equipments and measurements to study its physiological and ecological characteristics under different water stress of two soil matrixes in order to simulate the drought conditions of the unrecovered and being recovered mountain areas in the future. The results will provide a scientific basis for the possibility of R. pseudoacacia as the dominant species of the center of Shandong mountain areas. And it will help to provide the guidance and management of mountain species reasonably in different stages of ecological reconstruction.
     The two different soil matrixes were set to simulate the early and long-term vegetation restoration, and four different water supply levels of every matrix were conducted by artificial water control in the rainout shelters, in order to study the growth, morphological architecture, photosynthetic characters, water use characteristic, biomass accumulation and allocation in one-year old R. pseudoacacia seedlings respond to diverse soil matrixes and water stresses. The results showed that:
     With increased in water stress under the same matrix, morphological variables of height, stem diameter, total leaf area, total leaf number, crown area and leaf area index decreased. The leaf size, including leaf area, leaf mass, became smaller with a short supply of water, and leaf elongation, leaf length to leaf petiole, leaf widest division show significant differences. With the leaf relative water content decreasing, net photosynthetic rate, transpiration rate and stomatal conductance also decreased. Meanwhile, light use efficiency, electron transport rate, effective quantum yield, photochemical quenching and non-photochemical quenching are also reduced, as well as weak photoprotective effect in photosystem caused photoinhibition more serious. The difference of water lost rate after the same time indicates that the leaf moisture retaining power of severe water stresses generally greater than that of well watered condition. Biomass accumulations to each organ were restricted by the deficit of soil water content. Under water stress, biomass allocations were also affected, more photosynthetic products were transferred to belowground biomass, especially to the lateral roots. As a result, the root mass ratio increased, the leaf mass ratio decreased, and specific leaf area reduced gradually.
     In the well watered conditions between different matrixes, nutrients for the growth of R. pseudoacacia seedlings are more important than water stress. As a result, the morphological variables of height and total leaf area, photosynthetic characters such as net photosynthetic rate, transpiration rate and stomatal conductance, biomass accumulation and allocation of humous brown soil were obviously higher than those of regosol brown soil. But in the severe water stresses, water becomes the lethal factor, and several variables of the regosol brown soil were higher than those of humous brown soil just because the water retaining capacity of regosol brown soil is better than that of the humous brown soil. These variables included the total leaf number, crown area, net photosynthetic rate, transpiration rate and stomatal conductance. Leaf morphological parameters were also affected by the different soil matrixes. The leaf size of humous brown soil showed larger than that of regosol brown soil, along with the difference of leaf elongation. The contents of chlorophyll of humous brown soil were more than that of regosol brown soil, but the chlorophyll a/b was less. The relative growth rate of biomass accumulations to each organ in regosol brown soil was lower than that in humous brown soil
     In conclusion, this research shows that the seedlings of R. pseudoacacia seedlings can respond and adapt to environmental changes through various mechanisms, by which the seedlings of R. pseudoacacia can be assured to normally grow and survive under drought and poor conditions, and may adapt to more fluctuant climate changes in the future. All of those mechanisms make R. pseudoacacia to be the ideal species for vegetation restoration.
引文
1. Barkoulas M, Galinha C, Grigg S P, et al. From genes to shape: regulatory interactions in leaf development. Current Opinion in Plant Biology, 2007, 10:660-666.
    
    2. Bergh J, Linder S, Lundmark T, et al. The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. Forest Ecology and Management, 1999, 119: 51-62.
    
    3. Berry J A, Downton W J S. Environmental regulation of photosynthesis. In: Govindjee ed. Photosynthesis. New York: Academic Press, 1982, 263-343.
    
    4. Chaves M M. Effects of water deficits on carbon assimilation. Journal of Experiment Botany, 1991,42: 1-6.
    
    5. Cornelissen J H C, Laborel S, Gamier E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide.Australian Journal of Botany, 2003, 51: 335-380.
    
    6. Dengler N, Kang J. Vascular patterning and leaf shape. Current Opinion in Plant Biology, 2001,4:50-56.
    
    7. D(?)az S, Cabido M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 2001, 16: 646-655.
    
    8. D(?)az S, Gabido M, Casanoves F. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 1998, 9: 113-122.
    
    9. Dickman D I. Photosynthesis, water relation and growth of two hybrid Populus genotypes during a severe drought. Canadian Journal of Forestry Research, 1992,22:1094-1106.
    
    10. Dormann C F, Woodin S J. Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments. Functional Ecology, 2002, 16:4-17.
    
    11. Farquhar G D, Caemmerer S, Berry J A. A biochemical model of photosynthetic CO_2 assimilation in leaves of C3 species. Planta, 1980, 149: 78-90.
    12. Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Ann Rev Physiol, 1982, 33:317-345.
    
    13. Franks N R, Britton N F. The possible role of reaction-diffusion in leaf shape.Proceedings of the Royal Society B, 2000, 267: 1295-1300.
    
    14. Filelia J A, Serrano L, Serra J, et al. Evaluating nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 1995, 35:1400-1405.
    
    15. Gabriel C. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in Plant Science, 2000, 5:187-188.
    
    16. Gamier E, Cortez J, Billes G, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 2004, 85: 2630-2637.
    
    17. Greco S A, Cavagnaro J B. Effects of drought in biomass production and allocation in three varieties of Trichloris crinita P. (Poaceae) a forage grass from the arid Monte region of Argentina. Plant Ecology, 2002, 164: 125-135.
    
    18. Guo W H, Li B, Huang Y M, et al. Effects of different water stress on eco-physiological characteristics of Hippophae rhamnoides seedings. Acta Botanica Sinica, 2003, 45: 1238-1244.
    
    19. Guo W H, Li B, Zhang X S, et al. Architectural plasticity and growth responses of Hippophae rhamnoides and Caragana intermedia seedlings to simulated water stress. Journal of Arid Environments, 2007, 69: 385-399.
    
    20. Holg(?)n P, H(?)nell B. Performance of planted and naturally regenerated seedlings in Picea abies-dominated shelterwood stands and clearcuts in Sweden. Forest Ecology and Management, 2000, 127: 129-138.
    
    21. Huey B B, Gilchrist G W, Carlson M L, et al. Rapid evolution of a geographic cline in size in an introduced fly. Science, 2000, 287: 308-309.
    
    22. Jassby A D, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography, 1976,21:540-547.
    
    23. Jiang C D, Gao H Y, Zou Q, et al. Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. Environmental and Experimental Botany, 2006, 55: 87-96.
    
    24. Kahmen S, Poschlod. Plant functional trait responses to grassland succession over 25 years. Journal of Vegetation Science, 2004, 15: 21-32.
    
    25. Kessler S, Sinha N. Shaping up: the genetic control of leaf shape. Current Opinion in Plant Biology, 2004, 7: 65-72.
    
    26. Kikuzawa K. Leaf phenology as an optimal strategy for carbon gain in plants.Canadian Journal of Botany, 1995, 73: 158-163.
    
    27. King J S, Albaugh T J, Allen H L, et al. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 2002, 154: 389-398.
    
    28. Kramer P J. Water relations of plants. New York: Academic Press, 1983.
    
    29. Kyei-Boahen S, Lada R, Astatkie T, et al. Photosynthetic response of carrots to varying irradiances. Photosynthetica, 2003, 41:1-5.
    
    30. Lahlou O, Ouattar S, Ledent J F. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie, 2003, 23:257-268.
    
    31. Lambers H, Poorter H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 1992, 23: 188-261.
    
    32. Larcher W. Physiological plant ecology: Ecophysiology and stress physiology of functional groups, 3rd ed. Berlin, Heideberg, New York: Spring-Verlag, 1995,175-230.
    
    33. Leverenz J W, Jarvis P G. Photosynthesis in Sitka spruce.VII. The effects of light flux density and direction on the rate of net photosynthesis and the stomatal conductance of needles. Journal of Applied Ecology, 1979, 16: 919-932.
    
    34. Liang N S, Marruyama K. Interactive effects of CO_2 enrichment and drought stress on gas exchange and water-use efficiency in Alnus firma. Environmental and Experimental Botany, 1995, 35: 353-361.
    
    35. Lichtenthaler H K, Wellburn A R. Determination of total carotenoids and chlorophylls a and b of leaf extracts in defferent solvents. Biochemical Society Transactions, 1983, 11: 591-592.
    
    36. Long S P, Humphries S, Folkowskip G Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and PlantMolecular Biology, 1994,45:633-662.
    
    37. Longstaff B J, Kildea T, Runcie J W, et al. An in situ study of photo synthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynthesis Research, 2002, 74: 281-293.
    
    38. Marshall B, Biscoe P V. A model for C3 leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany, 1980, 31: 29-39.
    
    39. McIntyre S. The role of plant leaf attributes in linking land use to ecosystem function in temperate grassy vegetation. Agriculture, Ecosystems and Environment, 2008, 128: 251-258.
    
    40. Mclntyre S, Laborel S, Landsberg J, et al., Disturbance response in vegetation-towards a global perspective on functional traits. Journal of Vegetation Science, 1999, 10:621-630.
    
    41. Meziane D, Shipley B. Interacting components of inter-specific relative growth rate: constancy and change under differing conditions of light and nutrient supply.Functional Ecology, 1999, 13: 611-622.
    
    42. Modry M, Hubeny D, Rejsek K. Differential response of naturally regenerated European shade tolerant tree species to soil type and light availability. Forest Ecology and Management, 2004, 188: 185-195.
    
    43. Molnar I, Gaspar L, Stehli L, et al. The effects of drought stress on the photosynthetic processes of wheat and of Aegilops biuncialis genotypes originating from various habitats. Acta Biologica Szegediensis, 2002, 46:115-116.
    
    44. Moran J A, Mitchell A K, Goodmanson G, et al. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree Physiology, 2000, 20: 1113-1120.
    
    45. Navas M L, Ducout B, Roumet C, et al., Leaf life span, dynamics and construction cost of species from Mediterranean old-field differing in successional status. New Phytologist, 2003, 159: 213-228.
    
    46. Niinemets U, Portsmuth A, Tobias M. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Functional Ecology, 2007, 21: 28-40.
    
    47. Pan X Y, Wang G X, Yang H M et al. Effect of water deficits on within-plot variability in growth and grain yield of spring wheat in northwest China. Field Crops Research, 2003, 80: 195-205.
    
    48. Platt T, Gallegos C L, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 1980, 38:687-701.
    
    49. Richardson A D, Duigan S P, Berlyn G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 2002, 153: 185-194.
    
    50. Royer D L, Wilf P, Janesko D A, et al. Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 2005, 92: 1141-1151.
    
    51. Schimel D. Climate change and crop yields: beyond Cassandra. Science, 2006,312: 1889-1890.
    
    52. Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 1986, 10: 51-62.
    
    53. Steele J H. Environmental control of photosynthesis in the sea. Limnology and Oceanography, 1962, 7: 137-150.
    
    54. Sultan S E, Bazzaz F A. Phenotypic plasticity in Polygonum persicaria II. Norms of reaction to soil moisture and the maintenance of genetic diversity. Evolution,1993,47:1032-1049.
    
    55. Tsukaya H. Organ shape and size: a lesson from studies of leaf morphogenesis.Current Opinion in Plant Biology, 2003,6: 57-62.
    
    56. Thomas R M J, Fukai S, Peoples M B. The effect of timing and severity of water deficit on growth, development, yield accumulation and nitrogen fixation of mungbean. Field Crops Research, 2004, 86: 67-80.
    57.Thornley J H M.Dynamic model of leaf photosynthesis with acclimation to light and nitrogen.Annals of Botany,1998,81:431-430.
    58.Tyree M,Ewers F E.The hydraulic architecture of trees an d other woody plants.New Phytologist,1991,119:345-360.
    59.Valladares F,Sanehen G D,Zavala M A.Quantitative estimation of phenotypic plasticity:bridging the gap between the evolutionary concept and its ecological applications.Journal of Ecology,2006,94:1103-1116.
    60.Valladares F,Wright S J,Lasso E,et al.Plastic phenotypic response to light of 16congeneric shrubs from a Panamanian rainforest.Ecology,2000,81:1925-1936.
    61.Vile D,Gamier E,Shipley B,et al.Specific leaf area and dry matter content estimate thickness in laminar leaves.Annals of Botany,2005,96:1129-1136.
    62.Wang R Z.Photosynthetic pathways and life forms in different grassland types from North China.Photosynthetica,2002,40:243-250.
    63.Wang R Z,Gao Q.Climate-driven changes in shoot density and shoot biomass in Leymus chinensis(Poaceae) on the Northeast China Transect(NECT).Global Ecology and Biogeography,2003,12:249-259.
    64.White A J,Critchley C.Rapid light curves:a new fluorescence method to assess the state of the photosynthetic apparatus.Photosynthesis Research,1999,59:63-72.
    65.Wright I J,Reich P B,Westoby M,et al.The worldwide leaf economics spectrum.Nature,2004,428:821-827.
    66.Zhang X L,Zang R G,Li C Y.Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress.Plant Science,2004,166:791-797.
    67.Zhang X Q,Liu J,Welham C V J,et al.The effects of clonal integration on morphological plasticity and placement of daughter ramets in black locust (Robinia pseudoacacia).Flora,2006,201:547-554.
    68.柏军华,王克如,初振东,等.叶面积测定方法的比较研究.石河子大学学报(自然科学版),2005,23(2):216-218.
    69.晁敏.山东省农业可持续发展战略主体模式研究-以滨州、峄城区、房干村为例.山东大学:硕士学位论文,1999,38-39.
    70.陈爱玲,游水生,林德喜.阔叶林地在不同更新方式下土壤理化性质的变化.浙江林学院学报,2001,18(2):127-130.
    71.陈贻竹,李晓萍,夏丽,等.叶绿素荧光技术在植物环境胁迫研究中的应用.热带亚热带植物学报,1995,3(4):79-86.
    72.费松林,方精云,樊拥军,等.贵州梵净山亮叶水青岗的叶和木材解剖特征与其生态因子的关系.植物学报,1999,41(2):1002-1009.
    73.冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用.经济林研究,2002,20(4):14-18.
    74.韩志国,雷腊梅,韩博平.光-暗循环中三角褐指藻和具齿原甲藻快速光曲线的变化.热带海洋学报,2005,24(6):13-21.
    75.何春霞,李吉跃,郭明,等.4种乔木叶片光合特性和水分利用效率随树高的变化.生态学报,2008,28(7):3008-3016.
    76.黄鹃,夏汉平,蔡锡安.遮光处理对三种钝叶草的生长习性与光合特性的影响.生态学杂志,2006,25(7):759-764.
    77.黄占斌,山仑.水分利用效率及其生理生态机理研究进展.生态农业研究,1998,6(4):19-23.
    78.耿宇鹏,张文驹,李博,等.表型可塑性与外来植物的入侵能力.生物多样性,2004,12(4):447-455.
    79.郭天财,冯伟,赵会杰,等.两种穗型冬小麦品种旗 叶光合特性及氮素调控效应.作物学报,2004,30(2):115-121.
    80.郭卫华,李波,黄永梅,等.不同程度的水分胁迫对中间锦鸡儿幼苗气体交换特征的影响.生态学报,2004,24(12):2716-2722.
    81.韩振芹,陈秀新.红叶金银木叶绿素含量与叶色关系的研究.林业科学,2008,24(7):132-135.
    82.郝文芳,梁宗锁,韩蕊莲,等.黄土高原不同植被类型土壤特性与植被生产力关系研究进展.西北植物学报 2002,22(6):1545-1550.
    83.贾黎明.固氮树种与非固氮树种混交林研究现状.世界林业研究,1998,11(1):0-25.
    84.蹇洪英,邹寿青.地毯草的光合特性研究.广西植物,2003,23(2):181-184.
    85.蒋高明,植物生理生态学.北京:高等教育出版社.2004.
    86.蒋高明,何维明.一种在野外自然光照条件下快速测定光合作用-光响应曲线的新方法.植物学通报,1999,16(6):712-718.
    87.金静,钟章成,刘锦春,等.石灰岩地区土壤水分对木豆表型可塑性的影响.西南农业大学学报(自然科学版),2005,27(1):89-92.
    88.康琅,汪良驹.ALA对西瓜叶片叶绿素荧光光响应曲线的影响.南京农业大学学报,2008,31(1):31-36.
    89.李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响.生态学报,2002,22(9):1380-1386.
    90.李军超,苏陕民.黄花菜耐阴特性的初步研究.生态学报,1994,14(4):444-446.
    91.李梅,韩海荣,康峰,等.山西灵空山辽东栎种群叶性状表型变异研究.北京林业大学学报,2005,27(5):1-16.
    92.李晓萍,陈贻竹,郭俊彦.叶绿体PSII光能耗散机制的研究进展.生物化学与生物物理进展,1996,23(2):145-149.
    93.梁银丽,康绍忠,山仑.水分和氮磷水平对小麦磷同位素分辨率和水分利用效率的影响.植物生态学报,2000,24(3):289-292.
    94.林德喜,樊后保,苏兵强,等.马尾松林下套种阔叶树土壤理化性质的研究.土壤学报,2004,41(4):655-659.
    95.林金科,李明志.茶树叶片净光合速率对生态因子的响应.生态学报,2000,20(3):404-408.
    96.林世表,许春辉,张其德,等.叶绿素荧光动力学在植物抗逆性生理学、生态学和农业现代化中的应用.植物学通报,1992,9(1):1-16.
    97.林伟宏,白克智,匡廷云.大气CO_2浓度和温度升高对水稻叶片及群体光合作用的影响.植物学报,1999,41(6):624-628.
    98.刘锦春,钟章成,何跃军.水分胁迫对重庆石灰岩地区不同龄级柏木(Cupressus funebris Endl.)幼苗气体交换的影响.生态学报,2007,27(9):3601-3608.
    99.陆佩玲,罗毅,刘建栋,等.华北地区冬小麦光合作用光响应曲线的特征参数.应用气象学报,2000,11(2):236-241.
    100.卢纹岱.SPSS for Windows统计分析.北京:电子工业出版社,2002.
    101.卢欣石,何琪.种群遗传变异及基因多样度分析.草业学报,1999,8(3):76.
    102.陆霞梅,周长芳,安树青,等.植物的表型可塑性、异速生长及其入侵能力.生态学杂志,2007,26(9):1438-1444.
    103.欧阳学军,黄忠良,周国逸,等.鼎湖山南亚热带森林群落演替对土壤化学性质影响的累积效应研究.水土保持学报,2003,17(4):51-54.
    104.彭少麟,黄忠良.生产力与生物多样性之间的相互关系研究概述.生态科学,2000,19(1):1-9.
    105.秦建华,姜志林.培育优质阔叶材混交林与森林可持续经营.世界林业研究,1999,12(4):6-11.
    106.曲国辉,郭继勋.松嫩平原不同演替阶段植物群落和土壤特性的关系.草业学报,2003,12(1):18-22.
    107.茹桃勤,李吉跃,张克勇,等.国外刺槐(Robinia pseudoacacia)研究.西北林学院学报,2005,20(3):102-107.
    108.单长卷,梁宗锁,韩蕊莲,等.黄土高原陕北丘陵沟壑区不同立地条件下刺槐水分生理生态特性研究.应用生态学报,2005,16(7):1205-1212.
    109.孙长安,王炜炜,董磊,等.我国植被恢复对土壤性状影响研究综述.长江科学院院报,2008,25(3):6-8.
    110.孙华.土壤质量对植物光合生理生态功能的影响研究进展.中国生态农业学报,2005,13(1):116-118.
    111.田汉勤,万师强,马克平.全球变化生态学:全球变化与陆地生态系统.植物生态学报,2007,31(2):173-174.
    112.王克勤,王斌瑞,王震洪.金矮生苹果水分利用效率的研究.生态学报,2002,22(5):723-728.
    113.王满莲,冯玉龙.紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应.植物生态学报,2005,29(5):697-705.
    114.王仁卿,郭卫华,韩雪梅.房干村生态文明建设分析.见张凯主编:山东生态 省建设研究.北京:中国科学技术出版社,2004,129-136.
    115.王仁卿,周光裕.山东植被.济南:山东科技出版社,2000,5.
    116.王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展.生态学杂志,2005,24(5):537-541.
    117.吴大千,徐飞,郭卫华,等.中国北方城市常见绿化植物夏季气孔导度影响因素及模型比较.生态学报,2007,27(10):4141-4148.
    118.肖春旺,张新时.模拟降水量变化对毛乌素油蒿幼苗生理生态过程的影响研究.林业科学,2001,37(1):15-22.
    119.肖冬梅,王淼,姬兰柱.水分胁迫对长白山阔叶红松林主要树种生长及生物量分配的影响.生态学杂志,2004,23(5):93-97.
    120.肖强,叶文景,朱珠,等.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法.生态学杂志,2005,24(6):711-714.
    121.许大全.光合作用测定及研究中一些值得注意的问题.植物生理学通讯,2006,42(6):1163-1167.
    122.徐飞,郭卫华,王玉芳,等.济南市校园6个绿化树种光合荧光特征比较初探.山东大学学报(理学版),2007,42(5):86-94.
    123.许振柱,周广胜.陆生植物对全球变化的适应性研究进展.自然科学进展,2003,13(2):113-120.
    124.叶子飘.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用.生态学杂志,2007,26(8):1323-1326.
    125.游秀花.马尾松天然林不同演替阶段土壤理化性质的变化.福建林学院学报2005,25(2):121-124.
    126.岳明.陕北南部侧柏生长与生态因子的关系.武汉植物学研究,1998,16(1):47-53.
    127.曾伟,蒋延玲,李峰,等.蒙古栎(Quercus mongolica)光合参数对水分胁迫的响应机理.生态学报,2008,28(6):2504-2510.
    128.曾小平,赵平,蔡锡安,等.不同土壤水分条件下焕墉木幼苗的生理生态特性.生态学杂志,2004,23(2):26-31.
    129.曾小平,赵平,蔡锡安,等.25种南亚热带植物耐阴性的初步研究.北京林业 大学学报,2006,28(4):88-95.
    130.张彩琴,杨持.内蒙古典型草原几种不同植物的生长动态比较,生态学杂志,2007,26(11):1712-1718.
    131.张大勇.理论生态学研究.北京:高等教育出版社,2000,52-63.
    132.张建国,李吉跃,沈国舫,等.树木耐旱特性及其机理研究,中国林业出版社,2000.
    133.张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展.植物生态学报,2004,28(6):844-852.
    134.张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系.生态学报,1999,19(2):174-178.
    135.张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448.
    136.张守仁,高荣孚,王连军.杂种杨无性系的光系统Ⅱ放氧活性、光合色素及叶绿体超微结构对光胁迫的响应.植物生态学报,2004,28(2):143-149.
    137.张岁歧,山仑.植物水分利用效率及其研究紧张.干旱地区农业研究,2002,20(4):1-5.
    138.张永利,张宪强,王仁卿.鲁中山区植物区系初步研究.山东林业科技,2005,34(1):1-5.
    139.张友胜,张苏峻,李镇魁.植物叶绿素特征及其在森林生态学研究中的应用,安徽农业科学,2008,36(3):1014-1017.
    140.张治安,张美善,蔚荣海.植物生理学实验指导.北京:中国农业科学技术出版社,2004.1.
    141.招礼军,李吉跃,于界芬,等.干旱胁迫对苗木蒸腾耗水日变化的影响.北京林业大学学报,2003,25(3):42-47.
    142.郑盛华,严昌荣.水分胁迫对玉米苗期生理和形态特性的影响.生态学报,2006,26(4):1138-1143.
    143.中国科学院中国植物志编辑委员会.中国植物志(第四十卷).北京:科学出版社,1994,228-229.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.