大功率光学系统减振的多参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车载光学系统对于振动相当敏感,为了保证车载光学系统的工作精度,需要对光学系统进行减振设计。本文通过ANSYS有限元分析软件,对于双层的减振系统进行多参数耦合的优化设计,并将着重探讨板状结构的约束阻尼层铺设的各种问题,最后将确定该系统的约束阻尼铺设的方案。
     本文首先采用ANSYS的优化工具箱,对于基于该大功率光学系统的双层减振模型,进行了多参数耦合的优化设计,得到了比较好的优化参数,并且与实际模型的结果进行了对照。由于该光学系统对于60-80Hz频段的振动很敏感,而实际结构的一阶弯曲振动频率正好落在此频段内,在减震器其它设计参数不变的情况下,本文探讨约束阻尼铺设的方案,提高该频段的模态阻尼,进一步提高系统抑制振动的能力。
     此后,本文就板状结构的约束阻尼层铺设问题做了一定的探讨。首先用实体单元模拟阻尼材料,用壳单元模拟基层及约束层,建立了约束阻尼层的有限元模型,然后,将该模型的结果与文献的结果进行对比,验证模型的正确性。最后通过模态实验的频率及模态损耗因子进一步验证本文模型正确性。
     本文在此模型的基础上,对约束阻尼的铺设进行了拓扑优化和参数优化,并探讨了将拓扑优化与参数优化结合起来的综合优化方法,为工程上简单板状结构的约束阻尼层铺设提供了一个简单的设计准则。在拓扑优化方面,本文着重探讨了两种方法,一种方法是基于MSE分布的方法,另外一种方法是基于CA算法的方法。第二种方法是以Chia等人的工作为基础,在阻尼增长的区域及方式上对CA算法进行了修改,使得程序在添加效率以及程序的适应性有了一定的改善,并且把模态参与因子考虑到了约束阻尼的铺设中,使得约束阻尼层的铺设更具有适用价值。基于此算法建立了CAM程序,并对板试件前4阶模态阻尼进行优化设计,其正确性得到模态实验验证。
     本文在最后将把CAM程序应用工程实际中,针对该光学系统的几何空间布局,提出了约束阻尼铺设的方案,有限元计算结果表明在阻尼质量增加不大的情况下,约束阻尼能进一步抑制系统工作频段内的振动,验证了本文方法的可行性。
Vehicle optical system is sensitive to vibration, so vibration suppression is very important to the working accuracy. This thesis presents a method of multi-parameter optimization for this system by using ANSYS 10.0. Moreover, the research on how to apply CLD treatments is focused in this thesis, and an efficient CLD treatment is generated about this system finally.
     In this thesis, after modeling two layers vibration-suppress of this high-power optical system, multi-parameter optimization is applied to this model by using ANSYS optimization tool box. Good design parameters are acquired compared to the practical model. Because the system is sensitive to the vibration from 60 to 80Hz, and the first bend mode is located in this frequency range, modal damping in this frequency range should be designed for this system in order to improve the performance of vibration suppression. Moreover, a study on optimal placement of CLD treatment is presented in this thesis. First, the finite element model of CLD is established by using the solid element to simulate viscoelastic core while using the shell element to simulate the base and constrained layers. To validate the modeling approaches, the FE results are compared to the ones that are presented in the literature; results are also presented of a comparison between FE and experimentally obtained modal properties.
     On the base of the FE model, topology optimization Design is carried out by using CAM, and integrated optimization of parameter design and topology design is also presented in this thesis, and the result provide a simple design guideline for engineering application. In topology optimization, two methods have been studied. The first method is based on the distribution of MSE, and the second method is based on the CA algorithm which is first introduced in CLD topology optimization by Chia. In order to improve the efficiency and adaptability, some modifications are made on the area and pattern of damping growth. Furthermore, modal participation factor is concerned in this method which made this method more valuable for engineering application. The CAM program based on the method is used to optimize the first 4th order modal loss factor which is also validated by modal experiment.
     In the end of this thesis, CAM program provide a scheme of applying CLD treatment for this optical system. Finite element results show that adding small mass damping can further improved the vibration suppression in the working band, which verify the validity of the method in this thesis.
引文
[1]蒲军,梅德庆,陈子辰.超精密隔振平台主动振动控制系统设计.机械设计. 2003, 20(7):31~33.
    [2]严济宽.隔振降噪技术的新进展.噪声与振动控制. 1991, 11(5~6).
    [3] Niu Junchuan, Song Kongji, Lim C W. On active vibration isolation of floating raft system. Journal of Sound and Vibration. 2005, 285(1-2):391~406.
    [4] GOYDER H G D, WHITE R G. Vibration power flow from machines into build-up structures. Part I: Introduction and approximate of analyses of beam and plate-like foundations. Journal of sound and vibration. 1980,68(1):59~75.
    [5] GOYDER H G D, WHITE R G. Vibration power flow from machines into build-up structures. Part II: Wave propagation and power flow in beam-stiffened plates. Journal of sound and vibration. 1980, 68(1):59~75.
    [6] GOYDER H G D, WHITE R G. Vibration power flow from machines into build-up structures. Part III: Power flow through isolation systems. Journal of sound and vibration. 1980, 68(1):59~75.
    [7] Pinnington R J, White R G. Power flow through machine isolators to resonant and non-resonant beams. Journal of Sound and Vibration. 1981, 75(2):179–197.
    [8]张智勇,沈荣瀛.不同阻尼情况下减振浮筏振动响应计算研究.船舶工程,1998,6:43~47.
    [9]刘永明,沈荣瀛,严济宽.减振浮筏系统多向冲击谱研究.上海交通大学学报[J]. 1997, 31(9): 13~17.
    [10]瞿祖清,华宏星,傅志方.浮筏隔振装置的超单元建模方法.中国造船,1998,143(4):81~86.
    [11]祝华.浮筏装置的理论建模与分析方法.船舶科学技术,1994,2:14~19.
    [12]王国治,李良碧.船舶浮筏系统动力学特性的影响因素研究.中国造船,2002,43(1):43~50.
    [13]李天匀,张小铭,徐慕冰.梁—梁浮筏隔振的功率流分析.振动与冲击,1997,16(1):30~34.
    [14]李新德,宋孔杰,孙玉国.复杂激励下平置板式浮筏功率流传递特性研究.应用力学学报,2002,23(2):32~37.
    [15]邵汉林,姚心国,朱显明.浮筏隔振装置隔振效果评定.噪声与振动控制,2002,4:21~23.
    [16]盛美萍,王敏庆,孙进才.浮筏隔振系统统计分析.西北工业大学学报,1999,17(4):633~636.
    [17]温建明,冯奇,高成雷.浮筏系统中的碰撞动力学离散模型(2):随机模型.力学季刊,2007,28(3):390~394.
    [18]蒋金夏,刘永明.立体浮筏隔振系统的模态机械阻抗综合法研究.噪声与振动控制,2006,4:20~24.
    [19]黄其柏,宋朝,曹剑,徐志云.基于复刚度法的浮筏隔振系统有限元分析.华中科技大学学报,2007,35(1):99~101.
    [20]关珊珊,陈美霞,陈乐佳,余永丰,骆东平.基于有限元动力计算的浮筏隔振系统功率流研究.舰船科学技术,2007,29(5):132~135.
    [21]赵成,陈大跃.潜艇浮筏隔振系统的半主动模糊滑模控制.机械工程学报,2008,44(2).
    [22]牛军川,宋孔杰.船载柴油机浮筏隔振系统的主动控制策略研究.内燃机学报,2004,22(3):252~256.
    [23]严济宽,沈荣潮,尚国清.浮筏装置结构动力参数选定.噪声与振动控制,1995,1.
    [24]杜奎,伍先俊,程广利,朱石坚.浮筏隔振系统隔振器最佳布置方案研究.海军工程大学学报,2005,17(2):92~99.
    [25]张华良,傅志方,瞿祖清.浮筏隔振系统各主要参数对系统隔振性能的影响.振动与冲击[J]. 2000, 19(2):5~9.
    [26]杨义顺,陈端石,邹春平.双层隔振系统结构参数改变对结构振动的影响.船舶工程[J]. 2004,6:44~48.
    [27]苏荣华,彭晨宇,丁文文.设计参数对双层隔振系统动态性能影响的研究.应用基础与工程科学学报[J]. 2008,16(6):863~869.
    [28]邹春平,陈端石.浮筏系统结构参数的功率流灵敏度分析.船舶工程,2002,5:50~54.
    [29]戴德沛.阻尼技术的工程应用.北京:清华大学出版社,1991. 121~151.
    [30] Ross D, Ungar E E, Kerwin E M. Damping of plate flexual vibrations by means of visicoelastic laminate. Structural Damping. 1959, 49~88.
    [31] Ditaranto R. Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. Journal of Applied Mechanics. 1965, 32: 881~886.
    [32] Mead D J, Markus S. The Forced Vibration of a Three-Layer, Damped Sandwich Beam with Arbitrary Boundary Conditions. Journal of Sound and Vibration.1969, 10(2): 163~175.
    [33] Kerwin, E M, Ungar E E. Loss factors of viscoelastic systems in terms of energy concepts. Journal of the Acoustical Society of America. 1962, 34: 954–957.
    [34] Johnson C D, Kienholz A D, Rogers C L. Finite element prediction of damping in beams with constrained viscoelastic layers. Shock and Vibration Bulletin. 1981, 51(1): 78~81.
    [35] Medaglia J M, Stahle C V. Application of SMRD Damping to the IUE Scientific Instrument Structure. General Electric Space Division Document. 1975.
    [36] Ueda Hiroki, Okada Tooru, Tanka Toshimitsu, et,al. Vibration Analysis for Damped Structures by Modified Modal Strain Energy Method. Danpingu Shinpojiumu Koen Ronbunshu. 2002, 225~230.
    [37] Zheng H, Cai C, Pau GSH, Liu GR. Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatment. Journal of Sound and Vibration. 2005, 279(3-5): 739~756.
    [38] Zheng H, Cai C, Tan X M. Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams. Computers and Structures. 2004, 82(29-30): 2493~2507.
    [39] Zheng H, Tana X M, Cai C. Damping analysis of beams covered with multiple PCLD patches. International Journal of Mechanical Sciences. 2006, 48(12): 1371–1383.
    [40] Zheng H, Paua GSH, Wangga Y Y. A comparative study on optimization of constrained layer damping treatment for structural vibration control. Thin-Walled Structures. 2006, 44: 886–896.
    [41] Zheng H, Cai C. Minimization of sound radiation from baffled beams through optimization of partial constrained layer damping treatment. Applied Acoustics. 2003, 65(5): 501~520.
    [42] Cheng Y C, Huang S C. An optimal placement of CLD treatment for vibration suppression of plates. International Journal of Mechanical Sciences. 2002, 44(8): 1801~1821.
    [43] Cheng Y C, Huang S C. Parametric effects of plates with CLD treatment on vibration suppression. Chinese Society of Mechanical Engineers.1999, 20(2): 159~167.
    [44] Chia C M, Rongong J A, Worden K. Evolution of constrained layer damping using Cellular Automation algorithm. Journal of Mechanical Engineer Science. 2007, 222(4): 585~597.
    [45] Chia C M, Rongong J A, Worden K. Strategies for using cellular automata to locate constrained layer damping on vibrating structures. Journal of Sound and Vibration. 2008, 319: 119~139.
    [46]任志刚,卢哲安,楼梦麟.复合夹层结构频率及损耗因子的计算. 2004, 24(2): 101~106.
    [47] Carfagni M, Pierini, M. Determining the Loss Factor by the Power Input Method (PIM), Part 2: Experimental Investigation with Impact Hammer Exitation. Journal of Vibration and Acoustics. 1999, 121: 422~428.
    [48] Carfagni M, Pierini, M. Determining the Loss Factor by the Power Input Method (PIM), Part 2: Experimental Investigation with Impact Hammer Exitation. Journal of Vibration and Acoustics. 1999, 121: 417~421.
    [49] Liu W B, Ewing M S. Experimental and Analytical Estimation of Loss Factors by the Power Input Method. AIAA Journal. 2007, 45(2): 477~484.
    [50] Abdulhadi F. Transverse Vibrations of Laminated Plates with Viscoelastic Layer Damping. Shock and vibration bulletin. 1969, 40(5): 309~326.
    [51]李学识,潘中良.基于蚁群算法的细胞自动机优化及其在电路测试中的应用.华南师范学报(自然科学版) 2007, 1: 53~58.
    [52] Wolfram s. Crytograghy with cellular automata. Advance in Cratology. 1985: 429~432.
    [53] Montheillet F, Gilorm ini P. Predicting the mechanical behavior of two-phase materials with cellular automata [J]. Int J Plasticity, 1996, 12 (4): 561~574.
    [54] Oda J, Liu Jiang L in. Optimum stiffener design of plate using cellular automata [A]. Transactions of the Japan Society of Mechanical Engineers [C]. 1998, 64 (626): 2435~2440. (in Japanese).
    [55] Bernsdorf J, Durst F, Schafer M. Comparison of cellular automata and finite volume techniques simulation of incomp ressible flows in complex geometries [J]. Int J Meth Fluids. 1999, 29: 251~264.
    [56]王鹏,杨明等.细胞自动机及Matlab仿真.中北大学学报(自然科学版).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.