增溶辅料对黄酮类药物的热性质影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酮类药物分子在结构上有一定的极性,但其在水溶液中却显示很强的疏水性,从而影响了这类药物的溶解度、溶出速率和生物利用度。为改善其药效,在药剂学提出了一系列的方法和技术,如将其与添加辅料制成固体分散体、制成脂质体或凝胶微胶囊、制成环糊精类的包合体等等。在这些制备技术中,辅料与药物的混合性质,直接影响了药剂的物理性质和药效。所以,研究药物+辅料体系的物理化学性质对于提高药效,改进制备技术具有重要的意义。
     物质的溶解度、溶解速率以及相平衡状态和其热力学性质直接相关。因此,药物体系的热力学性质也是评价药效的一项基本数据。本文我们研究了黄酮类药物水飞蓟宾、槲皮素与一些辅料如聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)和胆酸钠等构成的二元系的热力学性质,通过测定体系的比热和相变特性,考察体系的状态随组成和温度的变化。具体内容包含如下几个方面:
     1.制备槲皮素+PVP K30二元系固体分散体及固态混合物,利用差示扫描量热法(DSC)测定体系的比热,结合傅立叶红外光谱(FT-IR)和X-射线粉末衍射(XRD),分析槲皮素和PVP K30间的相互作用以及样品晶型的变化。结果表明:在槲皮素质量分数w1 < 0.5的组成区间内形成了药物固体分散体,在w1 > 0.5区间内构成了药物晶体与固体分散体的混合物。利用数学模型关联了比热与组成和温度的关系。计算了实验温度区间内的焓变与熵变。此项工作发表在J.Chem.Eng.Data,2010,5856。
     2.制备水飞蓟宾+PVP K30二元系的固体分散体和固体混合物,利用DSC测定体系的比热。通过比热的微分曲线dCp/dT-T得到了表征物相状态的方法。结果表明:曲线中的若干极值点可以表征水飞蓟宾在PVP的分散状态,在水飞蓟宾质量分数w1< 0.4的组成区间内形成了固体分散体,在w1> 0.4区间,则是晶态水飞蓟宾与固体分散体的混合状态。利用数学模型方程对实验数据进行了关联。计算了实验温度区间内的焓变和熵变。此项工作发表在Thermochim Acta,2011,99。
     3. DSC测定了水飞蓟宾+胆酸钠二元系固体混合物的比热。结合FT-IR和XRD分析了胆酸钠和水飞蓟宾间的相互作用以及样品的晶型变化。结果显示:胆酸钠与水飞蓟宾无化学作用,其状态是微晶混合物。运用Redlich-Kister方程对比热超量与组成的关系进行了关联。计算了实验温度区间内的焓变和熵变。
     4.水凝胶是一种引起广泛关注的载药方式。水凝胶的应用性能和生物相容性等与其含水量和持水状态相关。利用反复冷冻-解冻法制备了PVA+PVP复合水凝胶,利用DSC测定了凝胶的失水状况。通过Kissinger法、Flynn-Wall-Ozawa法和速率方程模型法研究了凝胶失水动力学,获得了相关的活化能等动力学参数,考察了PVP的掺入量对PVA凝胶的失水动力学的影响。
Flavonoids, such as silybin and quercetin, are polar in structure, but poorly soluble in water in nature. This hydrophobic property limits their solubility, release rate in water and bioavalibility in medicine application. To improve their medicine efficience, a variety of methods in pharmaceutics have been developed, among them including solid dispersion method, inclusion complex method, and liposome and hydrogel carrier methods. In pharmaceutical technique, the mixing behaviour of drug and their additives directly impact the physical-chemical properties and the medicine efficience. Therefore, it is very important to study the physical-chemical properties of the mixtures of drug + additives.
     The solubility, solid release rate in water, and the phase equilibrium state of drugs are mainly determined by their thermochemical properties. Therefore, thermodynamic property is an essential data to evaluate the medicine efficience of drugs. In this article, we focus our attention to some binary systems composed of flavonoids (silybin, quercetin) and their additives (Poly(vinylpyrrolidone) (PVP), Polyvinyl alcohol (PVA) and sodium cholate, etc.). Some basic thermodynamic properties, such as heat capacity and phase transition state, and their changes with temperature and compositions are studied. This work includes four parts.
     1. In chapter 2, we report the study on the binary system of (quercetin + PVP K30). Solid dispersions and mixtures of quercetin and PVP K30 are studied by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and heat capacity (Cp) measurements. A solid dispersion is found in the region of w1 < 0.5, and a solid mixture is found in the region of w1 > 0.5, where w1 is the mass fraction of quercetin. The Cp data is correlated to temperature T by a polynomial equation, and changes in enthalpy and entropy were calculated from Cp. The work in this chapter has been published in J.Chem.Eng.Data, 2010, 5856.
     2. In chapter 3, we report the study on the binary mixtures of (silybin + PVP K30). The heat capacity Cp of the binary system has been measured by DSC and FT-IR spectroscopy. By analyzing the curves of (dCp/dT) against temperature T, some apparent points, a maxima point and a minima point, to characterize the Cp curve were obtained. The maxima point in the region of w1< 0.4 is a character of amorphous solid state of PVP, where w1 is the mass fraction of silybin. In this region, silybin is dispersed into the amorphous solid of PVP. The minima point in the w1> 0.4 region is a character of crystalline silybin. In this region, a mixture of crystalline silybin with an amorphous solid dispersion is observed. The Cp data is correlated to temperature T by a polynomial equation, and the changes in enthalpy and entropy were calculated from Cp. The work in this chapter has been published in Thermochim Acta, 2011, 99.
     3. In chapter 4, we report the work on the binary system of (silybin + sodium cholate). The heat capacity of this binary system has been measured by DSC in the temperature range from 298.15 to 373.15 K. X-ray diffraction and FT-IR spectroscopy were used to determine the solid mixing behaviour. Our result indicates that, the binary system of silybin and sodium cholate is a mixture of two micro-crystaline components. The excess heat capacities of this binary system were correlated by the Redlich-Kister equation. Thermodynamic functions of the entropy and enthalpy were calculated in the experimental temperature range.
     4. Hydrogels can be used as a drug carrier. Its application in biology and medicine depends seriously upon its water content. By a repeated freezing and thawing method, the hydrogels of PVA blended with PVP were prepared. The thermal dehydration kinetics of this gel was investigated by DSC measurement, which is significantly dependent on the PVP content. The kinetic parameters of the dehydration process of PVA+PVP gel were obtained by the Kissinger method, by the Flynn-Wall-Ozawa method, and by a method to fit the DSC data with some definite kinetic equations, respectively. The effect of PVP content on the dehydration of PVA hydrogel can be found from the kinetic parameters.
引文
[1]刘振海主编.热分析导论[M].化学工业出版社,北京,1991.
    [2]刘晓晴,张罗红,李波.热分析技术在药物分析中的应用进展.华西药学杂志. 1999, 14, (3):177-179.
    [3]张玉梅,王华平.MDSC的原理与应用.中国纺织大学学报. 2000, 26, (3):118- 122.
    [4] B. Wilthan, C. Cagran, C. Brunner, G. Pottlacher. Thermophysical properties of solid and liquid platinum. Thermochimica Acta. 2004, 415, 47-54.
    [5] B. Wilthan, R. Tanzer, W. Schützenh?fer, G. Pottlacher. Thermophysical properties of the Ni-based alloy Nimonic 80A up to 2400 K, III. Thermochimica Acta. 2007, 465,83-87.
    [6] J. Leitner, M. Hampl, etc. Heat capacity, enthalpy and entropy of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7. Thermochimica Acta. 2008, 475, 33-38.
    [7]张东,李凯莉.相变材料热物性测试方法.材料导报, 2007, 21, (12):103-105.
    [8] D.Fessas, M.Signorelli, A.Schiraldi, C.J.Kennedy, T.J.Wess, B. Hassel, K.Nielsen. Thermal analysis on parchments I: DSC and TGA combined approach for heat damage assessment. Thermochimica Acta. 2006, 447, 30–35.
    [9] Xiao Hua, David Kaplan, Peggy Cebe. Effect of water on the thermal properties of silk fibroin. Thermochimica Acta. 2007, 461, 137–144.
    [10]刘星,汪树军,刘红研.MUF/石蜡的微胶囊制备.高分子材料科学与工程, 2006, 22, (2):235-238.
    [11]柴卉,刘平安,曾令可,王慧,程小苏,税安泽.固相反应法制备微/纳米复合相变储能材料及其测试表征.分析测试学报, 2008, 27, 8:888-890.
    [12] Changzhong Chen, Linge Wang, Yong Huang. Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials. Solar Energy Materials & Solar Cells. 2008, 92, 1382-1387.
    [13]李辉,方贵银.具有多孔基体复合相变储能材料研究.材料科学与工程学报, 2003, 21, (6):842-844.
    [14] S. Hassama, D. Boa, Y. Fouque, K. P. Kotchi, J. Rogez. Thermodynamic investigation of the Pb–Sb system. Journal of Alloys and Compounds. 2009, 476, 74-78.
    [15] Kezhong Wu, Ping Zuo, Xiaodi Liu, Yajuan Li. Subsolidus binary phase diagram of C10Zn/ C12Zn. Thermochimica Acta. 2003, 397:49-53.
    [16]赵惠敏,刘晓地,武克忠.热致相变材料C10Cu-C12Cu二元体系相图.河北师范大学学报(自然科学版), 2006, 30, (2):188-191.
    [17] Nihal Sarier, Emel Onder. Thermal insulation capability of PEG-containing polyurethane foams. Thermochimica Acta. 2008, 475, 15-21.
    [18] Cemil Alkan, AhmetSar, AliKaraipekli, OrhanUzun. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energystorage. Solar Energy Materials & Solar Cells. 2009, 93, 143-147.
    [19]王岐东,董黎明,代一心,刘俊女.两种相变材料储能石膏板的实验研究.北京工商大学学报(自然科学版), 2005, 23, (5):4-6.
    [20]方贵银,李辉.定形复合相变储能材料实验研究.真空与低温, 2003, 9, (3):171-174.
    [21] R. Sanctuary, J. Baller. Complex specific heat capacity of two nanocomposite systems. Thermochimica Acta. 2006, 445, 111-115.
    [22] Abderrahmane Habi, Said Djadoun. Miscibility and thermal behaviour of poly (styrene–co-methacrylic acid)/poly(isobutyl methacrylate-co-4-vinylpyridine) mixtu -res. Thermochimica Acta. 2008, 469, 1-7.
    [23] Silvia B.Matiacevich, Martina L.Castellión, Sara B.Maldonado, M.Pilar Buera. Water dependent thermal transitions in quinoa embryos. Thermochimica Acta. 2006, 448, 117-122.
    [24] A.A. Abu-Sehly, M. Abu El-Oyoun, A.A. Elabbar. Study of the glass transition in amorphous Se by differential scanning calorimetry. Thermochimica Acta. 2008, 472, 25-30.
    [25] Hu Rongzu, Chen Sanping, Gao shengli, Song Jirong, Shi Qizhen, Zhao hongan, Yao Pu, Li Jing. Thermal decomposition kinetics of barium 2,4,6- trinitroresorecinate monohydrate. Chinese Journal of Inorganic Chemistry. 2004, 4, 412-420.
    [26]马荣华,刘春涛,瞿伦玉,等.过氧铌杂多钨酸盐热分解动力学参数的测定.无机化学学报. 2000, 16, (5):815-820.
    [27]郭金玉,张建国,张同来,吴瑞凤,于伟.三维网状结构配位聚合物[Cu(HCOO)2(H2O)2]∞晶体的热分解机理.物理化学学报. 2006, 22, (10):1206- 1211.
    [28]张竞,李全步,蒋英,王晓东,黄培.非等温DSC法研究高韧性低收缩环氧体系固化动力学.高分子材料科学与工程. 2009, 25, (6):99-102.
    [29]王蕾,王立身.差示扫描量热法测定药物纯度.中国现代应用药学杂志. 2005, 22, 6: 498-500.
    [30]宋宁慧,朱红梅,杨红.差示扫描量热法测定除草剂绿麦隆的纯度.分析科学学报, 2007, 23, (1):54-56.
    [31] Yann Roche, Pierre Peretti, Sophie Bernard. DSC and Raman studies of the side chain length effect of ubiquinones on the thermotropic phase behavior of liposomes. Thermochimica Acta. 2006, 447, 81-88.
    [32] R.Ficarra, S.Tommasini, D.Raneri, etc. Study of flavonoids/-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. Journal of Pharmaceutical and Biomedical Analysis. 2002, 29, 1005-1014.
    [33] Tayade Pralhad, Kale Rajendrakumar. Study of freeze-dried quercetin- cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. Journal of Pharmaceutical and Biomedical Analysis. 2004, 34, 333-339.
    [34] S.Birjees Bukhari, Shahabuddin Memonb, M.Mahroof-Tahir, M.I.Bhanger. Synthesis, characterization and antioxidant activity copper–quercetin complex. Spectrochimica Acta Part A. 2009, 71, 1901-1906.
    [35] S.Birjees Bukhari, Shahabuddin Memona, M.Mahroof-Tahir, M.I. Bhanger. Synthesis, characterization and investigation of antioxidant activity of cobalt-quercetin complex. Journal of Molecular Structure. 2008, 892, 39-46.
    [36]尹华,杨腊虎,俞如英,涂国士.西咪替丁的晶型研究.药物分析杂志, 2001, 21, (1):39-42.
    [37]林克江,陈卫,尤启冬.差示扫描量热法检测那格列奈多晶型.药学学报, 2002, 37, (1):46-49.
    [38]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    [39]张志荣主编.药剂学[M].高等教育出版社.北京, 2007, 12.
    [40] Jayanth K. Katta, Michele Marcolongo, Anthony Lowman, Kevin A. Mansmann. Friction and wear behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular cartilage replacement. J Biomed Mater Res 83A. 2007, 471-479.
    [41] Yu-Song Pan, Dang-Sheng Xiong, Ru-Yin Ma. A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear. 2007, 262, 1021-1025.
    [42]马如银,熊党生,彭艳,金加波, LauraMcCann, Zhongmin Jin, John Fisher.γ射线辐照交联PVA水凝胶关节软骨修复材料的结构与性能研究.医用生物力学, 2009, 24, (5):347-351.
    [43] Masanori Kobayashi, Yong-Shun Chang, Masanori Oka. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials. 2005, 26, 3243-3248.
    [44] Lan Wei, Chunhua Cai, Jiaping Lin, Tao Chen. Dual-drug delivery system based on hydrogel/micelle composites. Biomaterials. 2009, 30, 2606-2613.
    [45] Thomas J, Lowman A, Marcolongo M. Novel associated hydrogels for nucleus pulposus replacement. J Biomed Mater Res A. 2003, 67, 1329-1337.
    [46] M. G. CASCONE, S. MALTINTI, N. BARBANI. Effect of chitosan and dextran on the properties of poly(vinyl alcohol) hydrogels. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE. 1999, 10, 431-435.
    [47] Jen Ming Yang, Wen Yu Su, Te Lang Leu, Ming Chien Yang. Evaluation of chitosan/ PVA blended hydrogel membranes. Journal of Membrane Science. 2004, 236, 39-51.
    [48]郭忠鹏,彭超,蒋电明,安洪.三种生物材料修复兔关节软骨缺损的性能对比.中国组织工程研究与临床康复. 2010, 14, (16):2870-2874.
    [49] Mallapragada SK, Peppas NA. Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water. J Polym Sci Part B: Polym Phys. 1996, 34, 1339- 1346.
    [50]崔英德,黎新明. PVP水凝胶的应用与制备研究进展.化工科技, 2002, 10, (2):43-47.
    [51] Zhai Maolin, Ha Hongfei, F. Yoshii, K. Makuuchi. Effect of kappa-carrageenan on the properties of poly(N-vinyl pyrrolidone)/kappa-carrageenan blend hydrogel synthesized by g-radiation technology. Radiation Physics and Chemistry. 2000, 57, 459-464.
    [52] Min Wang, Ling Xu, Hui Hu, Maolin Zhai , Jing Peng, Youngchang Nho, Jiuqiang Li, Genshuan Wei. Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nuclear Instruments and Methods in Physics Research B. 2007, 265, 385-389.
    [1] Firuzi,O.; Lacanna, A.; Petrucci, R.; Marrosu, G.; Saso, L. Evaluation of the Antioxidant Activity of Flavonoids by“Ferric Reducing Antioxidant Power”Assay and Cyclic Voltammetry. Biochimica et Biophysica Acta. 2005, 1721, 174-184.
    [2] Peng, Z. F.; Strack, D.; Baumert, A.; Subramaniam, R.; Goh, N. K.; Chia, T. F.; Tan, S. N.; Chia, L. S. Antioxidant Flavonoids from Leaves of Polygonum hydropiper L. Phytochemistry. 2003, 62, 219-228.
    [3] Chen, Z.Y.; Chan, P.T.; Ho, K.Y.; Fung, K.P.; Wang, J. Antioxidant Activity of Natural Flavonoids is Governed by Number and Location of Their Aromatic Hydroxyl Groups. Chem. Phys. Lipids. 1996, 79, 157-163.
    [4] Dias, K.; Nikolaou, S.; De Giovani, W. F. Synthesis and Spectral Investigation of Al(III) Catechin/β-cyclodextrin and Al(III) Quercetin/β-cyclodextrin Inclusion Compounds. Spectrochim. Acta Part A. 2008, 70, 154-161.
    [5] Bukhari, S. B.; Memona, S.; Tahir, M. M.; Bhanger, M.I. Synthesis, Characterization and Investigation of Antioxidant Activity of Cobalt–Quercetin Complex. J. Molecular Structure. 2008, 892, 39-46.
    [6] Jones, D. J. L.; Jukes-Jones, R.; Verschoyle, R. D.; Farmera P. B.; Gescher, A. A Synthetic Approach to the Generation of Quercetin Sulfates and the Detection of Quercetin 3’-O-sulfate as a Urinary Metabolite in the Rat. Bioorganic & MedicinalChemistry. 2005, 13, 6727-6731.
    [7] Needs, P. W.; Kroon, P. A. Convenient Syntheses of Metabolically Important Quercetin Glucuronides and Sulfates. Tetrahedron. 2006, 62, 6862-6868.
    [8] Bergonzi, M. C.; Bilia, A. R.; Bari, L. D.; Mazzia G.; Vincieri, F. F. Studies on the Interactions Between Some Flavonols and Cyclodextrins. Bioorganic & Medicinal Chemistry Letters. 2007, 17, 5744-5748.
    [9] Pralhad, T.; Rajendrakumar, K. Study of Freeze-Dried Quercetin–Cyclodextrin Binary Systems by DSC, FT-IR, X-ray Diffraction and SEM Analysis. J. Pharm. Biomed. Anal. 2004, 34, 333-339.
    [10] Jullian, C.; Moyano, L.; Ya?ez, C.; Olea-Azar, C. Complexation of Quercetin with Three Kinds of Cyclodextrins: An Antioxidant Study. Spectrochim. Acta Part A. 2007, 67, 230-234.
    [11] Yan, C.; Li, X. H.; Xiu, Z. L.; Hao, C. A Quantum-Mechanical Study on the Complexation ofβ-cyclodextrin with Quercetin. J. Molecular Structure: THEOCHEM. 2006, 764, 95-100.
    [12] Zhu, J.; Yang, Z.-G.; Chen, X.-M.; Sun, J.-B.; Awuti, G.; Zhang, X.; Q. Zhang, Preparation and Physicochemical Characterization of Solid Dispersion of Quercetin and Polyvinylpyrrolidone. J. Chinese Pharm. Sci. 2007, 16, 51-56.
    [13] Vasconcelos, T.; Sarmento B.; Costa, P.; Solid Dispersions as Strategy to Improve Oral Bioavailability of Poor Water Soluble Drugs. Drug Discovery Today. 2007, 12, 1068-1075.
    [14] Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal Engineering of Active Pharmaceutical Ingredients to Improve Solubility and Dissolution Rates. Adv. Drug Deliv. Rev. 2007, 59, 617-630.
    [15] Alsenz, J.; Kansy, M. High Throughput Solubility Measurement in Drug Discovery and Development. Adv. Drug Deliv. Rev. 2007, 59, 546-567.
    [16] Van den Mooter, G.; Augustijns, P.; Blaton, N.; Kinget, R. Physico-Chemical Characterization of Solid Dispersions of Temazepam with Polyethylene Glycol 6000 and PVP K30. Int. J. Pharm. 1998, 164, 67-80.
    [17] Liu, Z. H. Introduction to Thermal Analysis, Chem. Ind. Press.: Beijing, 1991.
    [18] Hua, X.; Kaplan, D.; Cebe, P. Effect of Water on the Thermal Properties of Silk Fibroin. Thermochim. Acta. 2007, 461, 137-144.
    [19] Xu, K. Z.; Song, J. R.; Zhao, F. Q.; Ma, H. X.; Gao, H. X.; Chang, C. R.; Ren, Y. H.; Hu, R. Z. Thermal Behavior, Specific Heat Capacity and Adiabatic Time-to-Explosion of G(FOX-7). J. Hazardous Materials. 2008, 158, 333-339.
    [20] Tong, B.; Tan, Z.-C.; Shi, Q.; Li, Y.-S.; Yue, D.-T.; Wang, S.-X. Thermodynamic Investigation of Several Natural Polyols (I): Heat Capacities and Thermodynamic Properties of Xylitol. Thermochim Acta. 2007, 457, 20-26.
    [21] Sethia, S.; Squillante, E. Solid Dispersion of Carbamazepine in PVP K30 by Conventional Solvent Evaporation and Supercritical Methods. Int. J. Pharm. 2004, 272, 1-10.
    [22] Mundhwa, M.; Elmahmudi, S.; Maham, Y.; Henni, A. Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K. J. Chem. Eng. Data. 2009, 54, 2895-2901.
    [23] Fini, A.; Cavallari, C.; Ospitali, F. Raman and Thermal Analysis of Indomethacin /PVP Solid Dispersion Enteric Microparticles. Eur. J. Pharm. Biopharm. 2008, 70, 409-420.
    [24] Xie, J.-X.; Chang, J.-B.; Wang, X.-M. Infrared Spectroscopy Application in Organic Chemistry and Drug Chemistry (Revision), Science Press.: Beijing, 2001, pp. 403-456.
    [1] K. Flora, M. Hahn, H. Rosen, K. Benner. Milk thistle (Silybum marianum) for the theraply of liver disease. Am. J. Gastroenterol. 1998, 93, 139-143.
    [2] N. ?kottová, V. Kre?man. Silymarin as a potential hypocholesterolaemic drug. Physiol. Res. 1998, 47, 1-7.
    [3] D.Y.W. Lee, Y. Liu. Molecular structure and stereochemistry of silybin A, silybin B, isosilybin A, and isosilybin B, isolated from Silybum marianum (milk thistle). J. Nat. Prod. 2003, 66, 1171-1174.
    [4] M.S. El-Samaligy, N.N. Afifi, E.A. Mahmoud. Increasing bioavailability of silymarin using a buccal liposomal delivery system: Preparation and experimental designinvestigation. Int. J. Pharm. 2006, 308, 140-148.
    [5] W. Han, T.C. Bai, J.J. Zhu. Thermodynamic Properties for the Solid-Liquid Phase Transition of Silybin + Poloxamer 188. J. Chem. Eng. Data. 2009, 54, 1889-1893.
    [6] T. Vasconcelos, B. Sarmento and P. Costa, Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today. 2007, 12, 1068-1075.
    [7] S. Hasegawa, N. Furuyama, S. Yada, T. Hamaura, A. Kusai, E. Yonemochi, K. Terada. Effect of physical properties of troglitazone crystal on the molecular interaction with PVP during heating. Int. J. Pharm. 2007, 336, 82-89.
    [8] I. Weuts, D. Kempen, A. Decorte, G. Verreck, J. Peeters, M. Brewster, G. Van den Mooter. Phase behaviour analysis of solid dispersions of loperamide and two structurally related compounds with the polymers PVP-K30 and PVP-VA64. Eur. J. Pharm. Sci. 2004, 22, 375-385.
    [9] W.W. Yao, T.C. Bai, J.P. Sun, C.W. Zhu, J. Hu, H.L. Zhang. Thermodynamic properties for the system of silybin and poly(ethylene glycol) 6000. Thermochimi. Acta. 2005, 437, 17-20.
    [10] J. Zhu, Z. G. Yang, X. M. Chen, J. B. Sun, G. Awuti, X. Zhang, Q. Zhang. Preparation and physicochemical characterization of solid dispersion of quercetin and polyvinylpyrrolidone. J. Chin. Pharmaceu. Sci. 2007, 16, 51-56.
    [11] G. Van den Mooter, P. Augustijns, N. Blaton, R. Kinget. Physico-chemical characterization of solid dispersions of temazepam with polyethylene glycol 6000 and PVP K30. Int. J. Pharm. 1998, 164, 67-80.
    [12] S. Sethia, E. Squillante. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int. J. Pharm. 2004, 272, 1-10.
    [13] Z.H. Liu. Introduction to Thermal Analysis. Chemical Industry Press, Beijing, 1991.
    [14] X. Hua, D. Kaplan, P. Cebe. Effect of water on the thermal properties of silk fibroin. Thermochim. Acta. 2007, 461, 137-144.
    [15] K. Xu, J. Song, F. Zhao, H. Ma, H. Gao, C. Chang, Y. Ren, R. Hu. Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7). J. Hazard. Mater. 2008, 158, 333-339.
    [16] B. Tong, Z.C. Tan, Q. Shi, Y.S. Li, D.T. Yue, S.X. Wang. Thermodynamicinvestigation of several natural polyols (I): Heat capacities and thermodynamic properties of xylitol. Thermochim. Acta. 2007, 457, 20-26.
    [17] J.X. Xie, J.B. Chang, X.M. Wang. Infrared Spectroscopy Application in Organic Chemistry and Drug Chemistry. Science Press, Beijing, 2001.
    [1] D. Gallo, S. Giacomelli, C. Ferlini, G. Raspaglio, P. Apollonio, S. Prislei, A. Riva, P. Morazzoni, E. Bombardelli, G. Scambi. Antitumour activity of the silybin-phosphatidylcholine complex, IdB 1016, against human ovarian cancer. European Journal of Cancer. 2003, 39, 2403-2410.
    [2] Hyun Jung Kim, Hae-Suk Park, Ik-Soo Lee. Microbial transformation of silybin by Trichoderma koningii. Bioorganic & Medicinal Chemistry Letters. 2006, 16, 790-793.
    [3] H.-L. Zhang, T.-C. Bai, G.-B. Yan, J.Hu. Solubility of silybin in aqueous poly(vinylpyrrolidone) solution. Fluid Phase Equilibria. 2005, 238, 186-192.
    [4] Wei Li, Jianping Han, Zhiwen Li, Xinxin Li, Shuiping Zhou, Changxiao Liu. Preparative chromatographic purification of diastereomers of silybin and their quantification in human plasma by liquid chromatography–tandem mass spectrometry. Journal of Chromatography B. 2008, 862, 51-57.
    [5] Haiying Fu, Yosuke Katsumura, Mingzhang Lin, Yusa Muroya. Laser photolysis and pulse radiolysis studies on silybin in ethanol solutions. Radiation Physics and Chemistry. 2008, 77, 1300-1305.
    [6] Wei Han, TongChun Bai, Jian-Jun Zhu. Thermodynamic Properties for the Solid-Liquid Phase Transition of Silybin +Poloxamer 188. J. Chem. Eng. Data. 2009, 54, 1889-1893.
    [7] Yoshikiyo Moroi, Hiromi Sugioka. Temperature effect on solubilization of n-alkylbenzenes into sodium cholate micelles. Journal of Colloid and Interface Science. 2003, 259, 148-155.
    [8] Hiromi Sugioka, Yoshikiyo Moroi. Micelle formation of sodium cholate and solubilization into the micelle. Biochimica et Biophysica Acta. 1998, 1394, 99-110.
    [9] Andrej Musatov, Neal C. Robinson. Cholate-Induced Dimerization of Detergent- or Phospholipid-Solubilized Bovine Cytochrome c Oxidase. Biochemistry. 2002, 41, 4371-4376.
    [10] Shuman Mitra, Stephanie R. Dungan. Cholesterol Solubilization in Aqueous Micellar Solutions of Quillaja Saponin, Bile Salts, or Nonionic Surfactants. J. Agric. Food Chem. 2001, 49, 384-394.
    [11] S. I. Sim?esa, C. M. Marquesa, M.E.M. Cruza, G. Cevcb, M.B.F. Martins, The effect of cholate on solubilisation and permeability of simple and protein-loaded phosphatidylcholine/sodium cholate mixed aggregates designed to mediate transdermal delivery of macromolecules. European Journal of Pharmaceutics and Biopharmaceutics. 2004, 58, 509-519.
    [12] Ting Wang, Tong-Chun Bai, Wei Wang, Jian-Jun Zhu, Cheng-Wen Zhu. Viscosity and activation parameters of viscous flow of sodium cholate aqueous solution. Journal of Molecular Liquids. 2008, 142, 150-154.
    [13] Alfonso de la Maza, Jose Luis Parra. Vesicle to micelle phase transitions involved in the interaction of sodium cholate with phosphatidylcholine liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1997,127, 125-134.
    [14] D. Meyuhas, D. Lichtenberg. Effect of Water-Soluble Polymers on the State of Aggregation, Vesicle Size, and Phase Transformations in Mixtures of Phosphatidylcholine and Sodium Cholate. Biophysical Journal Volume. 1996, 71, 2613-2622.
    [15] J. Gustafsson, T. Nylander, M. Almgren, H. Ljusberg-Wahren. Phase Behavior and Aggregate Structure in Aqueous Mixtures of Sodium Cholate and Glycerol Monooleate. Journal of Colloid and Interface Science. 1999, 211, 326-335.
    [16] Liu Zhenhai (Ed). Introduction to Thermal Analysis. Chemical Industry Press. Beijing, 1991.
    [17] B. Wilthan, R. Tanzer, W. Schützenh?fer, G. Pottlacher. Thermophysical properties of the Ni- based alloy Nimonic 80A up to 2400 K, III. Thermochimica Acta. 2007, 465, 83–87.
    [18] Maria Cristina Righetti, Elpidio Tombari, Marco Angiuli, Maria Laura Di Lorenzo. Enthalpy-based determination of crystalline, mobile amorphous and rigid amorphous fractions in semicrystalline polymers Poly(ethylene terephthalate). Thermochimica Acta. 2007, 462, 15-24.
    [19] Vittorio Berbenni, Chiara Milanese, Giovanna Bruni, Amedeo Marini. The combined effect of mechanical and thermal energy on the solid-state formation of NiFe2O4 from the system 2NiCO3·3Ni(OH)2·4H2O–FeC2O4·2H2O. Thermochimica Acta. 2008, 469, 86-90.
    [20] J. Leitner, M. Hampl, K. R??i?ka, M. Straka, D. Sedmidubsky, P. Svoboda. Heatcapacity, enthalpy and entropy of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7. Thermochimica Acta. 2008, 475, 33-38.
    [21] W. Pan, C. L. Wan, Q. Xu, J. D. Wang, Z. X. Qu. Thermal diffusivity of samarium-gadolinium zirconate solid solutions. Thermochimica Acta. 2007, 455, 16-20.
    [22] Xiao Hua, David Kaplan, Peggy Cebe. Effect of water on the thermal properties of silk fibroin. Thermochimica Acta. 2007, 461, 137-144.
    [23] Latifa Chebil, Catherine Humeau, Julie Anthoni, Fran?ois Dehez, Jean-Marc Engasser. Mohamed Ghoul, Solubility of Flavonoids in Organic Solvents. J. Chem. Eng. Data. 2007, 52, 1552-1556.
    [24] Sandra Gracin, ?ke C. Rasmuson. Solubility of Phenylacetic Acid, p-Hydroxyphenylacetic Acid, p-Aminophenylacetic Acid, p-Hydroxybenzoic Acid, and Ibuprofen in Pure Solvents. J. Chem. Eng. Data. 2002, 47, 1379-1383.
    [25] Mayur Mundhwa, Salaheddin Elmahmudi, Yadi Maham, Amr Henni. Molar Heat Capacity of Aqueous Sulfolane, 4-Formylmorpholine, 1-Methyl-2-pyrrolidinone, and Triethylene Glycol Dimethyl Ether Solutions from (303.15 to 353.15) K. J. Chem. Eng. Data. 2009, 54, 2895-2901.
    [26] Xie, J.-X.; Chang, J.-B.; Wang, X.-M. Infrared Spectroscopy Application in Organic Chemistry and Drug Chemistry (Revision), Science Press.: Beijing, 2001, pp. 403-456.
    [27] X. Hua, D. Kaplan, P. Cebe. Effect of water on the thermal properties of silk fibroin. Thermochim. Acta. 2007, 461, 137-144.
    [28] K. Xu, J. Song, F. Zhao, H. Ma, H. Gao, C. Chang, Y. Ren, R. Hu. Thermal behavior, specific heat capacity and adiabatic time-to-explosion of G(FOX-7). J. Hazard. Mater. 2008, 158, 333-339.
    [29] B. Tong, Z.C. Tan, Q. Shi, Y.S. Li, D.T. Yue, S.X. Wang. Thermodynamic investigation of several natural polyols (I): Heat capacities and thermodynamic properties of xylitol. Thermochim. Acta. 2007, 457, 20-26.
    [30] Changsheng Yang, Peisheng Ma, Qing Zhou. Excess Molar Volume, Viscosity, and Heat Capacity for the Mixtures of 1,4-Butanediol + Water at Different Temperatures. J. Chem. Eng. Data. 2004, 49, 582-587.
    [31] Romolo Francesconi, Fabio Comelli, Daria Giacomini. Excess Enthalpy for the Binary System 1,3-Dioxolane+Halothane. J. Chem. Eng. Data. 1990, 35, 190-191.
    [32] Kyu-Jin Han, Jong-Hyeok Oh, So-Jin Park, Jürgen Gmehling. Excess Molar Volumes and Viscosity Deviations for the Ternary System N,N-Dimethylformamide + N-Methylformamide + Water and the Binary Subsystems at 298.15 K. J. Chem. Eng. Data. 2005, 50, 1951-1955.
    [1] KyoungRan Park, YoungChangNho. Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties. Radiation Physics and Chemistry. 2003, 67, 361–365.
    [2] Xiaomin Yang, Zhiyong Zhu, Qi Liu, Xiliang Chen, Mingwang Ma. Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by g-irradiation followed by freeze-thawing. Radiation Physics and Chemistry. 2008, 77, 954–960.
    [3] Takahiko Nakaoki, Hiroyuki Yamashita. Bound states of water in poly(vinyl alcohol)hydrogel prepared by repeated freezing and melting method. Journal of Molecular Structure. 2008, 875, 282–287.
    [4] Julianne L.Holloway, Anthony M.Lowman, Giuseppe R.Palmese. Mechanical evaluation of poly(vinyl alcohol)-based fibrous composites as biomaterials for meniscal tissue replacement. Acta Biomaterialia. 2010, 6, 4716-4724.
    [5] Yurong Liu, Luke M.Geever, James E. Kennedy, Clement L. Higginbotham, Paul A. Cahill, Garrett B. McGuinness. Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. Journal of the mechanical behavior of biomedical materials. 2010, 3, 203-209.
    [6] M. G. CASCONE, S. MALTINTI, N. BARBANI. Effect of chitosan and dextran on the properties of poly(vinyl alcohol) hydrogels. Journal of materials science: materials in medicine. 1999, 10, 431-435.
    [7] Ding Guowei, Kamulegeya Adriane, XingZai Chenc, Chen Jie, Liu Yinfeng. PVP magnetic nanospheres: Biocompatibility, in vitro and in vivo bleomycin release. International Journal of Pharmaceutics. 2007, 328, 78-85.
    [8] Young Chang Nho, Tae Hoon Kim, Kyung Ran Park. Radiation synthesis and characteristics of charcoal filled PVA/PVP hydrogels. Radiation Physics and Chemistry. 2004, 69, 351-353.
    [9] Ruyin Ma, Dangsheng Xiong, Feng Miao, Jinfeng Zhang, Yan Peng. Novel PVP/PVA hydrogels for articular cartilage replacement. Materials Science and Engineering C. 2009, 29, 1979-1983.
    [10] Abhijeet Joshia, Garland Fussellb, Jonathan Thomasa, Andrew Hsuanb, Anthony Lowmanb, Andrew Kardunac, Ed Vresilovicd, Michele Marcolongo. Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials. 2006, 27, 176-184.
    [11] Rong-Zu Hu, Qi-Zhen Shi (Eds). Thermal analysis kinetics, Science Press. Beijing, 2001.
    [12] Zhang Jiao-qiang, Gao Hong-xu, Su Li-hong, Hu Rong-zu, Zhao Feng-qi,Wang Bo-zhou. Non- isothermal thermal decomposition reaction kinetics of 2-nitroimino-5-nitro-hexahydro-1,3,5 -triazine (NNHT). Journal of Hazardous Materials. 2009, 167, 205-208.
    [13] Lisardo Nú?ez, F. Fraga, M.R. Nú?ez, M. Villanueva. Thermogravimetric study of thedecomposition process of the system BADGE (n =0)/1,2 DCH. Polymer. 2000, 41, 4635-4641.
    [14] Antonio de Lucas, Lourdes Rodríguez, Justo Lobato, and Paula Sánchez. Effect of the Particle Size of Starting Materials on the Synthesis of Crystalline Layered Sodium Silicate for Use in Detergents. Ind. Eng. Chem. Res. 2001, 40, 2580-2585.
    [15] Banjong Boonchom and Chanaiporn Danvirutai. Thermal Decomposition Kinetics of FePO4·3H2O Precursor To Synthetize Spherical Nanoparticles FePO4. Ind. Eng. Chem. Res. 2007, 46, 9071-9076.
    [16] Hu Rongzu, Chen Sanping, Gao shengli, Song Jirong, Shi Qizhen, Zhao hongan,Yao Pu, Li Jing. Thermal decomposition kinetics of barium 2,4,6-trinitroresorecinate monohydrate. Chinese Journal of Inorganic Chemistry. 2004, 4, 412-420.
    [17] Rosa Ricciardi, Finizia Auriemma, Claudio De Rosa, and Fran?oise Lauprêtre. X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels, Obtained by Freezing and Thawing Techniques. Macromolecules. 2004, 37, 1921-1927
    [18] Rosa Ricciardi, Gaetano Mangiapia, Fabrizio Lo Celso, Luigi Paduano, Roberto Triolo, Finizia Auriemma, Claudio De Rosa, and Fran?oise Lauprêtre. Structural Organization of Poly(vinyl alcohol) Hydrogels Obtained by Freezing and Thawing Techniques: A SANS Study. Chem. Mater. 2005, 17, 1183-1189.
    [19] Rebeca Hernández, Mariana Rusa, Cristian C. Rusa, Daniel López, Carmen Mijangos, and Alan E. Tonelli. Controlling PVA Hydrogels with ?-Cyclodextrin. Macromolecules. 2004, 37, 9620-9625.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.