组成性及层粘连蛋白诱导性粘着斑激酶磷酸化与胰腺癌细胞系对健择内在性耐药相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然过去数十年来胰腺导管腺癌(Pancreatic ductal adenocarcinoma,PDAC)的基础与临床研究取得了丰硕的成果,但是胰腺癌治疗仍是世界性的医学难题。
     胰腺癌对放化疗高度耐药是其预后不佳的主要原因之一。大量临床研究表明即使采用健择(gemcitabine, Gem)与其它化疗药物联用的各种治疗方案也不大可能使得胰腺癌的预后得到明显改善,而且还往往伴随着更大的毒性作用。因此,新的治疗策略的探索就显得非常的必要,靶向性治疗与传统化疗的联合应用可能是有效且可行的解决方案。对于胰腺癌来说,开发出与Gem联合应用的靶向药物是目前研究的重点与热点。
     作为一种非受体酪氨酸激酶,粘着斑激酶(focal adhesion kinases, FAK)与肿瘤发生发展及放化疗耐药密切相关。作为细胞与细胞外基质相互作用的关键性介导因子,在肿瘤细胞中,FAK还可能参与细胞粘附介导的耐药(celladhesion-mediated drug resistance, CAM-DR)肿瘤中FAK功能调节的一种主要模式为磷酸化,FAK磷酸化与CAM-DR及胰腺癌耐药的关系及机制仍不明确。
     在本研究中,我们首先探讨了胰腺癌细胞系中组成性及层粘连蛋白(laminin, LN)诱导的FAK磷酸化水平与Gem耐药程度间的相关性,进而我们构建FAK特异性RNA干扰(RNA interference, RNAi)载体及FAK显性负变异体粘着斑激酶相关非激酶(FAK-related-non-kinase, FRNK)表达载体(前者抑制FAK表达和磷酸化,后者仅抑制FAK磷酸化而不影响表达),筛选稳转胰腺癌细胞系,检测这两类载体对Gem诱发的细胞毒及凋亡作用的影响并进行初步的机制探讨,试图寻找到能与Gem有效联合治疗胰腺癌的靶点。
     本研究主要进行了以下几方面的工作:
     组成性的FAK酪氨酸397(Tyrosine397,Y397)位点磷酸化水平与胰腺
     癌细胞系对Gem的内在性耐药程度有关
     1.检测四种胰腺癌细胞系(BxPC-3、AsPC-1、MiaPaCa-2与Panc-1)中组成性FAK表达与Y397位点磷酸化水平;
     2.检测上述四种胰腺癌细胞系对Gem及5-氟尿嘧啶(5-fluorouracil,5-FU)的耐药程度,计算出半数抑制浓度(50% inhibitory concentration, IC50)值;
     3. Spearman相关分析组成性的FAK蛋白或磷酸化水平与胰腺癌细胞系对Gem或5-FU的内在性耐药程度之间的相关性。
     二、构建FAK干扰及FRNK表达重组质粒载体,建立稳转细胞系
     1.根据invitrogen公司提供的网上设计工具,设计了两对针对FAK的干扰序列,连接进入干扰载体(FAK RNAil,FAK RNAi2)后,测序鉴定。
     2.以pRKvsv-FRNK为模板,经高保真PCR扩增出FRNK cDNA序列,连接进入pcDNA3.1载体后,测序鉴定。
     3.选择组成性pFAK(pY397)水平最高的Panc-1细胞系及组成性pFAK(pY397)水平最低的AsPC-1细胞系,用构建好的载体瞬时转染这两种细胞系,鉴定所构建载体的干扰或表达效果,进而筛选出稳定转染细胞系应用进一步的研究。
     三、重组质粒FAK RNAi2和pcDNA3.1-FRNK对Panc-1细胞中FAK及其下游激酶Akt与ERK1/2表达与磷酸化的影响
     1.重组质粒FAK RNAi2可以有效地降低胰腺癌细胞系Panc-1细胞中FAKmRNA和蛋白的水平,抑制FAK Tyr397位点及Akt磷酸化。
     2.重组质粒pcDNA3.1-FRNK可以有效抑制FAK Tyr397位点及Akt磷酸化,但不影响FAK的表达水平。
     四、FAK RNAi2和pcDNA3.1-FRNK均可以降低Panc-1对Gem的内在性耐药
     1. MTT实验检测细胞毒性,结果显示,相对于未转染组和对照载体转染组,在重组质粒FAK RNAi2和pcDNA3.1-FRNK稳转细胞系中,Gem的细胞毒性均显著增强,差异具有统计学意义。
     2.克隆形成结果显示,相对于未转染组和对照载体转染组, FAK RNAi2和pcDNA3.1-FRNK稳转组细胞Gem处理后的克隆形成能力均显著下降,差异具有统计学意义。
     3. Heochst方法检测细胞凋亡时细胞核形态的改变,结果显示,相对于未转染组和对照载体转染组,FAK RNAi2和pcDNA3.1-FRNK稳转组中Gem诱导的细胞凋亡均显著增多。
     4. Annexin V-FITC/PI法检测细胞的早期与晚期凋亡。结果显示,FAK RNAi2和pcDNA3.1-FRNK稳转组中Gem诱导的凋亡细胞比例均显著增加,与未转染组和对照载体转染组相比具有统计学差异。
     5. Western blot检测细胞内caspase-3的剪切状态。结果显示,相对于未转染组和对照载体转染组,FAK RNAi2和pcDNA3.1-FRNK稳转组细胞Gem处理后的caspase-3剪切片段均显著增加。
     6. Western blot检测细胞内凋亡相关蛋白的表达与磷酸化水平。结果显示,相对于未转染组和对照载体转染组,pcDNA3.1-FRNK稳转细胞系的细胞凋亡抑制蛋白survivin含量下降,pBAD(pS136)水平下降。
     五、LN对Gem诱导的AsPC-1细胞毒性与凋亡效应影响及LN对凋亡相关蛋白表达的影响
     1.MTT、实验检测细胞毒性,结果显示,相对于plastic组,在LN作用的AsPC-1细胞中,Gem的细胞毒性显著降低。
     2.克隆形成结果显示, LN组AsPC-1细胞在接受Gem处理用后的克隆形成能力明显增强,差异具有统计学意义。
     3. Heochst方法检测细胞凋亡时细胞核形态的改变,结果显示,LN组AsPC-1细胞中,Gem诱导的细胞凋亡显著降低。
     4. Annexin V-FITC/PI法检测细胞的早期与晚期凋亡。结果显示,LN作用的AsPC-1细胞中,Gem诱导的凋亡细胞比例显著降低,与plastic组相比具有统计学差异。
     5. Western blot检测细胞内caspase-3的活化情况。结果显示,LN组AsPC-1细胞在接受Gem处理后活化的caspase-3显著增加。
     6. Western blot检测细胞内凋亡相关蛋白的表达与磷酸化水平。结果显示,相对于plastic组, LN组AsPC-1细胞的survivin蛋白表达及pBAD(ps136)蛋白水平升高。
     六、LN对AsPC-1细胞FAK及其下游激酶的表达及磷酸化水平的影响
     1.LN能够时间依赖性上调AsPC-1细胞内FAK Tyr397位点的磷酸化水平,而不影响FAK表达。
     2.LN能够时间依赖性上调AsPC-1细胞内Akt的磷酸化水平,但是其对ERKl/2磷酸化水平及Akt、ERKl/2表达水平均无明显影响。
     七、重组质粒载体对LN诱导的AsPC-1细胞FAK及Akt表达及磷酸化水平的影响
     1.重组质粒FAK RNAi2可以有效减少胰腺癌细胞系AsPC-1中FAK mRNA和蛋白的水平,抑制LN诱导的FAK Tyr397位点及Akt磷酸化。
     2.pcDNA3.1-FRNK可以有效抑制LN诱导的FAK Tyr397位点及Akt磷酸化,但不影响FAK的表达水平。
     八、FAK RNAi2与pcDNA3.1-FRNK重组质粒对LN介导的AsPC-1细胞对Gem内诱导细胞凋亡能力的影响
     1. Heochst方法检测细胞凋亡时细胞核形态的改变,结果显示,LN作用时,相对于未转染组和对照载体转染组,FAK RNAi2与pcDNA3.1-FRNK稳转AsPC-1细胞系中Gem诱导的细胞凋亡均显著增多。
     2. Annexin V-FITC/PI法检测细胞的早期与晚期凋亡。结果显示,LN作用时,FAK RNAi2和pcDNA3.1-FRNK稳转细胞系中Gem诱导的凋亡细胞比例均显著增加,与未转染组和对照载体转染组相比具有统计学差异。而在无LN作用时,与未转染组和对照载体转染组相比,FAK RNAi2和pcDNA3.1-FRNK稳转细胞系中Gem诱导的凋亡细胞比例无显著改变。
     3. Western blot检测细胞内caspase-3的活化状态。结果显示,LN作用时,相对于未转染组和对照载体转染组,FAK RNAi2和pcDNA3.1-FRNK稳转细胞系在接受Gem处理后活化的caspase-3均显著增加。
     4. Western blot检测细胞内凋亡相关蛋白的表达与磷酸化水平。结果显示,LN作用时,相对于未转染组和对照载体转染组,pcDNA3.1-FRNK稳转细胞系的细胞凋亡抑制蛋白survivin含量下降,pBAD(pS136)水平下降。
     总之,本研究认为,组成性及LN诱导的FAK磷酸化参与介导了胰腺癌细胞系对Gem的内在性耐药;其机制与Akt通路活化及Bad Ser-136位点磷酸化与survivin表达水平改变有关。这些结果提示,FAK可能成为胰腺癌治疗的一个重要靶点,能够增加胰腺癌对Gem的敏感性;pFAK(pY397)是胰腺癌内在性耐药的重要介导因子,可能成为预测与Gem联用的FAK靶向治疗疗效的重要指标。
Treatment of pancreatic cancer remains to be an unsolved problem. One of the major reasons for poor prognosis of pancreatic cancer is its highly resistance to currently available agents including gemcitabine which is considered as the most effective first-line drug for the treatment of advanced pancreatic cancer. Gemcitabine alone and gemcitabine-based combination chemotherapy are likely to be accompanied by much higher toxicity and not likely to achieve great success according to clinical trials.
     Target therapy is emerging as a new era for tumor therapy. As for pancreatic cancer, a combination of conventional chemotherapies with target therapy targeted at the molecular changes in pancreatic cancer seems to be the most promising way to go. Links between tyrosine kinases and pancreatic cancer chemoresistance have attracted more and more attention in recent years, and target therapy agaist tyrosine kinases increases the effectiveness of radiation and cytotoxic drugs in the treatment of pancreatic cancer.
     In recent years, non-receptor tyrosine kinase focal adhesion kinase (FAK), a central molecule in extracellular matrix (ECM)/integrin-mediated signaling, has been accepted as a determinant of chemoresistance and ECM proteins including laminin (LN) have also been thought to be associated with the intrinsic chemoresistance to different drugs in a viariety of cancers, which is named as cell adhesion-mediated drug resistance (CAM-DR). Besides the regulation of FAK expression, another well-understood mode of FAK regulation in cancer cells is phosphorylation.
     To determine the roles of FAK and LN in the intrinsic chemoresistance of pancreatic cancer and whether these effects are mediated by constitutive and induced FAK phosphorylation and subsequent downstream signal pathway, the following aspects were studied:
     1. The relationship between constitutive FAK expression or phosphorylation level and the intrinsic resistance to gemcitabine (Gem) or 5-fluorouracil (5-FU) in four pancreatic cancer cell lines(BxPC-3, AsPC-1, MiaPaCa-2 and Panc-1).
     2. Construction of recombinant plasmids, including FAK RNAi plasmid (FAK RNAi1 and FAK RNAi2), and FRNK expression plasmid (pcDNA3.1-FRNK) Selection of stable clones.
     3. Effect of FAK RNAi and FRNK overexpression on the expression and phosphorylation of FAK and its downstream signaling kinases (Akt and ERK1/2) in Panc-1 cells.
     4. Effects of FAK RNAi and FRNK overexpression on Gem-induced cytotoxicity and apoptosis and apoptosis associated proteins in Panc-1 cells
     5. Effect of LN on FAK phosphorylation and its downstream signaling kinases (Akt and ERK1/2) activity in AsPC-1 cells
     6. Effect of FAK RNAi and FRNK overexpression on the expression and phosphorylation of FAK and its downstream signaling kinase Akt in AsPC-1 cells.
     7. Effect of LN on Gem-induced cytotoxicity and apoptosis and apoptosis associated proteins expression in AsPC-1 cells.
     8. Effects of FAK RNAi and FRNK overexpression on LN mediated apoptosis resistance to gemcitabine in AsPC-1 cells.
     The results showed that:
     1. In pancreatic cancer cell lines (BxPC-3, AsPC-1, MiaPaCa-2 and Panc-1), the level of constitutive phosphorylation of FAK at Tyr-397 is correlated with the extent of intrinsic resistance to Gem.
     2. In Panc-1 cells, FAK RNAi inhibits FAK both at mRNA and protein levels, and suppresses constitutive FAK and Akt phosphorylation, while FRNK overexpression suppresses constitutive FAK and Akt phosphorylation without total FAK expression alteration.
     3. In Panc-1 cells, specific inhibition of constitutive FAK phosphorylation by either FAK RNAi or FRNK overexpression renders Panc-1 cells more sensitive to Gem-induced cytotoxicity and apoptosis and causes a decrease in the expression of survivin and the phosphorylation of Bad at serl36.
     4. In AsPC-1 cells. LN reduces Gem-induced cytotoxicity and apoptosis, and increases the expression of survivin and the phosphorylation of Bad at serl36.
     5. In AsPC-1 cells. LN induces FAK and Akt activation in a time-dependent manner.
     6. In AsPC-1 cells, specific inhibition of constitutive FAK phosphorylation by either FAK RNAi or FRNK overexpression leads to the inhibition of FAK and Akt activation stimulated by LN.
     7. In AsPC-1 cells, when plated on plastic, FAK RNAi or FRNK overexpression has few effects on Gem-induced cytotoxicity and apoptosis; However, FAK RNAi or FRNK overexpression enhances Gem-induced cytotoxicity and apoptosis in AsPC-1 cells plated on LN.
     Conclusion:
     In conclusion, our research demonstrates that both constitutive and LN-induced phosphorylation of FAK contributes to increased intrinsic chemoresistance to Gem in pancreatic cancer cell lines. FAK RNAi and FRNK overexpression both can render pancreatic cancer cells more sensitive to Gem-induced cytotoxicity and apoptosis. These effects are partly due to the regulation of Akt and Bad phosphorylation and survivm expression.
引文
1. Li D, Xie K, Wolff R, Abbruzzese JL. Pancreatic cancer. Lancet 2004:363:1049-57.
    2. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008. CA Cancer J Clin 2008;58:71-96.
    3. Guo X, Cui Z. Current diagnosis and treatment of pancreatic cancer in China. Pancreas 2005:31:13-22.
    4. Wang L, Yang GH, Lu XH, Huang ZJ, Li H. Pancreatic cancer mortality in China (1991-2000). World J Gastroenterol 2003:9:1819-23.
    5. von Wichert G, Seufferlein T, Adler G. Palliative treatment of pancreatic cancer. J Dig Dis 2008;9:1-7.
    6. Neoptolemos JP, Stocken DD, Friess H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004:350:1200-10.
    7.O'Reilly EM, Abou-Alfa GK. Cytotoxic therapy for advanced pancreatic adenocarcinoma. Semin Oncol 2007:34:347-53.
    8. Xiong HQ, Carr K, Abbruzzese JL. Cytotoxic chemotherapy for pancreatic cancer:Advances to date and future directions. Drugs 2006:66:1059-72.
    9. Burris H,3rd, Rocha-Lima C. New therapeutic directions for advanced pancreatic cancer:targeting the epidermal growth factor and vascular endothelial growth factor pathways. Oncologist 2008:13:289-98.
    10. Kleespies A, Jauch KW, Bruns CJ. Tyrosine kinase inhibitors and gemcitabine:new treatment options in pancreatic cancer? Drug Resist Updat 2006:9:1-18.
    11. Borja-Cacho D, Jensen EH, Saluja AK, Buchsbaum DJ, Vickers SM. Molecular targeted therapies for pancreatic cancer. Am J Surg 2008:196:430-41.
    12. Danovi SA, Wong HH, Lemoine NR. Targeted therapies for pancreatic cancer. Br Med Bull 2008;87:97-130.
    13. Ko AH. Future strategies for targeted therapies and tailored patient management in pancreatic cancer. Semin Oncol 2007;34:354-64.
    14. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer:a phase Ⅲ trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25:1960-6.
    15. Chatzizacharias NA, Kouraklis GP, Theocharis SE. Clinical significance of FAK expression in human neoplasia. Histol Histopathol 2008;23:629-50.
    16. de Heer P, Koudijs MM, van de Velde CJ, et al. Combined expression of the non-receptor protein tyrosine kinases FAK and Src in primary colorectal cancer is associated with tumor recurrence and metastasis formation. Eur J Surg Oncol 2008;34:1253-61.
    17. McLean GW, Carragher NO, Avizienyte E, Evans J. Brunton VG, Frame MC. The role of focal-adhesion kinase in cancer-a new therapeutic opportunity. Nat Rev Cancer 2005;5:505-15.
    18. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006;18:516-23.
    19. Parsons JT. Focal adhesion kinase:the first ten years. J Cell Sci 2003;116:1409-16.
    20. Sakurama K, Noma K, Takaoka M, et al. Inhibition of focal adhesion kinase as a potential therapeutic strategy for imatinib-resistant gastrointestinal stromal tumor. Mol Cancer Ther 2009:8:127-34.
    21. Tsutsumi K, Kasaoka T, Park HM, Nishiyama H, Nakajima M, Honda T. Tumor growth inhibition by synthetic and expressed siRNA targeting focal adhesion kinase. Int J Oncol 2008;33:215-24.
    22. Halder J, Kamat AA, Landen CN, Jr., et al. Focal adhesion kinase
    targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin Cancer Res 2006:12:4916-24.
    23. Smith CS, Golubovskaya VM, Peck E, et al. Effect of focal adhesion kinase (FAK) downregulation with FAK antisense oligonucleotides and 5-fluorouracil on the viability of melanoma cell lines. Melanoma Res 2005:15:357-62.
    24. van Nimwegen MJ, Huigsloot M, Camier A, Tijdens IB, van de Water B. Focal adhesion kinase and protein kinase B cooperate to suppress doxorubicin-induced apoptosis of breast tumor cells. Mol Pharmacol 2006:70:1330-9.
    25. van Nimwegen MJ, van de Water B. Focal adhesion kinase:a potential target in cancer therapy. Biochem Pharmacol 2007:73:597-609.
    26. Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE. RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity. Biochem Biophys Res Commun 2003:311:786-92.
    27. Furuyama K, Doi R, Mori T, et al. Clinical significance of focal adhesion kinase in resectable pancreatic cancer. World J Surg 2006:30:219-26.
    28. Schlaepfer DD, Mitra SK, Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 2004:1692:77-102.
    29. Li S, Hua ZC. FAK expression regulation and therapeutic potential. Adv Cancer Res 2008:101:45-61.
    30. Richardson A, Parsons T. A mechanism for regulation of the adhesion-associated proteintyrosine kinase pp125FAK. Nature 1996:380:538-40.
    31. Walker HA, Whitelock JM, Garl PJ, Nemenoff RA, Stenmark KR, Weiser-Evans MC. Perlecan up-regulation of FRNK suppresses smooth muscle cell proliferation via inhibition of FAK signaling. Mol Biol Cell 2003:14:1941-52.
    32. Cordes N. Integrin-mediated cell-matrix interactions for prosurvival and antiapoptotic signaling after genotoxic injury. Cancer Lett 2006:242:11-9.
    33. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR):role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999:93:1658-67.
    34. Hodkinson PS, Elliott T, Wong WS, et al. ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through betal integrin-dependent activation of PI3-kinase. Cell Death Differ 2006:13:1776-88.
    35. Miyamoto H, Murakami T, Tsuchida K, Sugino H, Miyake H, Tashiro S. Tumor-stroma interaction of human pancreatic cancer:acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas 2004:28:38-44.
    36. Lohr M, Trautmann B, Gottler M, et al. Expression and function of receptors for extracellular matrix proteins in human ductal adenocarcinomas of the pancreas. Pancreas 1996:12:248-59.
    37. Sawai H, Funahashi H, Matsuo Y, et al. Expression and prognostic roles of integrins and interleukin-1 receptor type I in patients with ductal adenocarcinoma of the pancreas. Dig Dis Sci 2003:48:1241-50.
    38. Vogelmann R, Kreuser ED, Adler G, Lutz MP. Integrin alpha6betal role in metastatic behavior of human pancreatic carcinoma cells. Int J Cancer 1999:80:791-5.
    39. Adereth Y, Dammai V, Kose N, Li R, Hsu T. RNA-dependent integrin alpha3 protein localization regulated by the Muscleblind-like protein MLP1. Nat Cell Biol 2005:7:1240-7.
    40. Ricci MS, Zong WX. Chemotherapeutic approaches for targeting cell death pathways. Oncologist 2006;11:342-57.
    41. Schniewind B, Christgen M, Kurdow R, et al. Resistance of pancreatic cancer to gemcitabine treatment is dependent on mitochondria-mediated apoptosis. Int J Cancer 2004;109:182-8.
    42. Ischenko I, Camaj P, Seeliger H, et al. Inhibition of Src tyrosine kinase reverts chemoresistance toward 5-fluorouracil in human pancreatic carcinoma cells:an involvement of epidermal growth factor receptor signaling. Oncogene 2008;27:7212-22.
    43. Kim YR, Yudina A, Figueiredo J, et al. Detection of early antiangiogenic effects in human colon adenocarcinoma xenografts:in vivo changes of tumor blood volume in response to experimental VEGFR tyrosine kinase inhibitor. Cancer research 2005;65:9253-60.
    44. Xiong X, Fu L, Wang L, et al. Antitumor activity of a novel EGFR tyrosine kinase inhibitor against human lung carcinoma in vitro and in vivo. Invest New Drugs 2009;27:1-11.
    45. Gong ZB, Liu JM, Li YM. Inhibitory effect of EGFR antisense oligodeoxynucleotide on human hepatoma cell line. Hepatobiliary Pancreat Dis Int 2005:4:433-6.
    46. Xiong HQ, Rosenberg A, LoBuglio A, et al. Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer:a multicenter phase Ⅱ Trial. J Clin Oncol 2004:22:2610-6.
    47. Wang F, Shu K, Lei T, Xue D. The expression of integrinbetal and FAK in pituitary adenomas and their correlation with invasiveness. J Huazhong Univ Sci Technolog Med Sci 2008;28:572-5.
    48. Papantoniou V, Tsiouris S, Koutsikos J, Zerva C. Imaging focal adhesion kinase activation in breast cancer-promoting cell proliferation and carcinogenesis, but not migration, invasion, or metastatic predilection. Hum Pathol 2006;37:1241-2; author repy 2.
    49. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase:in command and control of cell motility. Nat Rev Mol Cell Biol 2005;6:56-68.
    50. Harsha HC, Jimeno A, Molina H, et al. Activated epidermal growth factor receptor as a novel target in pancreatic cancer therapy. J Proteome Res 2008:7:4651-8.
    51. Endoh H, Ishibashi Y, Yamaki E, et al. Immunohistochemical analysis of phosphorylated epidermal growth factor receptor might provide a surrogate marker of EGFR mutation. Lung Cancer 2009;63:241-6.
    52. Baumann M, Krause M. Targeting the epidermal growth factor receptor in radiotherapy:radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 2004;72:257-66.
    53. Maurel J, Martin-Richard M, Conill C, et al. Phase Ⅰ trial of gefitinib with concurrent radiotherapy and fixed 2-h gemcitabine infusion, in locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 2006:66:1391-8.
    54. Vollmann A, Vornlocher HP, Stempfl T, Brockhoff G, Apfel R, Bogdahn U. Effective silencing of EGFR with RNAi demonstrates non-EGFR dependent proliferation of glioma cells. Int J Oncol 2006;28:1531-42.
    55. Gilmore AP. Anoikis. Cell Death Differ 2005;12 Suppl 2:1473-7.
    56. Armstrong T, Packham G, Murphy LB, et al. Type Ⅰ collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res 2004;10:7427-37.
    57. Shain KH, Dalton WS. Cell adhesion is a key determinant in de novo multidrug resistance (MDR):new targets for the prevention of acquired MDR. Mol Cancer Ther 2001:1:69-78.
    58. Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS. Adhesion to fibronectin via betal integrins regulates p27kipl levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 2000;19:4319-27.
    59. Wang X, Wang C, Qin YW, Yan SK, Gao YR. The association of up-regulation of X-linked inhibitor of apoptosis protein with cell adhesion-mediated drug resistance in U937 cells. Hematol Oncol 2008;26:21-6.
    60. Hazlehurst LA, Argilagos RF, Dalton WS. Betal integrin mediated adhesion increases Bim protein degradation and contributes to drug resistance in leukaemia cells. Br J Haematol 2007;136:269-75.
    61. Li ZW, Dalton WS. Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev 2006;20:333-42.
    62. Vincent T, Mechti N. Extracellular matrix in bone marrow can mediate drug resistance in myeloma. Leuk Lymphoma 2005;46:803-11.
    63. Hodkinson PS, Mackinnon AC, Sethi T. Extracellular matrix regulation of drug resistance in small-cell lung cancer. Int J Radiat Biol 2007:1-9.
    64. Kouniavsky G, Khaikin M, Zvibel I, et al. Stromal extracellular matrix reduces chemotherapy-induced apoptosis in colon cancer cell lines. Clin Exp Metastasis 2002:19:55-60.
    65. Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene 2001;20:4995-5004.
    66. Uhm JH, Dooley NP, Kyritsis AP, Rao JS, Gladson CL. Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin Cancer Res 1999:5:1587-94.
    67. Weinel RJ, Rosendahl A, Pinschmidt E, Kisker O, Simon B, Santoso S. The alpha 6-integrin receptor in pancreatic carcinoma. Gastroenterology 1995;108:523-32.
    68. Bouchard V, Harnois C, Demers MJ, et al. B1 integrin/Fak/Src signaling in intestinal epithelial crypt cell survival:integration of complex regulatory mechanisms. Apoptosis 2008;13:531-42.
    69. Fong YC, Liu SC, Huang CY, et al. Osteopontin increases lung cancer cells migration via activation of the alphavbeta3 integrin/FAK/Akt and NF-kappaB-dependent pathway. Lung Cancer 2008.
    70. Bouchard V, Demers MJ, Thibodeau S, et al. Fak/Src signaling in human intestinal epithelial cell survival and anoikis:differentiation state-specific uncoupling with the PI3-K/Akt-1 and MEK/Erk pathways. J Cell Physiol 2007;212:717-28.
    71. Blanco-Aparicio C, Pequeno B, Moneo V, et al. Inhibition of phosphatidylinositol-3-kinase synergizes with gemcitabine in low-passage tumor cell lines correlating with Bax translocation to the mitochondria. Anticancer Drugs 2005;16:977-87.
    72. Ng SSW, Tsao MS, Chow S, Hedley DW. Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res 2000:60:5451-5.
    73. Tsurutani J, West KA, Sayyah J, Gills JJ, Dennis PA. Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer Res 2005;65:8423-32.
    74. Shi X, Liu S, Kleeff J, Friess H, Buchler MW. Acquired resistance of pancreatic cancer cells towards 5-Fluorouracil and gemcitabine is associated with altered expression of apoptosis-regulating genes. Oncology 2002;62:354-62.
    75. Xu ZW, Friess H, Buchler MW, Solioz M. Overexpression of-Bax sensitizes human pancreatic cancer cells to apoptosis induced by chemotherapeutic agents. Cancer Chemother Pharmacol 2002;49:504-10.
    76. Liu WS, Yan HJ, Qin RY, et al. siRNA directed against survivin enhances pancreatic cancer cell gemcitabine chemosensitivity. Dig Dis Sci 2009:54:89-96.
    77. Hayakawa J, Ohmichi M, Kurachi H, et al. Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res 2000:60:5988-94.
    78. Mabuchi S, Ohmichi M, Kimura A, et al. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J Biol Chem 2002;277:33490-500.
    79. Plastaras JP, Cengel KA. Combination therapy with gemcitabine and 5-Fluorouracil:unblocking the pathways to survivin? Cancer Biol Ther 2006:5:1566-8.
    80. Hideshima T, Catley L, Raje N, et al. Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol 2007:138:783-91.
    81. Oh SH, Jin Q, Kim ES, Khuri FR, Lee HY. Insulin-like growth factor-Ⅰ receptor signaling pathway induces resistance to the apoptotic activities of SCH66336 (lonafarnib) through Akt/mammalian target of rapamycin-mediated increases in survivin expression. Clin Cancer Res 2008:14:1581-9.
    82. Zhu N, Gu L, Li F, Zhou M. Inhibition of the Akt/survivin pathway synergizes the antileukemia effect of nutlin-3 in acute lymphoblastic leukemia cells. Mol Cancer Ther 2008:7:1101-9.
    83. Stupack DG, Cheresh DA. Get a ligand, get a life:integrins, signaling and cell survival. J Cell Sci 2002:115:3729-38.
    1. Hanks SK, Calalb MB, Harper MC, Patel SK. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci U S A 1992;89(18):8487-91.
    2. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A 1992:89(11):5192-6.
    3. Parsons JT. Focal adhesion kinase:the first ten years. J Cell Sci 2003;116(Pt 8):1409-16.
    4. Hehlgans S, Haase M, Cordes N. Signalling via integrins:implications for cell survival and anticancer strategies. Biochim Biophys Acta 2007:1775(1):163-80.
    5. Schlaepfer DD, Mitra SK, Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 2004:1692(2-3):77-102.
    6. McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC. The role of focal-adhesion kinase in cancer-a new therapeutic opportunity. Nat Rev Cancer 2005;5(7):505-15.
    7. Schaller MD, Otey CA, Hildebrand JD, Parsons JT. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol 1995:130(5):1181-7.
    8. Taylor JM, Mack CP, Nolan K, Regan CP, Owens GK, Parsons JT. Selective expression of an endogenous inhibitor of FAK regulates proliferation and migration of vascular smooth muscle cells. Mol Cell Biol 2001;21 (5):1565-72.
    9. Zhai J, Lin H, Nie Z, et al. Direct interaction of focal adhesion kinase with p190RhoGEF. J Biol Chem 2003;278(27):24865-73.
    10. Ma A, Richardson A, Schaefer EM, Parsons JT. Serine phosphorylation of focal adhesion kinase in interphase and mitosis:a possible role in modulating binding to p130(Cas). Mol Biol Cell 2001;12(1):1-12.
    11. Jacamo R, Jiang X, Lunn JA, Rozengurt E. FAK phosphorylation at Ser-843 inhibits Tyr-397 phosphorylation, cell spreading and migration. J Cell Physiol 2007:210(2):436-44.
    12. Schlaepfer DD, Hunter T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 1996;16(10):5623-33.
    13. Toutant M, Costa A, Studler JM, Kadare G, Carnaud M, Girault JA. Alternative splicing controls the mechanisms of FAK autophosphorylation. Mol Cell Biol 2002;22(22):7731-43.
    14. Shi Q, Boettiger D. A novel mode for integrin-mediated signaling: tethering is required for phosphorylation of FAK Y397. Mol Biol Cell 2003:14(10):4306-15.
    15. Benlimame N, He Q, Jie S, et al. FAK signaling is critical for ErbB-2/ErbB-3 receptor cooperation for oncogenic transformation and invasion. J Cell Biol 2005;171 (3):505-16.
    16. Akagi T, Murata K, Shishido T, Hanafusa H. v-Crk activates the phosphoinositide 3-kinase/AKT pathway by utilizing focal adhesion kinase and-H-Ras. Mol Cell Biol 2002;22(20):7015-23.
    17. Brunton VG, Avizienyte E, Fincham VJ, et al. Identification of Src-specific phosphorylation site on focal adhesion kinase:dissection of the role of Src SH2 and catalytic functions and their consequences for tumor cell behavior. Cancer Res 2005:65(4):1335-42.
    18. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase:in command and control of cell motility. Nat Rev Mol Cell Biol 2005;6(1):56-68.
    19. Weiner TM, Liu ET, Craven RJ, Cance WG. Expression of focal adhesion kinase gene and invasive cancer. Lancet 1993;342 (8878):1024-5.
    20. Sood AK, Coffin JE, Schneider GB, et al. Biological significance of focal adhesion kinase in ovarian cancer:role in migration and invasion. Am J Pathol 2004;165(4):1087-95.
    21. Lark AL, Livasy CA, Calvo B, et al. Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses. Clin Cancer Res 2003; 9(1):215-22.
    22. Itoh S, Maeda T, Shimada M, et al. Role of expression of focal adhesion kinase in progression of hepatocellular carcinoma. Clin Cancer Res 2004;10(8):2812-7.
    23. Recher C, Ysebaert L, Beyne-Rauzy O, et al. Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Res 2004:64(9):3191-7.
    24. Furuyama K, Doi R, Mori T, et al. Clinical significance of focal adhesion kinase in resectable pancreatic cancer. World J Surg 2006:30(2):219-26.
    25. Rodrigo JP, Dominguez F, Suarez V, Canel M, Secades P, Chiara MD. Focal adhesion kinase and E-cadherin as markers for nodal metastasis in laryngeal cancer. Arch Otolaryngol Head Neck Surg 2007;133(2):145-50.
    26. Owens LV, Xu L, Craven RJ, et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors;. Cancer Res 1995:55(13):2752-5.
    27. Ayaki M, Komatsu K, Mukai M, et al. Reduced expression of focal adhesion kinase in liver metastases compared with matched primary human colorectal adenocarcinomas. Clin Cancer Res 2001;7(10):3106-12.
    28. Gabriel B, zur Hausen A, Stickeler E, et al. Weak expression of focal adhesion kinase (pp125FAK) in patients with cervical cancer is associated with poor disease outcome. Clin Cancer Res 2006;12(8):2476-83.
    29. Kahana 0, Micksche M, Witz IP, Yron I. The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene 2002:21(25):3969-77.
    30. Kallergi G, Mavroudis D, Georgoulias V, Stournaras C. Phosphorylation of FAK, PI-3K, and impaired actin organization in CK-positive micrometastatic breast cancer cells. Mol Med 2007;13(1-2):79-88.
    31. Tremblay L, Hauck W, Aprikian AG, Begin LR, Chapdelaine A, Chevalier S. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int J Cancer 1996;68(2):164-71.
    32. Papantoniou V, Tsiouris S, Koutsikos J, Zerva C. Imaging focal adhesion kinase activation in breast cancer-promoting cell proliferation and carcinogenesis, but not migration, invasion, or metastatic predilection. Hum Pathol 2006;37(9):1241-2; author repy 2.
    33. Oktay MH, Oktay K, Hamele-Bena D, Buyuk A, Koss LG. Focal adhesion kinase as a marker of malignant phenotype in breast and cervical carcinomas. Hum Pathol 2003;34 (3):240-5.
    34. Rovin JD, Frierson HF, Jr., Ledinh W, Parsons JT, Adams RB. Expression of focal adhesion kinase in normal and pathologic human prostate tissues. Prostate 2002;53(2):124-32.
    35. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006;18(5):516-23.
    36. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery 2004;135(5):555-62.
    37. Sonoda Y, Matsumoto Y, Funakoshi M, Yamamoto D, Hanks SK, Kasahara T. Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60. J Biol Chem 2000;275(21):16309-15.
    38. van Nimwegen MJ, Huigsloot M, Camier A, Tijdens IB, van de Water B. Focal adhesion kinase and protein kinase B cooperate to suppress doxorubicin-induced apoptosis of breast tumor cells. Mol Pharmacol 2006:70(4):1330-9.
    39. Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE. RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity. Biochem Biophys Res Commun 2003:311(3):786-92.
    40. Halder J, Landen CN, Jr., Lutgendorf SK, et al. Focal adhesion kinase silencing augments docetaxel-mediated apoptosis in ovarian cancer cells. Clin Cancer Res 2005:11(24 Pt 1):8829-36.
    41. Smith CS, Golubovskaya VM, Peck E, et al. Effect of focal adhesion kinase (FAK) downregulation with FAK antisense oligonucleotides and 5-fluorouracil on the viability of melanoma cell lines. Melanoma Res 2005:15(5):357-62.
    42. Hodkinson PS, Mackinnon AC, Sethi T. Extracellular matrix regulation of drug resistance in small-cell lung cancer. Int J Radiat Biol 2007:1-9.
    43. Golubovskaya VM, Finch R, Cance WG. Direct interaction of the N-terminal domain of focal adhesion kinase with the N-terminal transactivation domain of p53. J Biol Chem 2005:280(26):25008-21.
    44. White DE, Kurpios NA, Zuo D, et al. Targeted disruption of betal-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 2004:6(2):159-70.
    45. McLean GW, Komiyama NH, Serrels B, et al. Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes Dev 2004; 18(24):2998-3003.
    46. Reiske HR, Zhao J, Han DC, Cooper LA, Guan JL. Analysis of FAK-associated signaling pathways in the regulation of cell cycle progression. FEBS Lett 2000;486(3):275-80.
    47. Aguirre Ghiso JA. Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 2002;21(16):2513-24.
    48. Hecker TP, Grammer JR, Gillespie GY, Stewart J, Jr., Gladson CL. Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples. Cancer Res 2002;62(9):2699-707.
    49. Hecker TP, Ding Q, Rege TA, Hanks SK, Gladson CL. Overexpression of FAK promotes Ras activity through the formation of a FAK/p120RasGAP complex in malignant astrocytoma cells. Oncogene 2004;23(22):3962-71.
    50. Ding Q, Grammer JR, Nelson MA, Guan JL, Stewart JE, Jr., Gladson CL. p27Kipl and cyclin D1 are necessary for focal adhesion kinase regulation of cell cycle progression in glioblastoma cells propagated in vitro and in vivo in the scid mouse brain. J Biol Chem 2005:280(8):6802-15.
    51. Sawhney RS, Cookson MM, Omar Y, Hauser J, Brattain MG. Integrin alpha2-mediated ERK and calpain activation play a critical role in cell adhesion and motility via focal adhesion kinase signaling:identification of a novel signaling pathway.J Biol Chem 2006;281(13):8497-510.
    52. Wu X, Suetsugu S, Cooper LA, Takenawa T, Guan JL. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J Biol Chem 2004:279(10):9565-76.
    53. Friedl P. Prespecification and plasticity:shifting mechanisms of cell migration. Curr Opin Cell Biol 2004;16(1):14-23.
    54. Avizienyte E, Wyke AW, Jones RJ, et al. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat Cell Biol 2002;4(8):632-8.
    55. Hsia DA, Mitra SK, Hauck CR, et al. Differential regulation of cell motility and invasion by FAK. J Cell Biol 2003;160(5):753-67.
    56. Mitra SK, Lim ST, Chi A, Schlaepfer DD. Intrinsic focal adhesion kinase activity controls orthotopic breast carcinoma metastasis via the regulation of urokinase plasminogen activator expression in a syngeneic tumor model. Oncogene 2006;25(32):4429-40.
    57. Hu B, Jarzynka MJ, Guo P, Imanishi Y, Schlaepf er DD, Cheng SY. Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbetal integrin and focal adhesion kinase signaling pathway. Cancer Res 2006;66(2):775-83.
    58. Wu X, Gan B, Yoo Y, Guan JL. FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev Cell 2005;9(2):185-96.
    59. Mitra SK, Mikolon D, Molina JE, et al. Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene 2006;25(44):5969-84.
    60. Aronsohn MS, Brown HM, Hauptman G, Kornberg LJ. Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in squamous cell carcinoma of the larynx. Laryngoscope 2003;113(11):1944-8.
    61. Ilic D, Kovacic B, Johkura K, et al. FAK promotes organization of fibronectin matrix and fibrillar adhesions. J Cell Sci 2004;117(Pt 2):177-87.
    62. Haskell H, Natarajan M, Hecker TP, et al. Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells. Clin Cancer Res 2003;9(6):2157-65.
    63. McLean GW, Brown K, Arbuckle MI, et al. Decreased focal adhesion kinase suppresses papilloma formation during experimental mouse skin carcinogenesis. Cancer Res 2001;61(23):8385-9.
    1. Sawyers C:Targeted cancer therapy, Nature 2004,432:294-297
    2. Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T:Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy, Cancer Chemother Pharmacol 2002,50:343-352
    3. Li ZW, Dalton WS:Tumor microenvironment and drug resistance in hematologic malignancies, Blood Rev 2006,20:333-342
    4. Shain KH, Dalton WS:Cell adhesion is a key determinant in de novo multidrug resistance (MDR):new targets for the prevention of acquired MDR, Mol Cancer Ther 2001,1:69-78
    5. Dalton WS:The tumor microenvironment as a determinant of drug response and resistance, Drug Resist Updat 1999,2:285-288
    6. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, Akiyama T, Kuroda H, Kawano Y, Kobune M, Kato J, Hirayama Y, Sakamaki S, Kohda K, Miyake K, Niitsu Y:Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia, Nat Med 2003,9:1158-1165
    7. Westhoff MA, Zhou S, Bachem MG, Debatin KM, Fulda S:Identification of a novel switch in the dominant forms of cell adhesion-mediated drug resistance in glioblastoma cells, Oncogene 2008,
    8. Hazlehurst LA, Landowski TH, Dalton WS:Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death, Oncogene 2003,22:7396-7402
    9. Gilmore AP:Anoikis, Cell Death Differ 2005,12 Suppl 2:1473-1477 10. Han SW, Roman J:Fibronectin induces cell proliferation and inhibits apoptosis in human bronchial epithelial cells:pro-oncogenic effects mediated by PI3-kinase and NF-kappa B, Oncogene 2006,25:4341-4349
    11. Morin PJ:Drug resistance and the microenvironment:nature and nurture, Drug Resist Updat 2003,6:169-172
    12. Hodkinson PS, Elliott T, Wong WS, Rintoul RC, Mackinnon AC, Haslett C, Sethi T:ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through betal integrin-dependent activation of PI3-kinase, Cell Death Differ 2006, 13:1776-1788
    13. Hodkinson PS, Mackinnon AC, Sethi T:Extracellular matrix regulation of drug resistance in small-cell lung cancer, Int J Radiat Biol 2007,1-9
    14. Aoudjit F, Vuori K:Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells, Oncogene 2001,20:4995-5004
    15. Kouniavsky G, Khaikin M, Zvibel I, Zippel D, Brill S, Halpern Z, Papa M:Stromal extracellular matrix reduces chemotherapy-induced apoptosis in colon cancer cell lines, Clin Exp Metastasis 2002,19:55-60
    16. Sherman-Baust CA, Weeraratna AT, Rangel LB, Pizer ES, Cho KR, Schwartz DR, Shock T, Morin PJ:Remodeling of the extracellular matrix through overexpression of collagen Ⅵ contributes to cisplatin resistance in ovarian cancer cells, Cancer Cell 2003,3:377-386
    17. Uhm JH, Dooley NP, Kyritsis AP, Rao JS, Gladson CL:Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death, Clin Cancer Res 1999,5:1587-1594
    18. Vincent T, Mechti N:Extracellular matrix in bone marrow can mediate drug resistance in myeloma, Leuk Lymphoma 2005,46:803-811
    19. Hazlehurst LA, Argilagos RF, Dalton WS:Beta1 integrin mediated adhesion increases Bim protein degradation and contributes to drug resistance in leukaemia cells, Br J Haematol 2007,136:269-275
    20. Miyamoto H, Murakami T, Tsuchida K, Sugino H, Miyake H, Tashiro S: Tumor-stroma interaction of human pancreatic cancer:acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins, Pancreas 2004,28:38-44
    21. Armstrong T, Packham G, Murphy LB, Bateman AC, Conti JA, Fine DR, Johnson CD, Benyon RC, Iredale JP:Type Ⅰ collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma, Clin Cancer Res 2004, 10:7427-7437
    22. Cordes N:Integrin-mediated cell-matrix interactions for prosurvival and antiapoptotic signaling after genotoxic injury, Cancer Lett 2006, 242:11-19
    23. Cordes N, Meineke V:Cell adhesion-mediated radioresistance (CAM-RR). Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro, Strahlenther Onkol 2003,179:337-344
    24. Matsunaga T, Fukai F, Miura S, Nakane Y, Owaki T, Kodama H, Tanaka M, Nagaya T, Takimoto R, Takayama T, Niitsu Y:Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia, Leukemia 2008,22:353-360
    25. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS:Cell adhesion mediated drug resistance (CAM-DR):role of integrins and resistance to apoptosis in human myeloma cell lines, Blood 1999,93:1658-1667
    26. Landowski TH, Olashaw NE, Agrawal D, Dalton WS:Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (Re1B/p50) in myeloma cells, Oncogene 2003,22:2417-2421
    27. Shain KH, Landowski TH, Dalton WS:Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in hematopoietic cancer cell lines, J Immunol 2002, 168:2544-2553
    28. Cordes N, van Beuningen D:Cell adhesion to the extracellular matrix protein fibronectin modulates radiation-dependent G2 phase arrest involving integrin-linked kinase (ILK) and glycogen synthase kinase-3beta (GSK-3beta) in vitro, Br J Cancer 2003,88:1470-1479
    29. Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS:Adhesion to fibronectin via betal integrins regulates p27kipl levels and contributes to cell adhesion mediated drug resistance (CAM-DR), Oncogene 2000,19:4319-4327
    30. Hazlehurst LA, Valkov N, Wisner L, Storey JA, Boulware D, Sullivan DM, Dalton WS:Reduction in drug-induced-DNA double-strand breaks associated with betal integrin-mediated adhesion correlates with drug resistance in U937 cells, Blood 2001,98:1897-1903
    31. Hehlgans S, Haase M, Cordes N:Signalling via integrins:implications for cell survival and anticancer strategies, Biochim Biophys Acta 2007, 1775:163-180
    32. Rintoul RC, Sethi T:The role of extracellular matrix in small-cell lung cancer, Lancet Oncol 2001,2:437-442
    33. Lohr M, Trautmann B, Gottler M, Peters S, Zauner I, Maier A, Kloppel G, Liebe S, Kreuser ED:Expression and function of receptors for extracellular matrix proteins in human ductal adenocarcinomas of the pancreas, Pancreas 1996,12:248-259
    34. Mudry RE, Fortney JE, York T, Hall BM, Gibson LF:Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy, Blood 2000,96:1926-1932
    35. Halder J, Kamat AA, Landen CN, Jr., Han LY, Lutgendorf SK, Lin YG, Merritt WM, Jennings NB, Chavez-Reyes A, Coleman RL, Gershenson DM, Schmandt R, Cole SW, Lopez-Berestein G, Sood AK:Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy, Clin Cancer Res 2006, 12:4916-4924
    36. Tapia MA, Gonzalez-Navarrete I, Dalmases A, Bosch M, Rodriguez-Fanjul V, Rolfe M, Ross JS, Mezquita J, Mezquita C, Bachs 0, Gascon P, Rojo F, Perona R, Rovira A, Albanell J:Inhibition of the canonical IKK/NF kappa B pathway sensitizes human cancer cells to doxorubicin, Cell Cycle 2007, 6:2284-2292
    37. Blanco-Aparicio C, Pequeno B, Moneo V, Romero L, Leal JF, Velasco J, Fominaya J, Carnero A:Inhibition of phosphatidylinositol-3-kinase synergizes with gemcitabine in low-passage tumor cell lines correlating with Bax translocation to the mitochondria, Anticancer Drugs 2005, 16:977-987
    38. Lee BH, Ruoslahti E:alpha5betal integrin stimulates Bcl-2 expression and cell survival through Akt, focal adhesion kinase, and Ca2+/calmodulin-dependent protein kinase IV, J Cell Biochem 2005, 95:1214-1223
    39. Fong YC, Liu SC, Huang CY, Li TM, Hsu SF, Kao ST, Tsai FJ, Chen WC, Chen CY, Tang CH:Osteopontin increases lung cancer cells migration via activation of the alphavbeta3 integrin/FAK/Akt and NF-kappaB-dependent pathway, Lung Cancer 2008,
    40. Bouchard V, Demers MJ, Thibodeau S, Laquerre V, Fujita N, Tsuruo T, Beaulieu JF, Gauthier R, Vezina A, Villeneuve L, Vachon PH:Fak/Src signaling in human intestinal epithelial cell survival and anoikis: differentiation state-specific uncoupling with the PI3-K/Akt-1 and MEK/Erk pathways, J Cell Physiol 2007,212:717-728
    41. Fridman R, Giaccone G, Kanemoto T, Martin GR, Gazdar AF, Mulshine JL: Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines (another research group), Proc Natl Acad Sci U S A 1990, 87:6698-6702
    42. Rintoul RC, Sethi T:Extracellular matrix regulation of drug resistance in small-cell lung cancer, Clin Sci (Lond) 2002,102:417-424
    43. Andjilani M, Droz JP, Benahmed M, Tabone E:Down-regulation of FAK and IAPs by laminin during cisplatin-induced apoptosis in testicular germ cell tumors, Int J Oncol 2006,28:535-542
    44. Andjilani M, Droz JP, Benahmed M, Tabone E:Alpha6 integrin subunit mediates laminin enhancement of cisplatin-induced apoptosis in testicular tumor germ cells, Int J Cancer 2005,117:68-81
    45. Ahmed AA, Mills AD, Ibrahim AE, Temple J, Blenkiron C, Vias M, Massie CE, Iyer NG, McGeoch A, Crawford R, Nicke B, Downward J, Swanton C, Bell SD, Earl HM, Laskey RA, Caldas C, Brenton JD:The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel, Cancer Cell 2007,12:514-527
    46. Tsurutani J, West KA, Sayyah J, Gills JJ, Dennis PA:Inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin-mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy, Cancer Res 2005,65:8423-8432
    47. Luo JL, Kamata H, Karin M:IKK/NF-kappaB signaling:balancing life and death--a new approach to cancer therapy, J Clin Invest 2005, 115:2625-2632
    48. Nakanishi C, Toi M:Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs, Nat Rev Cancer 2005,5:297-309
    49. Karin M:Nuclear factor-kappaB in cancer development and progression, Nature 2006,441:431-436
    50. Xia H, Nho RS, Kahm J, Kleidon J, Henke CA:Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway, J Biol Chem 2004,279:33024-33034
    51. Urbinati C, Bugatti A, Giacca M, Schlaepfer D, Presta M, Rusnati M: alpha(v)beta3-integrin-dependent activation of focal adhesion kinase mediates NF-kappaB activation and motogenic activity by HIV-1 Tat in endothelial cells, J Cell Sci 2005,118:3949-3958
    52. Kobune M, Chiba H, Kato J, Kato K, Nakamura K, Kawano Y, Takada K, Takimoto R, Takayama T, Hamada H, Niitsu Y:Wnt3/RhoA/ROCK signaling pathway is involved in adhesion-mediated drug resistance of multiple myeloma in an autocrine mechanism, Mol Cancer Ther 2007,6:1774-1784
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.