Flt3L和IL-7联合FTOC体系对胸腺T细胞及胸腺树突状细胞分化发育的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胸腺是T细胞分化、发育、成熟的主要器官。从骨髓迁入的淋巴样祖细胞在与独特的胸腺微环境基质细胞的相互作用下,经过复杂的分化发育过程,最终成为功能性CD4+T细胞及CD8+T细胞。由于在体内很难进行单一细胞群体或某种特殊分子对胸腺发育影响的研究,使胸腺发育的研究一直难以取得突破性进展,体外培养体系—胚胎胸腺器官培养(fetal thymus organ culture, FTOC)的建立和发展,为胸腺细胞发育、成熟及其相关调节机制的探讨提供了有效的研究手段。
     树突状细胞(dendritic cells, DCs)是机体中最主要的和最有效的抗原提呈细胞,对启动T细胞的免疫应答起着至关重要的作用。胸腺作为中枢免疫器官,存在着胸腺树突状细胞(thymic dendritic cells, TDCs)。近年来,不断有TDCs的相关文献报道,TDCs在调控阴性选择和诱导自身免疫耐受方面发挥着重要的作用。FMS样酪氨酸激酶3配体(Fms-like tyrosine kinase 3 ligand, Flt3L)是一种重要的可促进多能干细胞分化的细胞因子。体内和体外实验表明, Flt3L在诱导树突状细胞分化、发育方面发挥着重要的作用。本研究在成功建立FTOC实验体系的基础上,利用该实验体系研究了Flt3L对胸腺T细胞及胸腺树突状细胞的分化发育的影响。
     本论文分为两部分。第一部分主要阐述了FTOC实验体系的建立,并在此基础上研究细胞因子白细胞介素-7(Interleukin-7, IL-7)和Flt3L对胸腺T细胞和胸腺树突状细胞分化发育的影响。首先是FTOC常规实验体系的建立,选取15.5~16.5dpc(day postcoitus)的孕鼠作为实验对象,于实体显微镜下摘取胚胎胸腺,在组织器官培养皿中进行FTOC常规培养。实验分为Flt3L组、IL-7组和对照组,12d后收集各实验组经FTOC培养所获得的胸腺细胞,通过细胞计数检测细胞数目的变化,用流式细胞仪检测细胞表面分子CD4、CD8、CD11c、B220、Ia等的表达,通过光学显微镜观察细胞形态。获得以下实验结果:(1)细胞计数显示,添加外源性IL-7组的胸腺细胞数目明显减少,而Flt3L组和对照组的胸腺细胞数目无明显统计学的差异。(2)流式细胞仪检测显示:IL-7组胸腺CD4-CD8-双阴性细胞及CD8+单阳性细胞比例有所增加,而CD4+CD8+双阳性细胞比例显著下降,CD4+单阳性细胞比例没有明显变化;Flt3L组胸腺T细胞大部分为CD4+CD8+双阳性细胞及CD4+?CD8+单阳性细胞;Flt3L组的胸腺T细胞亚群分布与对照组无明显统计学的差异。(3)形态学观察显示:Flt3L组和IL-7组的胸腺细胞中均可见一些聚集的有突起的具有树突状细胞形态特征的细胞存在,而对照组绝大部分为圆形的胸腺细胞。由此可见IL-7和Flt3L在胸腺T细胞及胸腺树突状细胞的分化发育中发挥重要的调节作用。
     第二部分研究利用常规FTOC实验体系并联合悬滴培养方法,将小鼠骨髓来源的c-kit+造血干/祖细胞植入胸腺,从而探讨Flt3L对小鼠骨髓源造血干/祖细胞向胸腺树突状细胞分化、发育过程的影响。摘取15.5~16.5dpc胎鼠的胸腺,用药液2-脱氧鸟苷(2-deoxyguanosine, 2-dGuo)处理胸腺以去除胸腺中的造血细胞,随后将骨髓来源的c-kit+造血干/祖细胞通过悬滴培养方法植入处理过的胸腺,最后将胸腺置于组织器官培养皿中,将含有和未含有细胞因子Flt3L的培养基分别滴加在胸腺小叶上,进行FTOC培养,实验分为对照组和Flt3L组。12d后收集不同条件下FTOC培养获得的胸腺细胞,通过流式细胞仪对胸腺细胞的表型进行分析;将在不同条件下FTOC培养的获得胸腺细胞分别进行MACS分选,从而获得胸腺树突状细胞两亚群—髓系树突状细胞(B220-CD11c+, conventional dendritic cells, cDC)和浆细胞样树突状细胞(B220+CD11c+, plasmacytoid dendritic cells, pDC),再通过Giemsa染色法对其进行形态学分析,通过RT-PCR方法检测其Toll样受体的表达,通过ELISA方法检测其特异性细胞因子的分泌情况,再将经FTOC培养获得的胸腺cDC和胸腺pDC分别与异源的T细胞进行混合淋巴细胞反应,通过MTT法检测T细胞的增殖。获得以下实验结果:(1)流式细胞仪检测显示:与对照组相比较,Flt3L组树突状细胞和B细胞、NK细胞数量均有不同程度的增加。(2)Giemsa染色显示:经过CpG2216刺激成熟后,胸腺cDC和胸腺pDC均表现出成熟树突状细胞的形态特征。(3)RT-PCR分析显示:CpG2216刺激后,胸腺cDC低表达或不表达TLR7和TLR9,而胸腺pDC高表达TLR7和TLR9。(4)ELISA分析显示:CpG2216刺激后,小鼠的胸腺cDC中IFN-α和IL-12p70的分泌量均低于胸腺pDC。(5)MTT检测表明,无CpG2006刺激时,胸腺cDC和胸腺pDC刺激T细胞增殖的能力均比较弱;但添加CpG2006刺激后,胸腺cDC和胸腺pDC趋向于成熟,刺激T细胞增殖的能力均有所增强。由此可见,来自Flt3L组的胸腺细胞中的部分细胞不仅具有类似树突状细胞的形态和表达树突状细胞表面特异分子,而且也具有激发T细胞的作用。以上结果表明Flt3L能促进胸腺树突状细胞的生成。
     综上所述,本研究成功建立了FTOC的实验体系,研究了Flt3L和IL-7对胸腺T细胞及胸腺树突状细胞分化发育的影响。并且在此基础上,进一步研究了Flt3L对小鼠骨髓源c-kit+造血干/祖细胞向胸腺树突状细胞分化发育过程的影响。通过该实验体系,可以在体外扩增胸腺cDC和胸腺pDC,这将为体外研究胸腺树突状细胞的分化发育及其相关分子机理提供了有效的实验手段。
Thymus is an important organ of T-cell differentiation, development and maturation. Marrow-derived T lymphoid precursor cells can develop into funtional CD4 postive T cells or CD8 positive T cells only through the complicated interactions with thymic stroml cells in the microenvironment in the thymus. There was no breakthrough progress on the researches of development of thymus so far, as there were no good ways to monitor the effection of signal cell population or specific molecules on thymus development. The establishment and development of fetal thymus organ culture technology now offer new and effective means of the further study on the development, maturation and related regulation mechanism of the thymocytes.
     Dendritic cells, the most important and effective member of antigen presenting cells and are essential for the T cells immunoresponse as a kind of accessory immune cells. As the central immune organ, thymus contains plenty of thymic dendritic cells (TDCs), which can enhance the proliferation of thymic T lymphocytes, regulate the negative selection and induce central tolerance through presenting various antigens to play an important role in regulating cellular and humoral immunity. In this study, the effects of Fms-like tyrosine kinase 3 ligand (Flt3L) on the development of thymic T cells and TDCs were investigated basis on the establishment of the FTOC experimental system.
     This study combined two parts. In the first part, we focused on the establishment of FTOC experimental system, and then conducted the analysis of the effect of Interleukin-7 (IL-7) and Flt3L on the development of thymic T cells and thymic dendritic cells. Thymic lobes were removed from 15-day-old or 16-day-old mouse fetueses respectively and were cultured under the fetal thymus organ cultures (FTOC) system in vitro. Being cultured, thymic lobes were treated with IL-7 or Flt3L and the group within which no cytokines was added was adopted as the control, then collected the cultured cell respectively, to detect the expression of CD4, CD8, CD11c, B220, Ia and CD11b by flow cytometry, and to observe the morphology under the ligtmicroscope. The results showed that:(1)The result of cell counting indicated that the total amount of the thymocytes was decreased obviously after been cultured with IL-7, while the total amount of thymocytes in the Flt3L and control group was the same. (2) The result of FACS indicated that in IL-7 group the proportion of CD4+CD8+thymocytes decreased, the proportion of CD4-CD8- and CD4-CD8+ thymocytes increased, and no much difference of the amount of CD4+CD8- thymocytes was found, while in Flt3L group CD4+CD8+ thymocytes and CD4-CD8+/CD4+CD8- thymocytes occupied the main part and its T Lymphocyte Subsets distribution was as same as the control group. (3) A group of cells with the characteristic morphology of the dendritic cells was observed under the lightmicroscope in IL-7 group and Flt3L group. So IL-7 and Flt3L played important role in the differentiation and development of thymic T lymphocytes and dendritic cells in thymus.
     In the second part, bone marrow hematopoietic stem/progenitor cells (HSCs/HPCs) were seeded into 2-deoxyguanosine (2-dGuo)-treated thymus by the way of hanging drop culture, and the effect of Flt3L on the differentiation of thymic dendritic cells were thoroughly investigated by using FTOC.
     The thymic lobes of fetal mice were treated with 2-dGuo, and then the treated thymic lobes were seeded with c-kit+ HSCs/HPCs by hanging drop culture in the Teraski plate, followed by FTOC in the presence or absence of Flt3L. After 12 days of culture, the cells of the thymic lobes were collected for analysis. The expression of CD4, CD8, CD11c, B220, Ia and CD11b were detected by flow cytometry, the thymic conventional dendritic cells (cDC) and plasmacytoid dendritic cells (pDC) were sorted by MACS. The morphology of the isolated cells was observed by Giemsa staining. In addition, the expressions of Toll-like receptors were screened by RT-PCR. Furthermore, the expressions of IFN-αand IL-12 were assayed by ELISA. The isolated cDCs and pDCs were used as the stimulators for allogeneic T cells with or without CpG stimultion, whose proliferation were then detected by MTT method.
     The results show as fllows: (1) The results of FCM indidated that the numbers of B lymphocytes, natural killer cells and dendritic cells were increased in the presence of Flt3L compared with control group. (2) The results of Giemsa indicated that both thymic cDC and pDC had the typic morphology of dendritic cells. (3) The results of RT-PCR showed that thymic cDCs expressed little TLR7 and TLR9, whereas thymic pDCs highly expressed TLR7 and TLR9. (4) The results of ELISA indicated that thymic pDC secreted more amount of IFN-αand IL-12 than thymic cDC did. (5) MTT assay showed that with the stimulation of CpG2006, both thymic pDCs and cDCs had the capacity of stimulating allogeneic T cell proliferation. There results indicate that Flt3L can promote the differentiation and generation of thymic dendritic cells from c-kit+ HSCs/HPCs by using FTOC.
     In summary, the FTOC experimental system was established successfully, on the base of which the effects of IL-7 and Flt3L on the development of thymic T cells and TDCs were extensively investigated. Moreover, the effect of Flt3L on the differentiation of TDCs from murine c-kit+ HSCs/HPCs was studied by using FTOC. Both of the generation of thymic cDC and pDC could be promoted in the presence of Flt3L. All these results may lay a foundation for the clarification of the cellular and molecular mechanisms on the development and differentiation of T cells and TDCs in vitro.
引文
1. Juan CZ. T-cell development made simple[J]. Nature Reviews Immunol, 2004; 4: 67-73.
    2. Steinman RM, Admas JC, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice IV Identification and distrubution in mouse spleen[J]. J Exp Med, 1975; 141: 804-820.
    3. Steinman RM, Admas JC, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice I Morphology, quantitation, tissue distrubution[J]. J Exp Med, 1973; 137: 1142-1162.
    4. Steinman RM, Admas JC, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of miceⅡF unction properties in vitro[J]. J Exp Med, 1974; 139: 380-397.
    5. Reise SC. Dendritic cells as sensors of infection[J]. Immunity, 2001; 14: 495-498.
    6. Ardavin C. Thymic dendrtic cells[J]. Immunol Today, 1997; l8: 350-36l.
    7. Foy TM, Page DM, Waldschmidt TJ, et al. An essential role for gp39, the ligand for CD40, in thymic selection[J]. J Exp Med, l995; 182: 1377-l388.
    8. Bhardwaj N.Interaction of viruses with dendritic cells:a double-edged sword[J]. J Exp Med, l997; 186: 795-799.
    9. Bjorck P, Kincade PW. CD19+ Pro-B cells can give rise to dendritic cells in vitro [J]. J Immunol, 1998; l61: 5795-5799.
    10. Zunig L, Wandel J. The challenge of emergency nursing[J]. Imprint, 1995; 42: 45-47.
    11. Isabel F, Fabienne A, MacDonald HR, et al. In vitro negative selection of viral superantigen-reactive thymocytes by thymic dendritic cells[J]. Blood, 1997; 90: 1943-1951.
    12. Wu L, Li CL, Shortman K. Thymic dendritic cell precursors: relationship to the Tlymphocyte lineage and phenotype of the dendritic cell progeny[J]. J Exp Med, 1996; 184: 903-911.
    13. Zal T, Volkmann A, Stockinger B. Mechanisms of tolerance induction in i major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen[J]. J Exp Med, 1994; 180: 2089-2099.
    14. Owen JJ, Ritter MA. Tissue interaction in the development of thymus lymphocytes[J]. J Exp Med, 1969; 129: 431-442.
    15. Deluca D, Clark DR. Interleukin-7 negatively regulates the development of mature T cells in fetal thymus organ culture[J]. Dev Immunogy, 2002; 26: 365-384.
    16. Varas A, Vicente A, Romo T, et al. Role of IL-2 in rat fetal thymocyte development[J]. Int Immunol, 1997; 9: 1589-1599.
    17. Carmen HL, Alberto V, Rosa S, et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development[J]. Blood, 2002; 99: 546- 554.
    18. Snjezana K, Johannes TW, Angelika S, et al. E-cadherin-mediated interactions of thymic epithelial cells with CD103+ thymocytes lead to enhanced thymocyte cell proliferation[J]. J Cell Sci, 2002; 115: 4505-4515.
    19. G?rgün G, Vander SJ, Cosenza L, et al. Alterde biological activity associaated with c-terminal modifications of IL-7[J]. Cytokine, 2002; 20: 17-22.
    20. Crompton T, Outram SV, Buckland J, et al. Distinct roles of the interleukin-7 receptor alpha chain in fetal and adult thymocyte development revealed by analysis of interleukin-7 receptor alpha-deficient mice[J]. Eur J Immunol, 1998; 28: 1859-1866.
    21. Aspinall R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development[J]. J Immunol, 1997; 158: 3037-3045.
    22. Varas A, Vicente A, Sacedon R, et al. Interleukin-7 influences the development of thymic dendritic cells[J]. Blood, 1998; 92: 93-100.
    23. Marquez C, Trigueros C, Fernandez E, et al. The development of T and non-T cell lineages from CD34+ human thymic precursors can be traced by the differentialexpression of CD44[J]. J Exp Med, 1995; 181: 475-483.
    24. Saunders D, Lucas K, Ismaili J, et al. Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor[J]. J Exp Med, 1996; 184: 2185-2196.
    25. Hunte BE, Hudak S, Campbell D, et al. Flk2/flt3 ligand is a potent cofactor for the growth of primitive B cell progenitors [J]. J Immunol, 1996; 156: 489-496.
    26. Thomas JG, Kenneth B, Della F, et al. Structure-Function Analysis of FLT3 Ligand-FLT3 Receptor Interactions Using a Rapid Functional Screen[J]. J Biol Chem, 1998; 273: 17626-17633.
    27. Moore TA, Zlotnik A. Differential effects of Flk-2/Flt-3 ligand and stem cell factor on murine thymic progenitor cells[J]. J Immunol, 1997; 158: 4187-4192.
    28. Brasel K, Smedt DT, Smith JL, et al. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures[J]. Blood, 2000; 96: 3029-3039.
    1. Janeway CA. Thymic selection:two pathyways to life and two to death[J]. Immunity, 1994; 1: 3-6.
    2. Weissman IL. Developemental switches in the immune system[J]. Cell, 1994; 76: 207-208.
    3. Owen J, Ritter MA. Tissue interaction in the development of thymus lymphocytes [J]. J Exp Med, 1969; 129: 431-442.
    4. Kingston R, Jenkinson EJ, Owen JT. A single stem cell can recolonize an embryonic thymus, producing T-cell populations[J]. Nature, 1985; 317: 811-813.
    5. Watanabe Y, Katsura Y. Development of T cell receptorαβ-bearing T cells in the submersion organ culture of murine fetal thymus at high oxygen concentration[J]. Eur J Immunol, 1993; 23: 200-205.
    6. Anderson G, Owen JJ, Moore NC, et al. Characteristics of an in vitro system ofthymocyte positive selection[J]. J Immunol, 1994; 153: 1915-1920.
    7. Von FJ, Solvason N, Howard M, et al. The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression[J]. Immunity, 1997; 7: 147-154.
    8. Von FJ, Vieira P, Lucian LA, et al. Lymphopenia in interleukin IL-7 gene-deleted mice identities IL-7 as a nonredundant cytokine[J]. J Exp Med, 1995; 181: 1519-1526.
    9. Peschon JJ, Morrissey PJ, Grabstein KH, et al. Early lymphocyte expansion is severely impaired in interleukin-7 receptor-deficient mice[J]. J Exp Med, 1994; 180: 1955-1960.
    10. Suda T, Zlotnik A. IL-7 maintains the T-cell precursor potential of CD3-CD4-CD8- thymocytes[J]. J Imunol, 1991; 146: 3068-3073.
    11. Plum J, Desmedt M, Leclercq G. Exogenous IL-7 promotes the growth of CD3-CD4-CD8-CD44+CD25+/- precursor cells and blocks the differatiation pathway of TCR-alpha-beta cells in fetal thymus organ culture[J]. J Immunol, 1993; 150: 2706-2716.
    12. Moore TA, Zlotnik A. T-cell lineage commitment and cytokine responses of thymic progenitors[J]. Blood, 1995; 86: 1850-1860.
    13. Varas A, Vicente A, Jimenez E, et al. Interleukin-7 treatment promotes the differatiation pathyway of T-cell-receptor-alpha beta cells selectively to the CD8+ cell lineage[J]. Immunology, 1997; 92: 457-464.
    14. Kenneth B, Thibaut DS, Jeffery LS, et al. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures[J]. Blood, 2000; 96: 3029-3039.
    15. Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function oof dendritic cells[J]. Curr Opin Immunol, 1996; 9: 10-16.
    16. Steinman RM, Pack M, Inaba K. Dendritic cells in the T-cell areas of lymphoid organs[J]. Immunol Rev, 1997; 156: 25-37.
    17. Zhou LJ, Tedder TF. CD4+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells[J]. Pro Natl Acad Sci USA, 1996; 93: 2588-2592.
    18. Strunk D, Rapperaberger K, Egger C, et al. Generation of mature dendritic cellsfrom human blood an improved method with special regard to clinical applicability[J]. J Immunol Methods, 1996; 196: 137-151.
    19. Vermec D, Lieschke GJ, Dunn AR, et al. The influence of granulocyte/macrophage colony stimulating factor on dendritic cell levels in mouse lymphoid organs[J]. Eur J Immunol, 1997; 27: 40-44.
    20. Vermec D, Lieschke GJ, Dunn AR, et al. The influence of granulocyte/macrophage colony stimulating factor on dendritic cell levels in mouse lymphoid organs[J]. Eur J Immunol, 1997; 27: 40-44.
    21. Strobl H, Riedl E, Scheinecker C, et al. TGF-b1 promotes in vitro development of dendritic cells from CD341 hematopoietic progenitors[J]. J Immunol, 1996; 157: 1499-1507.
    22. Alberto V, Angeles V, Rosa S, et al. Interleukin-7 Influences the Development of Thymic Dendritic Cells[J]. Blood, 1998; 92: 93-100.
    23. Wu L, Li CL, Shortman K. Thymic dendritic cell precursors: Relationship to the T-lymphocyte lineage and phenotype of the dendritic cell progeny[J]. J Exp Med, 1996; 184: 903-911.
    24. Larregina AT, Morelli AE, Kolkowski E, et al. Pattern of cytokine receptors expressed by human dendritic cells migrated from dermal explants[J]. Immunology, 1997; 91: 303-313.
    25. Karsunky H, Merad M, Cozzio A, et al. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo[J]. J Exp Med, 2003; 198: 305-313.
    26. Maraskovsky E. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified[J]. J Exp Med, 1996; 184: 1953-1962 .
    27. Brasel K. Hematologic effects of flt3 ligand in vivo in mice [J]. Blood, 1996; 88: 2004-2012 .
    28. Whartenby KA. Inhibition of FLT3 signaling targets DCs to ameliorate autoimmune disease[J]. Proc Natl Acad Sci, 2005; 102: 16741-16746 .
    29. Tussiwand R, Onai N, Mazzucchelli L, et al. Inhibition of natural type IIFN-producing and dendritic cell development by a small molecule receptor tyrosine kinase inhibitor with Flt3 affinity[J]. J Immunol, 2005; 175: 3674-3680.
    30. Onai N. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid andconventional dendritic cell progenitors in mouse bone marrow[J]. Nat Immunol, 2007; 8: 1207-1216.
    31. Naik SH. Development of plasmacytoid and conventional dendritic cell subtypesfrom single precursor cells derived in vitro and in vivo[J]. Nat Immunol, 2007; 8: 1217-1226.
    32. Claudia W, Kang L, Guillaume DJ, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues[J]. Nature Immunol, 2008; 9: 1615-1623.
    33. Liu K. Origin of dendritic cells in peripheral lymphoid organs of mice[J]. Nat Immunol, 2007; 8: 578-583.
    1. Janeway CA. Thymic selection:two pathyways to life and two to death[J]. Immunity, 1994; 1: 3-6.
    2. Weissman IL. Developemental switches in the immune system[J]. Cell, 1994; 76: 207-208.
    3. Zhang Y, Mukaida N, Wang J, et al. Induction of dendritic cell differentiation bygranulocyte-macrophage colony-stimulating factor,stem cell factor, and tumor necrosis factor-αin vitro from lineage phenotypes-negative c-kit+ murine hematopietic progenitor cells[J]. Blood, 1997; 90: 4842-4853.
    4. Jacobsen SE, Okkenhaug C, Myklebust J, et al. The flt3 ligand potently and directly stimulates the groeth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors[J]. J Exp Med, 1995; 181: 1357-1363.
    5. Caux C, Dezutter DC, Schmitt D, et al. GM-CSF and TNF-a cooperate in the generation of dendritic langerhans cells[J]. Nature, 1992; 360: 258-261.
    6. Reid CD, Stackpole A, Meager A, et al. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34 ?progenitors in human bone marrow[J]. J Immunol, 1992; 149: 2681-2688.
    7. Santiago SF, Divaris N, Kay C, et al. Mechanisms of tumor necrosis factor-granulocyte-macrophage colony-stimulating factor-induced dendritic cell development[J]. Blood, 1993; 82: 3019-3028.
    8. Szabolcs P, Moore MA, Young JW. Expansion of immuno-stimulatory dendritic cells among the myeloid progeny of human CD34+ bone marrow precursors with c-kit ligand, granulocyte-macrophage colony-stimulating factor, and TNF-α[J]. J Immunol, 1995; 154: 5851-5861.
    9. Ardavin C, Wu L, Li C, et al. Thymic dendritic cells and T cells develop simultaneously within the thymus from a common precursor population[J]. Nature, 1993; 362: 761-763.
    10. Wu L, Li CL, Shortman K. Thymic dendritic cell precursors: Relationship to the T-lymphocyte lineage and phenotype of the dendritic cell progeny[J]. J Exp Med, 1996; 184: 903-911.
    11. Marquez C, Trigueros C, Fernandez E, et al. The development of T and non-T cell lineages from CD34+ human thymic precursors can be traced by the differential expression of CD44[J]. J Exp Med, 1995; 181: 475-483.
    12. Saunders D, Lucas K, Ismaili J, et al. Dendritic cell development in culture fromthymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor[J]. J Exp Med, 1996; 184: 2185-2196.
    13. Aspinall R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development[J]. J Immunol, 1997; 158: 3037-3045.
    14. Owen JT, Ritter MA. Tissue Interaction in The Development of Thymus Lymphocytes[J]. J Exp Med, 1969; 129: 431-442.
    15. Tomoyuki O, Zhe XL, Mitsuru N ,et al. Murine thymic plasmacytoid dendritic cells[J]. Eur J Immunol, 2003; 33: 1012-1019.
    16. Crompton T, Outram SV, Buckland J, et al. Distinct roles of the interleukin-7 receptor alpha chain in fetal and adult thymocyte development revealed by analysis of interleukin-7 receptor alpha- deficient mice[J]. Eur J Immunol, 1998; 28: 1859-1866.
    17. Brasel K, Smedt DT, Smith JL, et al. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures[J]. Blood, 2000; 96: 3029-3039.
    18. Brawand P, Fitzpatrick DR, Greenfield BW, et al. Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs[J]. J Immunol, 2002; 169: 6711-6719.
    1. Cella M, Sallusto F, Lanzavecchia A, et al. Origin, maturation and antigen presenting function of dendritic cells[J]. Curr Opin Immunol, 1997; 9: 10-16.
    2. Steinman RM, Pack M, Inaba K. Dendritic cells in the T-cell areas of lymphoid organs[J]. Immunol Rev, 1997; 156: 25-37.
    3. Ardavin C. Thymic dendritic cells[J]. Immunol Today, 1997; 18: 350-361.
    4. Steinman RM. The dendritic cell system and its role in immunogenicity[J]. Annu Rev Immunol, 1991; 9: 271-296.
    5. Steinman RM. Dendritic cells and immune-based thrapies[J]. Exp Hematol, 1996; 24: 859-862.
    6. Peters JH, Gieseler R, Thiele B, et al. Dendritic cells: from ontogeneic orphans to myelomonocytic descendants[J]. Immunol Today, 1996; 17: 273-278.
    7. Steinman RM, Kaplan G, Witmer MD, et al. Identification of a novel cell type in peripheral lymphoid organs of mice V purification of spleen dendritic cells, new sueface markers, and maitenance in vitro[J]. J Exp Med, 1979; 149: 1-16.
    8. Karral G, Breel M, Janse M, et al. Langerhans’cells, veiled cells, and interdigitat- ing cells in the mouse recognized by a monoclonal antibody[J]. J Exp Med, 1986; 163: 981-997.
    9. Vremec D, Zorbas M, Scollay R, et al. The sueface phenotype of dendritic cells perified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells[J]. J Exp Med, 1992;176: 47-58.
    10. Ardavin C, Wu L, Li CL, et al. Thymic dendritic cells and T cells develop stimul- ataneously in the thymus from a commom precursor population [J]. Nature, 1993; 362: 761-763.
    11. Inaba K, Steinman RM, Witmer PM, et al. The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro[J]. J Exp Med, 1994; 180: 1849-1860.
    12. Hubertus H, Ken S, David V, et al. Differential production of IL-12, IFN-α, and IFN-γby mouse dendritic cell subsets[J]. J Immunol, 2001; 166: 5448-5455.
    13. Tomoyuki O, Zhe XL, Mitsuru N, et al. Murine thymic plasmacytoid dendriticcells[J]. Eur J Immunol, 2003; 33:1012-1019.
    14. Miller JF, Osoba D. Current concepts of the immunological function of the thymus[J]. Physiol Rev, 1967; 47: 437-520.
    15. Janeway CR. Thymic selection: two pathways to life and two todeath [J]. Immunity, 1994; 1: 3-6.
    16. Shortman K, Wu L. Dendritic cells: biology and clinical Applications[J]. Academic Press Ltd, 1998; 9: 15-28.
    17. Sprent J, Webb S. Intrathymic and extrathymic clonal deletion of T cells[J]. Curr Opin Immunol, 1995; 7:196-205.
    18. Duijvestijn AM, Barclay AN. Identification of the bone marrow derived la positive cells in the rat thymus: a morphological and cytochemical study[J]. J Leukocyte Biol ,1984; 36: 561-568.
    19. Bendriss VN, Barthelemy C, Moulian N, et al. Human thymus contains IFN-aproducing CD11c?, myeloid CD11c+, and mature interdigitating dendritic cells[J]. J Clin Invest, 2001; 107: 835-844.
    20. Vremec D, Pooley J, Hochrein H, et al. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen[J]. J Immunol, 2000; 164: 2978-2986.
    21. Vremec D, Zorbas M, Scollay R, et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells[J]. J Exp Med, 1992;176: 47-58.
    22. Wu L, Vremec D, Ardavin C, et al. Mouse thymus dendritic cells: kinetics of development and changes in surface markers during maturation[J]. Eur J Immunol, 1995; 25: 418-425.
    23. Ardavin C, Wu L, Li CL, et al. Thymic dendritic cells and T cells develop simultaneously within the thymus from a common precursor population[J]. Nature, 1993; 362: 761-763.
    24. Saunders D, Lucas K, Ismaili J, et al. Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony-stimulating factor[J]. J Exp Med, 1996; 184: 2185-2196.
    25. Traver D, Akashi K, Manz M, et al. Development of CD8alpha-positive dendriticcells from a common myeloid progenitor [J]. Science, 2000; 290: 2152-2154.
    26. Manz MG, Traver D, Miyamato T, et al. Dendritic cell potentials of early lymphoid and myeloid progentitors[J]. Blood, 2001; 97: 3333-3341.
    27. Wu L, D’Amico A, Hochrein H, et al. Development of thymic and splenic dendritic cell populations from different hematopoietic precursors[J]. Blood,2001; 98: 3376-3382.
    28. D’Amico A, Wu L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hematopoietic precursors expressing Flt3[J]. J Exp Med, 2003; 198: 293-303.
    29. Wu L, Antica M, Johnson GR, et al. Developmental potential of the earliest precursor cells from the adult thymus[J]. J Exp Med, 1991; 174:1617-1627.
    30. Wu L, Li CL, Shortman K. Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny[J]. J Exp Med , 1996; 184: 903-911.
    31. Corcoran L, Ferrero I, Vremec D, et al. The lymphoid past of mouse lasmacytoid cells and thymic dendritic cells[J]. J Immunol, 2003; 170: 4926-4932.
    32. Res PC, Couwenberg F, Vyth-Dreese FA, et al. Expression of pTa mRNA in a committed dendritic cell precursor in the human thymus[J]. Blood, 1999; 94: 2647-2657.
    33. Anderson G, Owen JJ, Moore NC, et al. Thymic epithelial cells provide unique signals for positive selection of CD4+8+ thymocytes in vitro[J]. J Exp Med, 1994; 179: 2027-2031.
    34. Anderson G, Partington KM, Jenkinson EJ. Differential effects of peptide diversity and stromal cell type in positive and negative selection in the thymus[J]. J Immunol, 1998; 161: 6599-6603.
    35. Surh CD, Sprent J. T-cell apoptosis detected in situ during positive and negative selection in the thymus[J]. Nature, 1994; 372: 100-113.
    36. Pircher H, Brduscha K, Steinhoff U, et al. Tolerance induction by clonal deletion of CD4+8+ thymocytes in vitro does not require dedicated antigen-presenting cells[J]. Eur J Immunol, 1993; 23: 669-674.
    37. Webb SR, Sprent J. Tolerogenicity of thymic epithelium[J]. Eur J Immunol, 1990; 20: 2525-2528.
    38. Farr AG, Rudensky AY. Medullary thymic epithelium: a mosaic of epithelial“self”[J]. J Exp Med, 1998; 188: 1-4.
    39. Klein L, Klein T, Ruther U, et al. CD4 T cell tolerance to human c-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium[J]. J Exp Med, 1998; 188: 5-16.
    40. Kleindienst P, Chretien I, Winkler T, et al . Functional comparison of thymic B cells and dendritic cells in vivo[J]. Blood, 2000; 95: 2610-2616.
    41. Pircher H, Muller KP, Kyewski BA, et al. Thymocytes can tolerize thymocytes by clonal deletion in vitro[J]. Int Immunol, 1992; 4: 1065-1069.
    42. Ramsdell F, Fowlkes BJ. Clonal deletion versus clonal anergy:the role of the thymus in inducing self tolerance[J]. Science, 1990; 248: 1342-1348.
    43. Bendalac A. Nondeletional pathways for the development of autoreactive thymocytes [J]. Nat Immunol, 2004; 5: 557-558.
    44. Moseman EA, Liang X, Dawson AJ, et al. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+regulatory T cells[J]. J Immunol, 2004; 173: 4433-4442.
    45. Heer HJ, Hammad H, Soullie T, et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen[J]. J Exp Med, 2004; 200: 89-98.
    46. Martin P, Del Hoyo GM, Anjuere F, et al. Characterization of a new subpopulat- ion of mouse CD8alpha+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential[J]. Blood, 2002; 100: 383-390.
    47. Owen JJ, Ritter MA. Tissue interaction in the development of thymus lympho- cytes[J] . J Exp Med, 1969; 129: 431-442.
    48. Jenkinson EJ, Franchi L, Kingston R, et al. Effect of deoxyguanosine on lymphopoiesis in the developing thymus rudiment in vitro: application in the production of chimeric thymus rudiments [J]. Eur J Immunol, 1982; 12: 583-587.
    49. Watanabe Y, Katsura Y. Develpoment of T cell receptorαβ-bearing T cells in thesubmersion organ culture of murine fetal thymus at high oxygen concentration [J]. Eur J Immunol, 1993; 23: 200-205.
    50. Anderson G, Owen JJ, Moore NC, et al. Characteristics of an in vitro system of thymocyte positive selection[J]. J Immunol, 1994; 153: 1915-1920.
    51. Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells[J]. Curr Opin Immunol, 1997; 9: 10-16.
    52. Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor[J]. J Exp Med, 1992; 176: 1693-1702.
    53. Santiago SF, Divaris N, Kay C, et al. Mechanisms of tumor necrosis factor-granulocyte-macrophage colony-stimulating factor-induced dendritic cell development[J]. Blood, 1993; 82: 3019-3028
    54. Varas A, Vicente A, Sacedo′n R, et al. Interleukin-7 Influences the Development of Thymic Dendritic Cells[J]. Blood, 1998; 92: 93-100.
    55. Saunders D, Lucas K, Ismaili J, et al. Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colonystimulating factor[J]. J Exp Med, 1996; 184: 2185-2196.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.