蜈蚣草的某些营养特性及富砷机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蜈蚣草是世界上首次报道的一种砷超富集植物,同时也是钙质土壤的指示植物。它具有明显的耐高砷特征及需钙特性。通过砂培盆栽试验,本论文从砷和钙的作用对蜈蚣草生长和累积砷的影响及砷、钙与其他必需金属元素的关系等方面研究了蜈蚣草的营养特性,从砷、钙、磷的亚细胞定位探讨了蜈蚣草对砷的解毒机理及钙的作用机制。所得结果如下:
     砂培条件下,蜈蚣草具有明显的耐高砷特征。当介质中砷高达0.2mmol/L时,蜈蚣草的生长正常,与对照比较,其生物量没有显著差异。然而,介质中高浓度的钙表现出明显的抑制蜈蚣草生长作用,特别在5.0mmol/L Ca处理下,生物量极显著减少,而低钙(0.03mmol/L Ca)水平处理有利于蜈蚣草的生长,生物量较大。
     砷和钙处理浓度对蜈蚣草植株砷浓度均有显著影响。随着添加砷浓度的提高,蜈蚣草各部位的砷浓度都显著增加,其羽叶/根的富集系数也逐渐提高。提高溶液中钙浓度,根部砷浓度不受影响,但叶柄中的砷浓度增加,羽叶中砷浓度有明显下降,即钙明显抑制蜈蚣草羽叶中砷的吸收。添加砷促进蜈蚣草根部及羽叶对钙的吸收。与低钙处理比较,提高钙水平,蜈蚣草体内钙浓度明显增加,但除叶柄外,中钙和高钙处理间其他部位的钙浓度差别不明显。添加砷抑制蜈蚣草根部磷的吸收,但对地上部磷浓度无明显影响。钙对蜈蚣草根部及叶柄中磷浓度有显著影响。
     砷、钙对蜈蚣草羽叶累积砷有显著的交互效应。提高溶液中砷浓度,蜈蚣草对砷的累积量明显增加,而钙处理却极显著抑制蜈蚣草对砷的累积,即低水平钙处理有利于蜈蚣草累积砷。
     除Fe和Zn外,添加砷对蜈蚣草羽叶中各金属元素浓度均无显著影响,表明高砷条件下,蜈蚣草中金属元素营养状况正常,可维持良好的生理活动。提高介质中钙浓度对蜈蚣草吸收Pe、Cu和Zn无显著影响,但对K、Mg和Mn的吸收转运均有显著拮抗作用。从根部到羽叶中,各金属元素之间的相互作用逐渐加强,尤其是植株中的Ca作用更明显。在根部中Ca与各种金属元素都无显著的相关性;叶柄中Ca与Fe浓度呈极显著正相关;在羽叶内,Ca浓度的增加明显降低K、Mg、Mn和Zn浓度。
     在无砷处理下,蜈蚣草植株体内的砷主要分布在细胞壁,且其根部细胞壁中钙的比重较高,有抑制砷进入蜈蚣草细胞内的趋势。随着砷处理浓度的提高,砷主要位于胞质中,从根部到地上部,砷在胞质中的分布比例逐渐升高,钙在胞质中分布比例与砷相似,呈现从地下部到地上部逐渐增加的规律。
Pteris vittata L., an indicator plant for calcareous soils, is an As-hyperaccumulator newly
    discovered by Chen et al. in China. This finding may bring a hope to phytoremediate As-contaminated soils. The effects of As and Ca on the growth of P. vittata L. and As uptake by P. vittata L. were studied under sand culture condition. The interaction of As and Ca on concentration and distribution of metals including K, Mg, Mn, Fe, Zn and Cu in it were also investigated. In addition, the As, P, Ca subcellular distribution in it were elucidated. The results are as follows:
    P. vittata L. has a strong tolerant capability to high As concentration in the medium. There was no significant difference in biomass between adding As and CK treatments. But the dry matter production decreased markedly with increasing Ca concentration. Especially P. vittata L. grew much badly under the condition treated with 5.0 mmol/L Ca.
    The effects of As and Ca concentration in culture solution on As content in P. vittata L. were much significant. As uptake by each part of P. vittata L increased obviously with elevating As level and the ratio of pinna As concetration to root As concentration increased gradually. As concentration in root was not affected markedly by Ca levels, while that of petiole increased and that of pinna decreased significantly. Adding As was benefit to take up Ca by P. vittata L. in the roots and pinnae. Ca concentration in the plant strongly increased followed by enhancing Ca level in solution compared to 0.03 mmol/L Ca treatment. But the obvious difference about Ca content in P. vittata L. between middle and high Ca level treatments was not found except that in the petiole. Applying As reduced P concentration in the root, but that in the frond was not affected significantly. The Ca levels had a great influence on P concentration in the root and petiole.
    It is shown that the concentrations of K, Mn, Fe and Cu in the pinnae were not influenced by enhancing the As in addition to Fe and Zn. When treated with high As level, Pteris vittata L. could maintain its normal nutrition metabolism. The results showed that the accumulations of Fe, Zn and Cu were not significantly affected by Ca levels, but the concentration and translocation of K, Mg and Mn were depressed by Ca. The interaction of metals was
    
    
    enhanced gradually from the roots to leaves, and the effect of the Ca level on other metal elements was very obvious. There was no significant relationship between the Ca concentration and other metals concentrations in the roots. But the positive correlation between Ca and Fe concentrations hi petioles was very significantly. The K, Mg, Mn and Zn concentrations in pinnae decreased as the Ca concentration increased.
    The results showed that As distributed mostly in cell walls in the case of 0 mmol/L As, moreover the percentage of Ca content in cell walls was higher, which might inhibit As influxing cell. As concentration mostly existed in cytoplasmic supernatant when applying As in the medium. And the distribution percentage of As in cytoplasmic supernatant increased gradually from root to frond. The Ca percentage in cytoplasmic supernatant followed the same trend as As.
引文
[1] 李玉浸.集约化农业的环境问题与对策.中国农业科技出版社,北京,2001
    [2] 陈怀满.土壤中化学物质的行为与环境质量.科学出版社,北京,2002
    [3] 张华,郑淑梅,郭绒霞,孙乃学编译.砷.国外医学地理分册,1998,19(3):118-119
    [4] 谢正苗,廖敏,黄昌勇.砷污染对植物和人体健康的影响及防治政策.广东微量元素科学,1997,4(7):17-21.
    [5] 小山雄生.土壤和作物中的砷(杨国治译),土壤农化.1976,(6):41-51
    [6] O'Nell P. Arsenic, In Alloway B J (ed.) Heavy Metals in Soils, Blackie, Glasgow and London, 1990, 83-99
    [7] 翁焕新,张霄宇,邹乐君,张兴茂,刘广深.中国自然土壤中砷的自然存在状况及其成因分析.浙江大学学报(工学版),2000,1:54-58
    [8] 陈怀满.土壤—植物系统中的重金属污染.科学出版社.北京,1996
    [9] Sherppard S C. Water, Air and Soil pollution, 1992, 64(3-4): 539
    [10] Mitchell P, Barr D. The nature and significance of public exposure to arsenic: a review of it relevance to south west England. Environ Geochem Health, 1995, 17:57-82
    [11] 王云,魏复盛.土壤环境元素化学.中国环境科学出版社.1995,p42-57
    [12] Ng J C, Kratzanan S M, Qi L X, Crawley H, Chiswell B, Moon M R. Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra. Analyst, 1998, 123:889-892
    [13] 王连方,颜世铭.我国地方性砷中毒研究进展.世界元素医学,1999,6(3):19-24
    [14] Gidhagen L, Kahelin H, Schmidt-Thome P, Johansson C. Anthropogenic-and natural levels of arsenic in PM10 in Central and Northern Chile. Atmospheric Environment, 2002, 36:3803-3817.
    [15] Saha J C, Dikshi A K, Bandyopadhyay M, Saha K C. A review of arsenic poisoning and its effect on human health. Critical Reviews in Environmental Science and Technology, 1999, 29: 281-302.
    [16] 顾兴平,顾永作.环境砷污染与健康.四川环境,1999,18(3):11-22
    [17] Das D, Chatterjee C, Mandal B K, Samanta G, Chakraborti D. Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world, Part 2: Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue of the affected people. Analyst, 1995,120:917-924
    [18] 廖自基.微量元素的环境化学及生物效应.中国环境科学出版社,1992
    
    
    [19] 陈同斌.土壤中砷的吸附特点及其与水稻生长发育的关系.中国农业科学院博士学位论文,1990,北京.
    [20] Hingston J A, Collins C D, Murply R J, Lester J N. Leaching of chromated copper arsenate wood preservations: a review. Environ. Pollut., 2001, 111: 53-66.
    [21] Smith E, Naidu R, Alston A M. Chemistry of arsenic in soils: Effect of phorsphorous, sodium and calcium on arsenic sorption. J. Environ. Qual. 2002, 31:557-563
    [22] US EPA. Recent development for in-situ treatment of metal contaminated soils. Office of Solid Waste and Emergency Response, EPA-542-R-97-004, 8
    [23] 张国祥,杨居荣,华璐.土壤环境中的砷及其生态效应.土壤,1996,2:64-68
    [24] 徐红宁,许嘉琳.我国砷异常区的成因及分布.土壤,1996,28(2):80-84
    [25] 王振刚,何海燕,严于伦等.石门雄黄矿地区居民砷暴露研究.卫生研究,1999,28(1):12-14
    [26] 刘更另,高素端.红壤中砷对农作物的影响.土壤通报,1987,18(5):231-233
    [27] 许嘉琳,杨居荣,荆红卫.砷污染土壤的作物效应及其影响因素.土壤.1996,2:85-89
    [28] 陈同斌,刘更另.砷对水稻生长发育的影响及其原因.中国农业科学,1993,26(6):50-58
    [29] Carbonell A A, Aarabi M A and Delaune R D. The influence of arsenic chemical form and concentration on Spartina patens and Spartina alternifiora growth and tissue arsenic concentration. Plant and Soil. 1998, 198:33-43
    [30] Carbonell A A, Aarabi M A, Delaune R D,Gambrell R P, Patrick Jr W H. Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. The science of the Total Environment. 1998; 217:189-199
    [31] 王友保,刘登义,张莉.铜砷及其复合污染对黄豆影响的初步研究.应用生态学报,2001,12(1):117-120
    [32] Marcus-wyner L, Rains D W. Uptake, accumulation and translocation of compounds by cotton. J. Environ. Qual. 1982, 11(4): 715-719
    [33] Xie Z M, Huang C Y. Control of arsenic toxicity in rice plants gown on an arsenic-polluted paddy soil. Commu. Soil Sci. Plant Anal, 1998, 29(15&16): 2471-2477.
    [34] Machlis L. 1941 Accumulation of arsenic in the shoots of sudan grass and bush beans. Plant Physiology, 16:521-544
    [35] Carbonell A A, Burlo F, Mtaix J. Arsenic uptake, distribution and accumulation in tomato plants: effect of arsenite on plant growth and yield. Journal of Plant Nutrition. 1995, 18(6): 1237-1250
    [36] Baker R S, Barrentine W L, Bowman D H, Hawthorne W L, Pettiet J V. Crop response
    
    and arsenic uptake following soil incorporation of MSMA. 1976, 24(3): 322-326
    [37] Carbonell A A, Burló F, Burgos-Hernández A. The influence of arsenic concentration on arsenic accumulation in tomato and bean plants. Scientia Horticulturae, 1997, 71: 167-176
    [38] Richard P. Arsenic speciation in environmental samples of contaminated soil. The Science of the Total Environmental. 1998, 224:133-141
    [39] 谢正苗,黄昌勇.铅锌砷复合污染对水稻生长的影响.生态学报,1994,14(2),2:15
    [40] Carbonell A A, Burló F, López E, Martinez-Sanchez F. Arsenic toxicity and accumulation in radish as affected by arsenic chemical speciation. J Envion. Sci. Health, 1999, 34(4): 661-679
    [41] Carbonell A A, Burló F, Valero D, Lopez E, Martinez-Romero D, Martinez-Sanchez F. Arsenic toxicity and accumulation in turnips as effected by arsenic chemical speciation. J. Agric. Food Chem, 1999, 47:2288-2294
    [42] Burló F, Guijarro I, Carbonell A A, Valero D, Martinez-Sanchez F. Arsenic species: Effects on and accumulation by tomato plants. J. Agric. Food Chem. 1999, 47:1247-1253
    [43] 岑慧贤,吴群河,陈志澄.各形态和浓度砷对生菜生长的影响试验.农业环境与发展,1999,16(4):20-22
    [44] Ullrich-Eberius C I, Sanz A, Novacky. Evaluation of arsenate-and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba Gl. J. Exp.Bot., 1989, 40:119-128
    [45] Meet-jain, Grarde R. Effect of As on chlorophyll and protein contents and enzymic activities in greening maize leaves. Water, Air and Soil Pollution, 1997, 93: 109-115
    [46] Paivoke A E A, Simola L K. Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content and phytase activity. 2001, 49:111-121
    [47] Simola L K. The effect of lead, cadmium, arsenate and fluoride ions on the growth and the fine structure of Sphagnum nemoreum in aseptic culture. Can. J. Bot. 1977, 55:426-435
    [48] Simola L K. Growth and ultrastructure of Sphagnum fimbriatum cultured with arsenate, fluoride, mercury and copper ions. J. Hattori Bot. Lab. 1977, 43:365-377
    [49] Nieboer B E, Padovan D, Lavoie P, Richardson D H S. Anion accumulation by lichens Ⅱ. Competition and toxicity studies involving arsenate, phosphate, sulphate and sulphite. New Phytol. 1984, 96:83-93
    [50] 李道林,何方,马成泽,田超.砷对土壤生物学活性及蔬菜毒性的影响.农业环境保护,2000 19(3):148-151
    [51] 胡家恕,邵爱萍,叶兆杰.大豆种子萌发过程中砷毒害与膜脂过氧化作用.浙江农业大学学报.1995,21(4):435-440
    [52] Carbonell A A, Burlo F, Mtaix J. Effect of arsenite on the concentrations of
    
    micronutrients in hydryponic culture. Journal of Plant Nutrition. 1994, 17(11): 1887-1903
    [53] Baker A J M. Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Physiology. 1981, 3:643-654
    [54] Richardson D H S, Nieboer B E, Padovan D, Lavoie P. Anion accumulation by lichens I. The characteristics and kinetics of arsenate uptake by Umbilicaria muhlenbergii. 1984, 96: 71-82
    [55] 杨文婕,刘更另.植物体内砷和硒累积和分布的相互作用.中国农业科学,1997,3:89-91
    [56] 李家仁,孙惠友,余同海,等.绍兴银山畈农田砷害的调查研究.农业环境保护,1986,5:34-28
    [57] Low K S, Lee C K. Removal of arsenic from solution by water hyacinth (Eichhotnia crassipes splmo). Pertaniks, 1990, 13(1): 129-132
    [58] 张素芹,杨居荣.农作物对镉铅砷的吸收与运输农业环境保护,1992,11(4):171-175
    [59] Berry W L, Plant and factors influencing the use of plant analysis as a tool for biogeochemical prospecting. In: Carlise D, Berry W L, Kaplan I. R and Watterson J R (ed.) "Mineral Exploration: Biogeological Systems and Organic Matter", prentice-Hall, Englewood Cliffs, N J. 1986, 5: 13.
    [60] Marin A R, Pezeshki S R Masschelen P H, et al. Effect of dimethylarsenic acid (DMMA) on growth, tissue arsenic and photosynthesis of rice plants. Journal of Plant Nutrition. 1993, 16(5): 865-880
    [61] Marin A R, Masschelen P H, Patrick W H. The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant and Soil, 1992, 139:175-183
    [62] 陈海珍,陈志澄,刘士哲,吴群河,毋福海.硒与砷在植物中相互作用的试验研究.农业环境保护,2001,20(2):91-93
    [63] Asher C J, Reay R J. Arsenic uptake by barley seedings. Aust. J. Plant Physiology. 1979, 6:459-466
    [64] Merharg A A, Macnair M R. An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol, 1990, 116:29-35
    [65] Meharg A A, Macnair M R. Uptake, accumulation and translocation of arsenate in arsenate- tolerant and non-tolerant Holcus lanatus L. New Phytol, 1991, 117:225-231
    [66] Creger T L, Peryea F J. Phosphate fertilizer enhances arsenic uptake by apricot liners grown in lead-arsenate-enriched soil. Hort. Sci, 1994, 29: 88-92.
    [67] Jiang Q Q, Singh B R. Effect of different forms and sources of arsenic on crop yield and
    
    arsenic concentration. Water Air Soil Pollut. 1994, 74:321-343.
    [68] Woolson E A. Effects of fertilizer materials and combinations on the phytotoxicity, availability and content of arsenic in corn (maize). J. Sci. Food Agric., 1972, 23: 1477-1481.
    [69] Woolson E A, Axley J H, Kearny P C. The chemistry and phytotoxicity of arsenic in soils: Ⅱ. Effects of time and phosphorus. Soil Sci. Soc. Am. Proc., 1973, 37: 254-259.
    [70] Heeraman D A, Classen V P, Zasoski R J. Interaction of lime, organic matter and fertilizer on growth and uptake of arsenic and mercury by Zorro fescue (Vulpia myuros L.). Plant and soil, 2001, 234:215-231
    [71] Peryea F J, Phosphate starter fertilizer. Hortscienee, 1998, 33(5): 820-829
    [72] Carbonell A A, Burl(?) F, Mataix-Bneyto J. Effect of sodium arsenic and sodium chloride on bean plant nutrition (macronutrients), Plant Nutrition, 1997, 20(11): 1617-1633.
    [73] Cox M C. Arsenic characterization in soil and arsenic effects on canola growth. Ph. D. diss. Louisiana State University, Bton Rouge, Louisiana, 1995:102
    [74] Marin A R. Effect of applications of arsenic and zinc on straighthead disease in rice (Oryza sativa L.). M. Sc. Thesis. Louisiana State Uuiversity, Bton Rouge, Louisiana, 1989
    [75] Mengel K, Kirkby E A. Principles of plant nutrition. International Potash Institute, Worblaufen-Bern, Switzerland. 1978
    [76] 王新,吴燕玉.重金属在土壤-水稻系统中的行为特性.1997,16(4):10-14
    [77] 韩照祥,冯贵颖,吕文洲,刘英,肖玲.环境中As(Ⅲ)对小麦萌发的影响及砷毒害防治初探.西北植物学报,2002,22(1):23-128
    [78] 熊礼明.施肥与植物的重金属吸收.农业环境保护,1993,12(5):217-222
    [79] 箫蕴英,杨军霞,樊慧俪.污灌对作物含量的影响.陕西环境,1997,4(1):34-36
    [80] Meharg A A, Macnair M R. Polymorphism and physiology of arsenate tolerance in Holcus lanatus L. from an uncontaminated site. Plant Soil, 1992, 146:219-215
    [81] Sharples J M, Meharg A A, Chambers, S M, Cairney J W G. Symbiotic solution to arsenic contamination. Nature, 2000a, 404:951-952
    [82] Meharg A A, Macnair M R. The mechanisms of arsenate tolerance in Deschampsia cespitosa L. and Agrostis capillaries L. New Phytol, 1991, 119:291-297
    [83] Meharg A A, Macnair M R. Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp. Bot, 1992, 43:519-534
    [84] Merharg A A, Naylor J, Macnair M R. Phosphorus-nutrition of arsenate-tolerant and not-tolerant phenotpes of velvetgrass. Journal of Environmental Quality, 1994, 23: 234-238
    [85] Meharg A A, Macnair M R. Relationship between plant phosphorous status and the kinetics of arsenate influx in clones of Deschampsia cespitosa(L. Beauv.),1994
    [86] Merharg A A, Hartley-Whitaker J. Arsenic uptake and metabolism in arsenic resistant
    
    and nonresistant plant species. New Phytologist, 2002, 29-43
    [87] Smeller F E C, Heetwaarden L M V, Kraaijeveld-smit F J L. Toxicity of arsenic in silene vulgaris, accumulation and degrading of arsenate-induced phytochelatins. New Phytol, 1999, 144:223-232
    [88] Hartley-Whitarker J, Ainsworth G, Voojis R, Bookum W T, Schat H, Merharg A A. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol, 2001, 126: 299-306.
    [89] Nissen P, Benson A A. Arsenic metabolism in freshwater and terrestrial plants. Plant Physiology, 1982, 54:446-450
    [90] 范晓.海藻中砷化学形态及代谢机制.海洋科学,1997,3:30-32
    [91] Minguizzi C, Vergnano O. Conteruto di nichel nell ceneri di Alyssum bertolonni. Desv. Atti. Soc. Tosc. Sci. Nat. Mem, 1948, 55: 49-74.
    [92] Brooks R R, Lee, Reeves R D, Jaffre T. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor, 1977, 7:49-77
    [93] Baker A M J. Tolerant plants and hyperaccumulators. In: Wong M H and Bradshaw A D (ed.), Restoration and management of derelict lands-modem approaches (in press). 2003
    [94] Zhao F J, Dunham S J, McGrath S P. Arseic hyperaccumulation by different fern species. New Phytologist (in press), 2003
    [95] 韦朝阳,陈同斌,黄泽春,张学春.大叶井口边草一种新发现的富集砷的植物.生态学报,2002,22(5):777-779
    [96] Meharg A A. Variation in arsenic accumulation-hyperaccumulation in ferns and their allies. New Phytologist, 2003, 157:25-31
    [97] Baker A M J, McGrath S P, reeves R D, Smith J A. Metal hyperaccumulator plants: a review of ecology and physiology of a biological-resource for phtoremediation of metal-polluted soils. In Terry N & Banuelos G S (eds) Phytoremediations of contaminated Soil and Water. Lewis Publishers, Florida, 2000
    [98] Chaney R L. Plant uptake of inorganic waste constituents. In: Parr J. F. eds. Land Treatment of Hazardous Wastes. Noyes Data Corporation, Park Ridge, New Jersey, USA. 1983.50-76
    [99] BakerA J M, Mcgrath S P, Sidoi CM D. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-contaminating plants, Resource, Conservation and Recycling, 1994, 11: 41-49
    [100] Chaney R L, Minnie M, Yin M L. Phytoremediation of soil metals Current option in Biotechnology, 1997, 8: 279-284
    [101] Chaney R L, Li Y M, Sally L, Brown. Improving metal hyperaccumulator wild plants to
    
    develop commercial phytoextraction systerhs: Approaches and progress in phytoremediation of contaminated soil and water. CRC press, 2000, 129-158
    [102] Harvey Black. Phytoremediation: a growing field with some concerns. The Scientist, 1999, 13(5): 1
    [103] 韦朝阳,陈同斌.土壤重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(8)
    [104] 唐世荣,Wike B M. 植物修复技术与农业生物环境工程.农业工程学报,1999,15(6):21-26
    [105] 王校常,施卫明,曹志洪.重金属的植物修复一绿色清洁的污染治理技术.核农学报,2000,14(5):315-320
    [106] 陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47(3):207-210.
    [107] Ma L Q, Kenneth M K, Tu C, Zhang W H, Cai Y, Kennelley E D. A fern that hyperaccumulates arsenic. Nature, 2001,409(6820): 579
    [108] Visoottiviseth P, Francesconi K, Sfidokchan W. The potential of Thai indigenous plant species for the phytoremediafion of arsenic contaminated land. Environment Pollution, 2002, 118:453-461
    [109] 中国科学院中国植物志编辑委员会.中国植物志(第三卷第一分册).北京:科学出版社,1990.37
    [110] 李文学,超富集植物蜈蚣草对砷的吸收及两种提高植物修复效率的方法探讨,中国科学院地理科学与资源研究所[博士后出站报告],2003
    [111] Tu C, Ma L Q. Effects of Arsenic Concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Envion. Qual., 2002, 31:641-647
    [112] Tu C, Ma L Q, Bondada B. Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J. Environ. Qual. 2002, 31: 1671-1675
    [113] Tu C, Ma L Q, Zhang W H, Cai Y, Harris W G. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata). Environmental Pollution (in press), 2003
    [114] Wang J R, Zhao F J, Meharg A A, Raab A, Feldmann J, McGrath S. Mechanisms of arsenichyperaccumulation in Pteris vittata: uptake kinetics, interactions with phosphate and arsenic speciation. Plant Physiology, 2002, 130:1552-1561.
    [115] Zhang W H, Cai Y, Tu C, Ma L Q. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. The Science of the Total Environment, 2002, 300:167-177
    [116] Francesconi Kevin, Vsoottiviseth Pomaswan and Sridokchan Weeraphan. Arsenic
    
    species in an Arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. The science of the Total Environment 2002, 284:27-35
    [117]黄泽春.砷超富集植物的筛选及其富集机理的研究.中国科学院地理科学与资源研究所[博士论文],2003
    [118]Mattusch J, Wenrich R, Schmidt A C, Reosser W. Determination of arsenic species in water, soils and plants, Fresenius Journal of Analytical Chemistry, 2000, 366(2): 200-203
    [119]Picketing I J, Prince R C, George M J, Smith R D, George G N, Salt D E. Reduction and coordination of arsenic in Indian Mustard. Plant Physiology, 2000, 122:1171-1177
    [120]Ghosh M, Shen J, Rosen B P. Pathways of As(Ⅲ) detoxification in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96:5001-5006
    [121]Lombi E, Zhao FJ, Fuhrmann M, Ma LQ, Mcgrath SP. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist, 2002, 156:195-203
    [122]陈同斌,范稚莲,雷梅,韦朝阳.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义.科学通报,2002,47(15):1156~1159
    [123]Liao X Y, Chen T B, Lei M, Huang Z C, Xiao X Y, An Z Z. A root distribution and element accumulations of Pteris vittata L. from As-contaminated Soils. Plant and Soil, 2003 (submitted)
    [124]Hans J, Weigel. Subcellular distribution and chemical form of Cadmium in bean plant. Plant Physiology, 1980,65, 480-482
    [125]Pathore VS, Bajat Y P S, Wittwer S H. Subcellular localization of zinc and calcium in bean (Phaseolus vulgaris L.) tissues. Plant Physiology, 1972, 49:207-211
    [126]Page A L, Miller R H, Keeney D R. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Second Edition. American Society of Agronomy, Inc., Madison, Wisconson USA. 1982, pp. 385-430
    [127]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999.
    [128]Kauss H. Some aspects of calcium-dependent regulation in plant metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1987, 38:47-72
    [129]Sotiropoulos T S, Therios I N, Dimassi K N. Calcium application as a means to improve tolerance of kiwifmit(Actinidia deliciosa L.)to boron toxicity. Scientia Horticulturae, 1999, 81: 433-439
    [130]周卫,汪洪,林葆.镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响.植物营养与肥料学报,1999,5(4):335-340
    
    
    [131]Sk(?)rzy(?)iska-Polit E, Tukendorf A, Selstarn E, Baszyfiski T. Calcium modifies Cd effect on runner bean plants. Environmental and Experimental Botany, 1998, 40:275-286
    [132]孔繁翔,桑伟莲,胡伟.低 pH、铝及钙铝比对斜生栅藻(Scenedesmus obliquus)的生理生化影响.环境科学,1998,19(4):56-58
    [133]Bush D S. Calcium regulation in plant cells and its role in signaling Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, 46:95-122 i
    [134]Handreck K A. Growth of ferns in soil-less media as affected by pH, iron and calcium/magnesium ratio. Scientia Horticulture, 1992, 50:115-126
    [135]Caines A M, Sherman C. Growth and nutrient composition of Ca~(2+) use efficient and Ca~(2+) use inefficient genotypes of tomato. Plant Physiol. Biochem., 1999, 37(7/8): 559-567
    [136]Clarkson D T, Hanson J B. The mineral nutrition of higher plants. Ann Rev Plant Physiology, 1980, 31: 239~298
    [137]Wallace A, Mueller R T, Wood R A. Arsenic phytotoxicity and interactions in bush bean plants grown in solution culture, Journal of Plant Nutrition, 1980, 2:111-113
    [138]Carbonell A A, Burlo F, Mataix-Bneyto J. Effect of sodium chloride on bean plant nutrition(macronutrients). Plant Nutrition, 1997, 20(11): 1617-1633
    [139]Matin A R. Effect of soil redox potential and pH on nutrient uptake by rice with special reference to arsenic forms and uptake. Ph.D. dissertation, Louisiana State University, Baton Rouge, LA, 1992
    [140]Wickes W A, Wiskich J T. Arsenate uncoupling oxidative phosphorylation in isolated plant mitochondria. Australia Journal of Plant Physiology, 1976, 3: 153~162
    [141]Barber S A. Soil nutrient bioavailability: a mechanistic approach. John Wiley & Sons, Inc. New York John Wiley& Sons, Inc. New York, 1995, 286~288
    [142]Tang T J, Miller D M. Growth and tissue composition of rice grown in soil treated with inorganic copper, nickel and arsenic. Communication in Soil Sciences and Plant Analysis, 1991, 22(19&20): 2037~2045
    [143]杨居容,黄翌.植物对重金属的耐性机理.生态学杂志,1994,13(6):20-26
    [144]Baker A J M. Metal tolerance. New Phytol, 1987, 106:93-111
    [145]Verkleij J A C, Schat I I. Mechanisms of metal tolerance in higher plants. In: Heavy metal tolerance in plants: Evolutionary aspects. Shaw A J (eds), CRC press, Inc Boca Raton, Florada. 1990, p179-194
    [146]Vogeli-Lange R, Wagner G J. Subcelluar localization of cadium and cadium-bingding peptides in tobacco leaves: implication of a transport function for cadium-bingding peptides. Plant Physiology, 1990, 92:1086-1093
    [147]Hayens R.J. Ion exchange properties of' roots and ionic interactions within the root
    
    POPLsm: Their role in ion accumulation by plants. Bot. Rev., 1980,46:75-99
    [148]Allen D L, JarreU W M. Proton and copper adsorption to maize and soybean root cell walls. Plant Physiolology., 1989, 89:823-832
    [149]Poulter A, Collin H A, Thurman D A. The role of the cell wall in the mechanism of lead and zinc tolerance in Authoxanthum odoratum L. Plant Science, 42:61-66
    [150]Turner R G, Marshall C. The accumulation of zinc by subcellular fractions of roots of Agrostis tenuis Sibth, in relation to zinc tolerance. New Phytol., 1972,71:671-675
    [151]Nishizono H, Ichikawa H, Suziki S, Ishii F. The role of the root cell wall in the heavy metal tolerance Of Athyrium yokoscense. Plant and soil, 1987, 101: 15-20
    [152]Boominathan R, Doran P M. Organic acid complexafion, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. Journal of Biotechnology, 2003, 101: 131-146
    [153]Brooks R R, Shaw S, Asensi M A. The chemical form and physiological function of nickel in some Iberian Alyssum species. Plant Physiology, 1981, 51: 167-170
    [154]Kramer U, Picketing I J, Prince RC. Subcellular locaization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiology, 2000, 122: 1343-1353
    [155]Fey B, Keller K, Zierold K. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 2000, 23:675-687
    [156]Megrath S P, Zhao F J, Lombi E. Phytoremediation of metals, metalloids and radionuclide. Advances in Agronomy. 2002 75:51-56
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.