铁镍合金箔的电化学制备及其结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe-Ni二元合金具有优异的磁学特性和低膨胀性能,备受研究者的关注,已经利用各种方法成功地制备出来了,这些方法有喷射法、研磨法和电沉积法等。与其它方法相比,电沉积法可以廉价地批量制备Fe-Ni合金,并且具有不同结构,如纳米晶结构,此时它的物理特性,像电阻率、硬度与耐腐性等均得到了改善。因此,电沉积纳米晶Fe-Ni与其性能研究成为了近期研究的热点。但是,文献中报道的Fe-Ni电镀液都不适合Fe-Ni合金箔的连续化制备。本文提出了两种电镀液体系,均实现了Fe-Ni合金箔的连续电化学制备。
     1、柠檬酸盐体系中电沉积Fe-Ni合金箔
     本文详细研究了柠檬酸盐体系中添加物对Fe-Ni合金共沉积过程的影响。所有的结果都表明,Fe-Ni合金属于异常共沉积,也就是,贱金属Fe比贵金属Ni更容易沉积。在Fe-Ni合金共沉积过程中,Fe2+离子本体浓度与电极旋转速度对Fe的沉积速度有很大的影响,加大Fe2+离子的本体浓度与提高电极旋转速度都有利于电极表面Fe2+浓度得到有效地补充,进而提高Fe的沉积速度,导致Fe-Ni合金中Fe的含量大幅度地增加。
     柠檬酸具有pH缓冲作用,使析氢反应加剧,电流效率降低;但它还具有与Fe3+离子络合的作用,防止Fe(OH)3的沉淀,提高了镀液的稳定性。考虑这两个因素,我们选择柠檬酸根的浓度与Fe(包括Fe2+、Fe3+)的相当,这样既能保持镀液的稳定又不显著降低电流效率。另外,柠檬酸根还可以与M2+(M=Fe、Ni)络合,其络合离子可能直接放电发生M的沉积。硼酸在Fe-Ni沉积过程中不具有pH缓冲的作用,它在电极表面发生吸附,即抑制了Fe-Ni合金的沉积速度,又抑制了H+离子的还原。电化学阻抗谱与极化曲线证实了吸附过程的存在。
     当研究Ni在Fe基体上的电沉积过程中时,发现Fe还可以催化Ni的沉积,表明在Fe-Ni共沉积过程中,Ni更容易在Fe原子上沉积,从而促进合金的形成。
     通过改变电沉积参数,可以制备出Fe含量小于60%的光亮Fe-Ni合金箔,若再高Fe含量,Fe-Ni合金镀层爆裂甚至成粉末状。Fe-Ni合金的晶体结构受铁含量的控制,当铁含量(Fe%)小于47%时,Fe-Ni合金的晶体结构为面心立方型(FCC);47     2、氟硼酸盐体系中电沉积Fe-Ni合金
     与柠檬酸盐体系相比,氟硼酸盐体系更适合Fe-Ni合金箔的连续化电化学制备,因为在该体系中Fe和Ni金属溶解得很快以至于能够补偿镀液在电镀过程中的消耗,避免利用其它方式而带来的麻烦;另外,高的沉积速度(达200μm/h)可以在该体系中实现,提高生产效率,降低生产成本。
     在该体系中,Fe-Ni合金也表现出异常共沉积行为。就像柠檬酸体系一样,对Fe-Ni合金共沉积影响最严重同样也是电极的转速与Fe2+离子本体浓度。由于氟硼酸盐体系有很强的腐蚀特性,可以利用阳极溶出法进行分析Fe-Ni合金组分的分析,为Fe-Ni合金的共沉积研究提供了便利,同时还利用了其它常规电化学技术来研究Fe-Ni合金的沉积过程。结果表明,Fe-Ni合金的沉积受到扩散控制,并伴随着成核生长过程;由于合金组分的变化,存在两次Fe-Ni合金的成核生长过程,不同于单金属;镀液中加入糖精钠后,得到的Fe-Ni合金的阳极溶出行为发生了显著变化,可能因为糖精钠中的硫元素与Fe-Ni共沉积。
     获得Fe-Ni合金箔带表观平整光亮,其中铁含量可高达75%。晶体结构也是随着Fe含量的增加由面心立方结构逐渐转变成体心立方结构,但是其混合相的组分范围发生了变化。在氟硼酸盐体系中,当Fe含量达到65%时,合金结构仍然是混合相。
     3、 Fe-Ni合金箔的性能
     本文还研究了Fe-Ni合金箔的磁学特性与力学特性,结果表明Fe-Ni合金具有极好的磁学与力学特性。抗拉强度可达到1.68GPa;经过热处理后磁导率高达22468Gs/Oe,矫顽力低到0.20e,磁饱和强度为1.5T。Fe-Ni合金随着退火温度的升高,由韧性转变脆性再变韧的过程,存在着脆性温度区间。这个脆性温度区间随着镀层中Fe含量的增加,逐渐变窄。高温退火后的Fe-Ni合金不再存在脆性温度区间,也就是,这种脆性转变是不可逆的。
     本文还利用模板法电化学制备了多孔Fe-Ni合金箔,以及具有微浮雕结构表面的合金箔。这些特殊的结构可以在催化载体、防伪、太阳能应用等方面得到应用。
Due to their magnetic properties and dimensional stability, Ni-Fe binary alloys have been fabricated by researchers using different techniques, such as sputtering, ball milling and electroplating. Compared with other methods, the electrodeposition method allows for mass production of Ni-Fe alloys at a low cost. Moreover, it provides the possibility of preparing Ni-Fe alloys with different structures. For example, Ni-Fe alloys with nanosized grains can be easily prepared using this method. Also, this method enhances the properties of the alloys, such as improved electrical resistivity and hardness, as well as corrosion resistance. Recently, the study of electrodeposition of nanocrystalline Fe-Ni alloys and their properties is focused on. But, proposed plating baths are not appropriate for a continuous deposition of Fe-Ni foils. In this dissertation, two baths being suitable for the continuous electrodeposition system are proposed to fabricate Fe-Ni alloy foils.
     1. Electrodeposition of Fe-Ni alloy foils from a citrate bath
     In this dissertation, the effects of operating parameters on Fe-Ni alloy deposition in a citrate bath are studies in details. The results show that it belongs to an anomalous codeposition category, that is, the less noble metal Fe is deposited preferentially to the more noble Ni. During Fe-Ni alloy codeposition, the bulk concentration of Fe2+and the rotating speed of wrok electrode all affects remarkably the deposition rate of Fe. Increasing these two parmeter values will result in the increase of the iron content in Fe-Ni alloy, becase of increasing the Fe2+ion amount in the surface of work electrode and consequently accelerating the electrodeposition rate of Fe.
     Citric acid plays the role of pH buffering in solutions, hence, the hydrogen evolution reaction (HER) increases and the current efficiency decreases. Also, it is a complexing reagent of Fe3+, preventing Fe(OH)3from depositing. So, the concentration of citric acid selected is comparative with the Fe (including Fe2+and Fe3+), taking current efficiency and electrolyte stability into account. Moreover, citric acid and M2+(M=Ni, Fe) can also form complexs, which should discharge to metal atoms by a step process. Boric acid does not take a role pH buffering druing Fe-Ni codeposition. However, it can not only inhibit Fe-Ni deposition by means of absorbing on the elctrode surface, but also suppress HER. Electrochemical impedance spectroscopy and polarization curves proved this point.
     When we studied the electrodeposition of Ni on the Fe substrate, a catalyzed deposition process of Ni was accidentally found. This phenomenon implies that during Fe-Ni codeposition Ni2+ions are ready to reduce on the Fe atoms, accordingly forming Fe-Ni alloys.
     Throught varying the plating parmeters, bright Fe-Ni alloy foils with different iron contents (Fe%) are fabricated in the citrate bath. If the Fe%exceed60%, Fe-Ni alloy deposits will burst and even become powder. Fe-Ni alloy foils (Fe%<47) exhibit a fcc phase region,47     2. Electrodeposition of Fe-Ni alloy foils from a fluorborate bath
     Compared with the above citrate bath, the fluorborate bath is more appropriate for the continuous deposition of Fe-Ni alloy foils, because not only it can dissolve nickel and iron powder so fast as to to compensate the electrolyte during Fe-Ni electrodeposition, but also fast deposition rate (200um/h) was obtained in the bath.
     In the bath, the anomalous codeposition behavior of Fe-Ni alloy is aslo observed. Just like in the citrate bath, the bulk concentration of Fe2+and the rotating speed of wrok electrode are still key important parameters. Due to causticity of the bath, the anodic linear sweep voltammetry (ALSV) technology can utilize to analyze the composition of Fe-Ni crystals, and to further understand Fe-Ni alloy codeposition. At the same time, other conventional electrochemical technologies are used to study the process of Fe-Ni alloy electrodeposition. The results show that these processes occurred under mass transfer control, associated with nucleation and growth process. The nucleation and growth of Fe-Ni alloy is different from that of the single metal (Ni or Fe).Two nucleation and growth processes occurred during Ni-Fe alloy codeposition. That is, there was a nucleation and growth process of Ni-Fe alloy on Ni-Fe clusters, due to a change of the Ni-Fe alloy composition and phase. When adding sodium saccharin into the bath, the obtained Fe-Ni alloys have different ALSV curves, likely due to Fe-Ni-S codeposition.
     The obtained Fe-Ni alloy foils were smooth, bright and flexible, whose iron content can be up to75%. The Fe-Ni alloy phase also changes gradually from FCC to BCC with the increase of iron content, but the Fe%range for mixed phase is wider than that of Fe-Ni alloys obtained in the citrate bath.
     3. Properties of Fe-Ni alloy foils
     Magnetic and mechanical properties of Fe-Ni alloy foils are studied, and the results indicate that they have better character than that prepared using other methods. Tensile strength is up to1.68GPa The best magnetic properties are:maximum permeability (μm)22468Gs/Oe, coercivity (He)0.2Oe, saturation flux density (Bs)1.5T. All Fe-Ni alloys all undergo a ductile-brittle-ductile transformation process as the annealing temperature increases. The brittlement temperature range for these alloy become narrow along with the increase of Fe%, and vanishs after ductile transformation at high temperature, indicating that the brittle transformation is not reversible.
     Ni-Fe foils with micro-porous or surface-relief-grating structures are electrochemically fabricated using a template method. They can be used in catalyst carriers, anticounterfeiting and solar applications.
引文
[1]Schwarzacher W. Electrodeposition:A Technology for the Future. The electrochemical Society Interface Spring,2006:32-35
    [2]Becker E W, Ehrfeld W, Hagmann P, et al. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Microelectronic Engineering,1986,4(1):35-56.
    [3]周绍民等.金属电沉积原理与研究方法.上海:上海科学技术出版社,1987:1-493.
    [4]Brenner A. Electrodeposition of alloys, Principles and practice. New York: Academic Press,1963(1-2):1-200
    [5]方景礼.多元络合物电镀.北京:国防工业出版社,1983:100-150.
    [6]Bottger R. Chemische Notizen. Justus Liebigs Annalen der Chemie,1843, 47(3):329-351
    [7]谭玉芳,孙桂香.镀铁技术.北京:人民交通出版社,1990:35-137
    [8]李晓畅,王晓云,王明安等.电镀工艺技术要求、操作要点与质量检测使用手册.安微:安徽文化音像出版社,2003:649-657
    [9]Zarpellon J, Jurca H F, Klein J J. Electrodeposition of Fe thin films on Si(111) surfaces in the presence of sodium saccharin. Electrochimica Acta,2007,53(4): 2002-2008
    [10]Trompette J L, Vergnes H. Influence of Base Electrolytes on the Electrodeposition of Iron onto a Silicon Surface. Journal of Physical Chemistry B,2006,110(30):14779-14786
    [11]Harraz F A, Sakka T, Ogata Y H. A comparative electrochemical study of iron deposition onto n- and p-type porous silicon prepared from lightly doped substrates. Electrochimica Acta,2005,50(27):5340-5348
    [12]Gomes A, Silva Pereira M I, Mendonca M H, et al. Effect of the substrate on the electrodeposition of iron sulphides. Solid State Sciences,2002,4(8): 1083-1088
    [13]Renaux C, Scheuren V, Flandre D. New experiments on the electrodeposition of iron in porous silicon. Microelectronics Reliability,2000,40(4-5):877-879
    [14]Ronkel F, Schultze J W, Arens-Fischer R. Electrical contact to porous silicon by electrodeposition of iron. Thin Solid Films,1996,276(1-2):40-43
    [15]Koza J, Uhlemann M, Gebert A. et al. The effect of a magnetic field on the pH value in front of the electrode surface during the electrodeposition of Co, Fe and CoFe alloys. Journal of Electroanalytical Chemistry,2008,617(2):194-202
    [16]Koza J, Uhlemann M, Gebert A, et al. The effect of magnetic fields on the electrodpeosition of iron. Journal of Solid State Electrochemistry,2008,12(2): 181-192
    [17]Matsushima H, Fukunaka Y, Ito Y, et al. Anomalous scaling of iron thin film electrodeposited in a magnetic field. Journal of Electroanalytical Chemistry, 2006,587(1):93-98
    [18]Matsushima H, Nohira T, Nigi I, Ito Y. Effects of magnetic fields on iron electrodeposition. Surface and Coatings Technology,2004,179(2-3):245-251
    [19]Gunderl A, Devolder T, Chappert C, et al. Electrodeposition of Fe/Au(111) ultrathin layers with perpendicular magnetic anisotropy. Physica B,2004, 354(1-4):282-285
    [20]Xia W, Chen X, Kundu S, et al. Chemical vapor synthesis of secondary carbon nanotubes catalyzed by iron nanoparticles electrodeposited on primary carbon nanotubes. Surface & Coatings Technology,2007,201(22-23):9232-9237
    [21]Yin M K, Lin B T. Effects of boric acid on the electrodeposition of iron, nickel and iron-nickel. Surface and Coatings Technology,1996,78(1-3):205-210
    [22]Jartych E, Jalochowski M, Budzynski M. Influence of the electrodeposition parameters on surface morphology and local magnetic properties of thin iron layers. Applied surface science,2002,193(1-4):210-216
    [23]Jartych E, Zurawicz J K, Maczka E, et al. Preparation of thin iron films by electrodeposition and characterization of their local magnetic properties. Materials Chemistry and Physics,2001,72(3):356-359
    [24]Heresanu V, Ballou R, Molho P. Influence of the morphology on the magnetism of iron arborescences. Journal of Magnetism and magnetic materials 2004, 272-276(3):2439-2441
    [25]Jartych E, Chocyk D, Budzynski M, et al. Surface morphology and local magnetic properties of electrodeposited thin iron layers. Applied surface science,2001,180(3-4):246-254
    [26]Chisholm C, Kuzmann E, Doyle O, et al. Mossbauer and XRD investigation of electrodeposited Fe, Co and Fe-Co alloys using a gluconate plating process. Journal of Radioanalytical and Nuclear Chemistry,2005,266(3):533-542
    [27]Lallemand F, Ricq L, Wery M, et al. The influence of organic additives on the electrodeposition of iron-group metals and binary alloy from sulfate electrolyte. Applied Surface Science,2004,228(1-4):326-333
    [28]Carlos I A, Caruso C S. Electrodeposition of iron fragile layer on nickel substrate with emphasis on iron powder production. Journal of Power Sources, 1998,3(2):199-203
    [29]Grujicic D, Pesic B. Micromagnetic studies of iron microbars prepared by nanoimprint lithography and electrodeposition. Thin Solid Films,2005, 485(1-2):218-223
    [30]Kang Y, Zhao J, Tao J, et al. Electrochemical deposition of Co nanowire arrays into self-organized titania nanotubes. Applied Surface Science,2008,254(13): 3935-3938
    [31]Yang P, An M, Su C, et al. Fabrication of cobalt nanowires from mixture of 1-ethyl-3-methylimidazolium chloride ionic liquid and ethylene glycol using porous anodic alumina template. Electrochimica Acat,2008,54(2):763-767
    [32]Ramazani A, Almasi Kashi M, alikhani M, et al. Fabrication of high aspect ratio Co nanowires with controlled magnetization direction using ac and pulse electrodeposition. Materials Chemistry and Physics,2008 112(1):285-289
    [33]Azarian A, Iraji zad A, Dolati A, et al. Field emission of Co nanowires in polycarbonate template. Thin solid films,2009,517(5):1736-1739
    [34]Valizadeh S, George J M, Leisner P, et al. Electrochemical deposition of Co nanowire arrays; quantitative consideration of concentration profiles. Electrochimica Acta,2001 47(6):865-874
    [35]Xu J, Huang X, Xie G, et al. Fabrication and magnetic property of monocrystalline cobalt nanowire array by direct current electrodeposition. Materials Letters,2005,59(8-9):981-984
    [36]Bao J, Xu Z, Hong J, et al. Fabrication of cobalt nanostructures with different shapes in alumina template. Scripta Materialia,2004,50(1):19-23
    [37]Kartopu G, Yalcin O, Kazan S, et al. Preparation and FMR analysis of Co nanowires in alumina templates. Journal of Magnetism and Magnetic Materials, 2009,321(9):1142-1147
    [38]Ren Y, Liu Q F, Li S L, et al. The effect of structure on magnetic properties of Co nanowire arrays. Journal of Magnetism and Magnetic Materials,2009, 321(3):226-230
    [39]Yuan J, Pei W, Hasagawa T, et al. Study on magnetization reversal of cobalt nanowire arrays by magnetic force microscopy. Journal of Magnetism and Magnetic Materials,2008,320(5):736-741
    [40]Shibauchi T, Krusin-Elbaum L, giganc L, et al. High coercivity of ultra-high-density ordered Co nanorod arrays. Journal of Magnetism and Magnetic Materials,2001,226-230(2):1553-1554
    [41]Li Y, M oldovan M, Young D P, et al. Electrodeposited Co-Cu/Cu multilayered microposts. Journal of Magnetism and Magnetic Materials,2008,320(23): 3282-3287
    [42]Sakrani S B, Wahab Y B, Lau Y C. Giant magnetoresistance effect in Co/Cu/Co nanostructures. Journal of alloys and compounds,2007,434-435():598-600
    [43]Gupta D, Nayak A C, Kaushik D, Pandey P K. Investigation of Cu and Co multilayer depositon in aqueous ambient. Journal of Physcis and Chemistry of Solids,2005,66(5):861-868
    [44]Grundy P J. Interfacial properties in Co-based multilayer films. Journal of alloys and compounds,2001,326(1-2):226-233
    [45]Rastei M V, Colis S, Bucher J P. Growth control of homogeneous pulsed electrodeposited Co thin films on n-doped Si(111) substrates. Chemical Physics Letters,2006,417(1-3):217-221
    [46]Rastei M V, Colis S, Meckenstock R, et al. Pulsed electrodeposition and magnetism of two-dimensional assembly of controlled-size Co particles on Si substrates. Surface Science,2006,600(10):2178-2183
    [47]Munford M L, seligman L, Sartorelli M L, et al. Electrodeposition of magnetic thin films of cobalt on silicon. Journal of Magnetism and Magnetic Materials, 2001,226-230(2):1613-1615
    [48]Bao Z L, Kavanagh K L. Aligned Co Nanodiscs by electrodeposition on GaAs. Journal of Crystal Growth,2006,287(2):514-517
    [49]Krause A, Hamann C, Uhlemann M, et al. Influence of a magnetic field on the morpology of electrodeposited cobalt. Journal of Magnetism and Magnetic Materials,2005,290-291(1):261-264
    [50]Krause A, Uhlemann M, Gebert A, et al. The effect of magnetic fields on the electrodeposition of cobalt. Electrochimica Acta,2004,49(24):4127-4134
    [51]Bhuiyan M S, Taylor B J, Paranthaman M, et al. Microstructure and magnetic properties of electrodeposited cobalt films. Journal of materials science,2008, 43(5):1644-1649
    [52]Saitou M, Oshiro S, Hossain S M. Effect of temperature on nickel electrodeposition from a nickel sulfamate electrolyte. Journal of Applied Electrochemistry,2008,38(3):309-313
    [53]Hollang L, Hiechmann E, Holste C, Skrotzki W. Strain-rate sensitivity of additive-free pulsed-electrodeposited nickel during cyclic loading. Materials Science and Engineering A,2008,483-484():406-409
    [54]Inguanta R, Piazza S, Sunseri C. Influence of electrodeposition techniques on Ni nanostructures. Electrochimica Acta,2008,53(18):5766-5773
    [55]Qu N S, Zhu D, Chan K C, Lei W N. Pulse electrodeposition of nanocrystalline nickel using ultra narrow pulse width and high peak current density. Surface and Coatings Technology,2003,168(2-3):123-128
    [56]Li Y, Jiang H, Pang L, et al. Novel application of nanocrystalline nickel electrodeposit:Making good diamond tools easily, efficiently and economically. Surface and Coatings Technology,2007,201(12):5925-5930
    [57]Awad Y, Lavallee E, Beauvais J, et al. Nickel pulse reversal plating for image reversal of ultrathin electron beam resist. Thin Solid Films,2007,515(5): 3040-3045
    [58]Gamburg Y D, Grosheva M Y, Biallozor S, Hass M. The electrochemical deposition of nickel from electrolytes containing malonic acid. Surface and Coatings Technology,2002,150(1):95-100
    [59]Li C, Li X, Wang Z, et al. Nickel electrodeposition from novel citrate bath. Transaction of Nonferrous Metals Society of China,2007,17(6):1300-1306
    [60]Rasmussen A A, Moller P, Somers M A J. Microstructure and thermal stability of nickel layers electrodeposited from and additive-free sulphamate-based electrolyte. Surface and Coatings Technology,2006,200(20-21):6037-6046
    [61]Zhao H, Liu L, Zhu J, et al. Microstructure and corrosion behavior of electrodeposited nickel prepared from a sulphamate bath. Materials Letters, 2007,61(7):1605-1608
    [62]Oliveira E M, Finazzi, Carlos L A. Influence of glycerol, mannitol and sorbitol on electrodeposition of nickel from a Watts bath and on the nickel film morphology. Surface and Coatings Technoloyg,2006,200(20-21):5978-5985
    [63]Tsuru Y, Nomura M, Foulkes F R. Effects of boric acid on hydrogen evolution and internal stress in films deposited from a nickel sulfamate bath. Journal of Applied Electrochemistry,2004,32(6):629-634
    [64]Shen X, Lian J, Jiang Z, Jiang Q. High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grainsize distribution. Materials Science and engineering A,2008,487(1-2):410-416
    [65]Ciszewski A, Posluszny S, Milczarek G, et al. Effects of saccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte. Surface and Coatings Technology,2004,183(2-3): 127-133
    [66]Mohanty U S, Tripathy B C, Das S C, et al. Effect of thiourea during nickel electrodeposition from acidic sulfate solutions. Metallurgical and Materials Transactions B,2005,36(6):737-741
    [67]Mohanty U S, Tripathy B C, Singh P, et al. Effect of pyridine and picolines on the electrocrystallization of nickel from sulphate solutions. Surface and Coatings Technology,2005,197(2-3):247-252
    [68]Malpass G R P, Kalaji M, Venancio E C, et al. Electrodeposition of Nickel on Carbon felt. Electrochimica Acta,2004,49(27):4933-4938
    [69]El-Sherik A M, Shirokoff J, Erb U. Stress measurements in nanocrystalline Ni electrodeposits. Journal of Alloys and Compounds,2005,389(1-2):140-143
    [70]Shen Y F, Xue W Y, Wang Y D, et al. Mechanical properties of nanocrystalline nickel films deposited by pulse plating. Surface and Coatings Technology,2008, 202(21):5140-5145
    [71]Xu J, Wang K. Pulsed electrodeposition of monocrystalline Ni nanowire array and its magnetic properties. Applied Surface Science,2008,254(20): 6623-6627
    [72]Pirota K R, Navas D, Hemandez-Velez M, et al. Novel magnetic materials prepared by electrodeposition techniques:arrays of nanowires and multi-layred microwires. Journal of Alloys and Compounds,2004,369(1-2):18-26.
    [73]Lin S W, Chang S C, Liu R S, et al. Fabrication and magnetic properties of nickel nanowires. Journal of Magnetism and Magnetic Materials,2004,282(): 28-31
    [74]Sharma G, Chong S C, Ebin L, et al. Fabrication of patterned and non-patterned metallic nanowire arrays on silicon substrate. Thin Solid Films,2007,515(7-8): 3315-3322
    [75]Rahman I Z, Razeeb M K, Rahman M A, et al. Fabrication and characterization of nickel nanowires deposited on metal substrate. Journal of Magnetism and Magnetic Materials,2003,262(1):166-169
    [76]Rahman I Z, Razeeb M K, Kamruzzaman M, et al. Characterisation of electrodeposited nickel nanowires using NCA template. Journal of Materials Processing Technolgy,2004,153-154():811-815
    [77]Ebrahimi F, Ahmed Z. The effect of substrate on the microstructure and tensile properties of electrodeposited nanocrystalline nickel. Materials Characterization,2003,49(5):373-379
    [78]Yin W M, Whang S H, Mirshams R A. Effect of interstitials on tensile strength and creep in nanostructured Ni. Acta Materialia,2005,53(2):383-392
    [79]Yim T H, Yoon S C, Kim H S. Tensile properties of electrodeposited nanocrystalline nickel. Materials Science and Engineering A,2007,449-451(): 836-840.
    [80]Mcfadden S X, Mukherjee A K. Sulfur and superplasticity in electrodeposited ultrafine-grained Ni. Materials Science and Engineering A,2005,395(1-2): 265-268
    [81]Larsen K P, Rasmussen A A, Ravnkilde J T. MEMS device for bending test: measurements of fatigue and creep of electroplated nickel. Sensors and Actuators A,2003,103(1-2):156-164
    [82]Wang L, Gao Y, Xu T, et al. A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structrue. Materials Chemistry and Physics,2006,99(1):96-103
    [83]Mishra R, Basu B, Balasubramaniam R. Effect of grain size on the tribological behavior of nanocrystalline nickel. Materials Science and Engineering A,2004, 373(1-2):370-373
    [84]Peng X, Zhang Y, Zhao J, et al. Electrochemical corrosion performance in 3.5% NaCl of the electrodeposited nanocrystalline Ni films with and without disperisons of Cr nanoparticles. Electrochimica Acta,2006,51(23):4922-4927
    [85]Wang L, Zhang J, Cao Y, et al. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution. Scripta Materialia,2006,55(7):657-660
    [86]Mishra R, Balasubramaniam R. Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corrosion Science,2004, 46(12):3019-3029
    [87]Paloukis Fm Zafeiratos S, Drakopoulos V, et al. Electronic structure modifications and HER of annealed electrodeposited Ni overlayers on Mo polycrstalline surface. Electrochimica Acta,2008,53(27):8015-8025
    [88]Singh R N, Singh A, Anindita, Mishra D. Influence of the nature of conductive support on the electrocatalytic activity of electrodeposited Ni films towards methanol oxidation in 1M KOH. International Journal of Hydrogen Energy, 2008,33(23):6878-6885
    [89]Jin G P, Ding Y F, Zheng P P. Electrdeposition of nickel nanoparticles on functional MWCNT surface for ethanol oxidation. Journal of Power Sources, 2007,166(1):80-86
    [90]Ganesh V, Lakshminarayanan V. Preparation of high surface area nickel electrodeposit using a liquid crystal template technique. Electrochimica Acta, 2004,49(21):3561-3572
    [91]Chung Y W, Leu I C, Lee J H, et al. Fabrication of egg-shell-roofed macroporous nickel films by a template-mediated electrodeposition process. Electrochimica Acta,2007,53(4):1703-1707
    [92]Gorobets O Y, Gorobets V Y, Derecha D O, et al. Nickel electrodeposition under infulence of constant homogeneous and high-gradient magnetic field. Journal of Physical Chemistry C,2008,112(9):3373-3375
    [93]Bund A, Ispas A. Influence of a static magnetic field on nickel electrodeposition studied using an electrochemical quartz crystal microbalance, atomic force microscopy and vibrating sample magnetometry. Journal of Electroanalytical Chemistry,2005,575(2):221-228
    [94]Ganesh V, Vijayaraghavan D, Lakshminarayanan V. Fine grain growth of nickel electrodeposit:effect of applied magnetic field during deposition. Applied Surface Science,2005,240(1-4):286-295
    [95]Jensen J A D, Pocwiardowski P, Persson P O A, et al. Acoustic streaming enhanced electrodeposition of nickel. Chemical Physics Letters,2003,368(5-6): 732-737
    [96]Zhu Z, Zhu D, Qu N, et al. Electrodeposition of bright nickel coating under perturbation of hard particles. Materials and Design,2007,28(6):1776-1779
    [97]Tang Y, Zhao D, Shen D, et al. Fabrication and magnetization measurement of Ni thin films on silicon substrate by electrodeposition. Thin Solid Films,2008, 516(8):2094-2098
    [98]Sansoz F, Stevenson K D, Govinthasamy R, et al. Making the surface of nanocrystalline Ni on an Si substrate ultrasmooth by direct electrodeposition. Scripta Materialia,2008,59(1):103-106
    [99]Evans P, Scheck C, Schad R, et al. Electrodeposition of epitaxial nickel films on GaAs. Journal of Magnetism and Magnetic Materials,2003,260(3):467-472
    [100]Guo C, Zuo Y, Zhao X, et al. The effects of pulse-reverse parameters on the properties of Ni-carbon nanotubes composite coatings. Surface and Coatings Technology,2007,201(24):9491-9496
    [101]Qu N S, Chan K C, Zhu D. Pulse co-electrodeposition of nano Al2O3 whiskers nickel composite coating. Scripta Materialia,2004,50(8):1131-1134
    [102]屠振密.电镀合金原理与工艺.北京:国防工业出版社,1993:1-100.
    [103]Brankovic S R, Yang X M, Klemmer T J, et al. Pulse electrodeposition of 2.4 T Co37Fe63 alloys at nanoscale for magnetic recording application. IEEE Transactions on Magnetics,2006,42 (2):132-139
    [104]Myung N V, Park D Y, Urgiles D E, et al. Electro formed iron and FeCo alloy. Electrochimca Acta,2004,49(25):4397-4404
    [105]Zhang Y, Ivey D G. Characterization of Co-Fe and Co-Fe-Ni soft magnetic films electrodeposited from citrate-stabilized sulfate baths. Materials Science and Engineering B,2007,140(1-2):15-22
    [106]Brankovic S R, Bae S E, Litvinow D. The effect of Fe3+ on magnetic moment of electrodeposited CoFe alloys-Experimental study and analytical model. Electrochimica Acta,2008,53(20):5934-5940
    [107]Koza J A, Uhlemann M, Gebert A, et al. The effect of a magnetic field on the pH value in front of the electrode surface during the electrodeposition of Co, Fe and CoFe alloys. Journal of Electroanalytical Chemistry,2008,617(2):194-202
    [108]Koza J A, Uhlemann M, Gebert A, et al. The effect of magnetic fields on the electrodeposition of CoFe alloys. Electrochimica Acta,2008,53(16): 5344-5353
    [109]Bai A, Hu C C. Iron-cobalt and iron-cobalt-nickel nanowires deposited by menas of cyclic voltammetry and pulse-reverse electroplating. Electrochemistry Communications,2003,5(1):78-82
    [110]Zarpellon J, Jurca H F, Mattoso N, et al. Morphology, structure and magnetism of FeCo thin films electrodeposited on Hydrogen-terminated Si(111) surfaces. Journal of Colloid and Interface Science,2007,316(2):510-516
    [111]Li Y, Jiang H, Huang W, et al. Effects of peak current density on the mechanical properties of nanocrystalline Ni-Co alloys produced by pulse electrodeposition. Applied Surface Science,2008,254(21):6865-6869
    [112]Lupi C, Dell-Era A, Pasquali M. Nickel-coblat electrodeposited alloys for hydrogen evolution in alkaline media. International Journal of Hydrogen Energy,2009,34(5):2101-2106.
    [113]Gu C, Lian J, Jiang Q, et al. Ductile-brittle-ductile transition in an electrodeposited 13 nanometer grain sized Ni-8.6wt.%Co alloy. Materials Science and Engineering A,2007,459(1):75-81
    [114]Tury B, Lakatos-Varsanyi M, Roy S. Ni-Co alloys plated by pulse currents. Surface and coatings Technology,2006,200(24):6713-6717
    [115]Gomez E, Pane S, Valles E. Electrodeposition of Co-Ni and Co-Ni-Cu systems in sulphate-citrate medium. Electrochimica Acta,2005,51(1):146-153
    [116]Golodnitsky D, Rosenberg Y, Ulus A. The role of anion additives in the electrodeposition of nickel-cobalt alloys from sulfamate electrolyte. Electrochimica Acta,2002,47(10):2707-2714
    [117]Marikkannu K R, Kalaignan G P, Wasudevan T. The role of additives in the electrodeposition of nickel-cobalt alloy from acetate electrolyte. Journal of Alloys and Compounds,2007,438(1-2):332-336
    [118]Li Y, Jiang H, Wang D, et al. Effects of saccharin and cobalt concentration in electrolytic solution on microhardness of nanocrystalline Ni-Co alloys. Surface and Coatings Technology,2008,202(20):4952-4956
    [119]Pane S, Gomez E, Garcia-Amoros J, et al. Modulation of the magneitc properties of CoNi coatings by electrodeposition in the presence of a redox cationic surfactant. Applied Surface Science,2006,253(5):2964-2968
    [120]Gomez E, Pane S, Alcobe X, et al. Influence of a cationic surfactant in the properties of cobalt-nickel electrodeposits. Electrochimica Acta,2006,51(26): 5703-5709
    [121]Qiao G, Jing T, Wang N, et al. High-speed jet electrodeposition and microstructure of nanocrystalline Ni-Co alloys. Electrochimica Acta,2005, 51(1):85-89
    [122]Gomez E, Ramirez J, Valles E. Electrodeposition of Co-Ni alloys. Journal of Applied Electrochemisty,1998,28(1):71-79
    [123]Grande W C. The electrodeposition of thin films of Nickel-Iron:[dissertation]. San Diego:University of California,1991:1-50
    [124]Akiyama T, Fukushima H. ISIJ International,1992,32(7):787
    [125]Andricacos P C, Romankiw L T. Magnetically soft materials in data storage, in Advances in electrochemical science and engineering, Gerischer H and Tobias C W (eds.), New York:VCH Publishers,1994,3():227
    [126]陈天玉.镀镍合金.北京:化学工业出版社,2007:1-166
    [127]Lemehaute C, Rocher E. Electrodeposition of Stress-Insensitive Ni-Fe and Ni-Fe-Cu Magnetic Alloys. IBM J. Res. Dev.,1965,9(2):141-146
    [128]Andricacos P C, Robertson N. Future directions in electroplated materials for thin-film recording heads. IBM J. Res. Develop.,1998,42 (5):671-680
    [129]Coey J M D. Magnetic materials. Journal of alloys and compounds,2001, 326(1):2-6
    [130]Horkans J. On the role of buffers and anions in NiFe electrodeposition. Journal of Elctrochemistry Society,1979,126(11):1861-1867
    [131]Horkans J. Effect of plating parameters on electrodeposited NiFe. Journal of Electrochemistry Society,1981,128(1):45-49
    [132]Yin K M, Lin B T. Effects of boric acid on the electrodeposition of iron, nickeland iron-nickel. Surface and Coatings Technology,1996,78(1):205-210
    [133]KielingV C. Parameters influencing the electrodeposition of Ni-Fe alloys. Surface and Coatings Technology,1997,96(2-3):135-139
    [134]Zech N, Landolt D. The influence of boric acid and sulfate ions on the hydrogen formation in Ni-Fe plating electrolytes. Electrochimica Acta,2000, 45(21):3461-3471
    [135]Biallozor S, Lieder M. Study of the electrodepositieon process of NiFe alloys from chloride electrolytes:I. Surface Technology,1984,21(1):1-10
    [136]Bielinski J, Przyluski J. Modification of solution composition in the electrochemical deposition of Ni-Fe alloy films. Surface Technology,1979, 9(1):65-75
    [137]Jostan J L, Bogenschutz A F. The Reduction of Magnetism During the Electrodeposition of Thin Permalloy Films. IEEE Transactions on Magsetics, 1969,5(2):112-114
    [138]Yin K M, Wei J H, Fu J R. Mass transport effects on the electrodeposition of iron-nickel alloys at the present of additives. Journal of Applied electrochemistry,1995,25(6):543-555
    [139]Kim S H, Sohn H J, Joo Y C, et al. Effect of saccharin addition on the microstructure of electrodeposited Fe-36 wt.% Ni alloy. Surface and Coatings Technology,2005,199(1):43-48
    [140]Lieder M, Biallozor S. Study of the electrodepositieon process of NiFe alloys from chloride electrolytes:Ⅱ. Surface Technology,1985,26(1):23-34
    [141]Chu C M. The Effect of Complexing Agents on the Electrodeposition of Fe-Ni Powders. Journal of the Chinese Chemical Society,2003,34(6):689-695
    [142]Afshar A, Dolati A G, Ghorbani M. Electrochemical characterization of the Ni-Fe alloy electrodepositon from chloride-citrate-glycolic acid solutions. Materials Chemistry and Physics,2002,77(2):352-258
    [143]Leith S D, Ramli S, Schwartz D T. Characterization of NixFei1-x (0.10< x< 0.95) Electrodeposition from a Family of Sulfamate-Chloride Electrolytes. Journal of Electrochemical Society,1999,146(4):1431-1435
    [144]Leith S D. Electrodeposition of NiFe 3-D Microstructures:[dissertation]. Wahington:University of Washington,1998,9-23
    [145]Dahms H, Croll I M. The anomalous codeposition of iron-nickel alloys. Journal of Electrochemistry Sociedy,1965,112(8):771-775
    [146]Medina J A, Schwartz D T. Elelctrodeposition of flow-induced composition modulated NiFe alloys in the uniform injection cell. Electrochimica Acta,1997, 42(17):2679-2684
    [147]Andricacos P C, Arana C, Tabib J, et al. Electrodeposition of Nickel-Iron alloys. Journal of Electrochemistry Society,1989,136(5):1336-1340
    [148]Lim C Y, Huang Q, Xie X, et al. Development of an electrodeposited nanomold from compositionally modulated alloys. Journal of Applied Electrochemistry, 2004,34(8):857-866
    [149]Egberts P, Bordersen P, Hibbard G D. Mesoscale structure in electrodeposited nanocrystalline Ni-Fe alloys. Materials Science and Engineering A,2006, 441(1-2):336-341
    [150]Egberts P, Hibbard G D. Mesoscale compositionally modulated nanocrystalline Ni-Fe electrodeposits for nanopatterning applications. Journal of Nanomaterials, 2008,2008():1-8
    [151]Kockar H, Alper M, Topcu H. Effect of potantiostatic waveforms on properties of electrodeposited NiFe alloy films. The European Physical Journal B,2004, 42(4):497-501
    [152]Alper M, Kockar H, Kuru H, et al. Influence of deposition potentials applied in continuous and pulse waveforms on magnetic properties of electrodeposited nickel-iron films. Sensors and Actuators A,2006,129(1-2):184-187
    [153]Hadian S E, Gabe D R. Residual stresses in electrodeposits of nickel and nickel-iron alloys. Surface and Coatings Technology,1999,122(2-3):118-135
    [154]Yin K M, Jan S L, Lee C C. Current pulse with reverse plating of nickel-iron alloys in a sulphate bath. Surface and Coatings Technology,1997,88(1-3): 219-225
    [155]Yin K M, Jan S L. Current pulse plating of nickel-iron alloys on rotating disk electrodes. Surface and Coatings Technology,1996,79(1-3):252-262
    [156]Trudeau M L. Nanocrystalline Fe and Fe-riched Fe-Ni through electrodeposition. Nanosturctrued Materials,1999,12(1-4):55-60
    [157]Grimmett D L, Schwartz M, Nobe K. Pulsed electrodeposition of Iron-Nickel alloys. Journal of Elechemistry Society,1990,137(11):3414-3418
    [158]Grimmett D L, Schwartz M, Nobe K. A comparison of DC and pulsed Fe-Ni alloys deposits. Journal of the Electrochemistry Society,1993,140(4): 973-978
    [159]Alper M, Kockar H, kuru H, et al. Influence of deposition potentials applied in continuous and pulse waveforms on magnetic properties of electrodeposited nickel-iron films. Sensors and Actuators A,2006,129(1-2):184-187
    [160]Cheung C. Synthesis and microstructural characterization of electrodeposited nanocrystalline soft magnets:[dissertation]. Kingston:Queen's University, 2001,1-163
    [161]Li H Q. Fabrication, thermail stability and mechanical characterization of electrodeposited nanocrystalline face centered cubic Ni-Fe alloys: [dissertation]. Florida:University of Florida,2004,1-159
    [162]Mccrea J L, Palumbo G, Hibbard G D, et al. Properties and applications for electrodeposited nanocrystalline Fe-Ni alloys. Reviews on Advanced Materials Science,2003,5(3):252-258
    [163]Cheung C, Djuanda F, Erb U, et al. Electrodeposition of nanocrystalline Ni-Fe alloys. NanoStructured Materials,1995,5(5):513-523
    [164]Ha C S, Park Y B. Development of growth texture in nanocrystalline Fe-Ni alloys. Materials Science Forum,2005,495-497():749-754
    [165]Czerwinski F, Li H, Megret M, et al. The evolution of texture and grain size during annealing of nanocrystalline Ni-45%Fe electrodeposits. Scripta Materials,1997,37(12):1967-1972
    [166]Seo J H, kim J K, Yim T H, et al. Textrures and grain growth in nanocrystalline Fe-Ni alloys. Materials science forum,2005,475-479():3483-3488
    [167]Ebrahimi F, Li H. Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys. Scripta Materialia,2006,55(3):263-366
    [168]Brooks I, Lin P, Palumbo G, et al. Analysis of hardness-tensile strength relationships for electroformed nanocrystalline materials. Materials Science and Engineering A,2008,491(1-2):412-419
    [169]Fan G J, Fu L F, Wang G Y, et al. Mechanical behavior of a bulk nanocrystalline Ni-Fe alloy. Journal of Alloys and Compounds,2007,434-435():298-300
    [170]Tabachnikova E D, Podolskiy A V, Bengus V Z, et al. Mechanical properties of nanocrystalline Ni-20%Fe alloy at temperatures form 300 to 4.2K. Materials Science and Engineering A,2009,503(1-2):110-113
    [171]Li H, Liaw P K, Choo H, et al. Temperature-dependent mechanical behavior of a nanostructured Ni-Fe alloy. Materials Science and Engineering A,2008, 493(1-2):93-96
    [172]Czerwinski F. The microstructure and internal stress of Fe-Ni nanocrystalline alloys electrodeposited without a stress-reliever. Electrochimica Acta,1998, 44(4):667-675
    [173]Li H Q, Ebrahimi F. Synthesis and characterization of electrodeposited nanocrystalline nickel-iron alloys. Materials Science and Engineering A,2003, 347(1-2):93-101
    [174]Marita Y, Yaacob I I. Influence of Grain Size on Magnetic Properties of Electroplated NiFe. Key Engineering Materials,2006,326-328():381-384
    [175]Li H Q, Ebrahimi F. An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys. Acta Materialia,2003, 51(13):3905-3913
    [176]Kockar H, Alper M, Kuru H, et al. Magnetic anisotropy and its thickness dependence for NiFe alloy films electrodeposited on polycrystalline Cu substrates. Journal of Magnetism and Magnetic Materials,2006,304(2): e736-e738
    [177]Spada E R, Oliveira L S, Rocha A S, et al. Thin films of FexNi1-x electroplated on silicon (100). Journal of Magnetism and Magnetic materials,2004, 272-276():e891-e892
    [178]Oliveira L S, Cunha J B M, Spada E R, et al. Mossbauer spectroscopy and magnetic properties in thin films of FexNi100-x electroplated on silicon (100). Applied Surface Science,2007,254(1):347-350
    [179]Seet H L, Li X P, Ning N, et al. Effect of Magnetic Coating Layer Thickness on the Magnetic Properties of Electrodeposited NiFe/Cu Composite Wires. IEEE Transactions on Magnetics,2006,42(10):2784-2786
    [180]Khan H R, Petrikowski K. Anisotropic structural and magnetic properties of arrays of Fe26Ni74 nanowires electrodeposited in the pores of anodic alumina. Journal of Magnetism and Magnetic Materials,2006,215-216():526-528
    [181]Chiriac H, Moga A E, Urse M, et al. Preparation and magnetic properties of electrodeposited magnetic nanowires. Sensors and Actuators A,2003,106(1-3): 348-351
    [182]Wu C G, Lin H L, Shau N L. Magnetic nanowires via template electrodeposition. Journal of Solid State Electrochemistry,2006,10(4):198-202
    [183]Piraux L, Renard K, Guillemet R, et al. Template-grown NiFe/Cu/NiFe nanowires for spin transfer devices. Nano Letters,2007,7(9):2563-2567
    [184]Solmaz R, Kardas G. Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochimica Acta,2009,54(14):3726-3734
    [185]Hu C C, Wu Y R. Bipolar performance of the electroplated iron-nickel deposits for water electrolysis. Materials Chemistry and Physics,2003,82(3):588-596
    [186]El-Wahidy E F, Abou-Aly A I, Gomaa N G, et al. Effect of iron content and annealing temperature on the corrosion behavior of Ni100-xFex. Journal of Materials Science,1999,34(12):2971-2978
    [187]Steward R V, Fan G J, Fu L F, et al. Pitting behavior of a bulk Ni-18wt.%Fe nanocrystalline alloy. Corrosion Science,2008,50(4):946-953
    [188]Myung N V, Nobe K. Electrodeposited iron group thin-film alloys structure-property relationships. Journal of the Electrochemical Society,2001, 148(3):C136-C144
    [189]Coey J M D, Hinds G, Magnetic electrodeposition. Journal of Alloys and Compounds,2001,326(1-2):238-245
    [190]Ni Mhiochain T R, Coey J M D, Adapted diffusion limited aggregation model for the effects of magnetic fields on fractal electrodeposits. Journal of Magnetismand Magnetic Materials,2001,226-230():1281-1283
    [191]Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport. Electrochemistry Communications,2001,3(5): 215-218
    [192]Ohno I, Mukai M. The effect of a magnetic field on the electrodeposition of iron-nickel alloy. Electrodeposition and Surface Treatment,1975,3(3): 213-218
    [193]Ispas A, Matsushima H, Plieth W, et al. Influence of a magnetic field on the electrodeposition of nickel-iron alloys. Electrochimica Acta,2007,52(8): 2785-2795
    [194]Fricoteaux P, Rousse C. Influence of substrate, pH and magnetic field onto composition and current efficiency of electrodeposited Ni-Fe alloys. Journal of Electroanalytical Chemistry,2008,612(1):9-14
    [195]Chopart J P, Aaboubi O, Msellak K. Electrochemical characterization of Ni-Fe alloy codeposition under MHD control. Journal of Solid State Electrochemistry, 2007,11(6):703-710
    [196]Yeh Y M, Tu G C, Fang T H. Nanomechanical properties of nanocrystalline Ni-Fe mold insert. Journal of Alloys and Compounds,2004,372(1-2):224-230
    [197]Kanigicherla V K P, Kelly K W, Ma E, et al. Enhanced adhesion of PMMA to copper with black oxide for electrodeposition high aspect ratio nickel-iron microstructures. Microsystem Technologies,1998,4(2):77-81
    [198]Giro F, Bedner K, Dhum C, et al. Pulsed electrodeposition of high aspect ration NiFe assemblies and its influence on spatial alloy composition. Microsystem Technologies,2008,14(8):1111-1115
    [199]Seet H L, Li X P, Hong M H, et al. Electrodeposition of Ni-Fe micro-pillars using laser drilled templates. Journal of Materials Processing Technology,2007, 192-193():346-349
    [200]Myung N V, Park D Y, Yoo B Y, et al. Development of electroplated magnetic materials for MEMS. Journal of Magnetism and Magnetic Materials,2003, 265(2):189-198
    [201]Quemper J M, Nicolas S, Gilles J P, et al. Permalloy electroplating through photoresist molds. Sensors and Actuators A,1999,74(1-3):1-4
    [202]Osaka T, Takai M, Hayashi K, et al. A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature,1998,392(): 796-798
    [203]Park D Y, Yoo B Y, Kelcher S, et al. Electrodeposition of low-stress high magnetic moment Fe-rich FeCoNi thin films. Electrochimica Acta,2006, 51(12):2523-2530
    [204]Yoo B Y, Hernandez S C, Park D Y, et al. Electrodeposition of FeCoNi thin films for magnetic-MEMS devices. Electrochimica Acta,2006,51(28): 6346-6352
    [205]Sverdlov Y, Rosenberg Y, Rozenbery Y I, et al. The electrodeposition of cobalt-nickel-iron high aspect ratio thick film structures for magnetic MEMS applications. Microelectronic Engineering,2004,76(1-4):258-265
    [206]Zhang Y, Ivey D G. Electroplating of nanocrystalline CoFeNi soft magnetic thin films from a stable citrate-based bath. Chemisitry of Materials,2004,16(7): 1189-1194
    [207]Jafarian M, Azizi O, Gobal F, et al. Kinetics and electrocatalytic behavior of nanocrystalline CoNiFe alloy in hydrogen evolution reaction. International Journal of Hydrogen Energy,2007,32(12):1686-1693
    [208]Epelboin I, Joussellin M, Wiart R. Impedance of nickel deposition from sulfate and chloride electrolytes. Journal of Electroanalytical Chemistry,1979,101(2): 281-284
    [209]Epelboin I, Joussellin M, Wiart R. Impedance measurements for nickel deposition sulfate and chloride electrolytes. Journal of Electroanalytical Chemistry,1981,119(1):61-71
    [210]Chassing E, Joussellin M, Wiart R. The kinetics of nickel electrodeposition inhibition by adsorbed hydrogen and anions. Jourlan of Electroanalytical Chemistry,1983,157(1):75-83
    [211]Proud W G, Muller C. The electrodeposition of nickel on vitreous carbon: impedance studies. Electrochimica Acta,1993,38(2-3):405-413
    [212]Aaboubi O, Amblard J, Chopart J P, et al. A temperature and electrochemical impedance spectroscopy ananlysis of nickel electrocrystallization from a Watts soultion. Journal of Physcial Chemistry B,2001,105(30):7205-7210
    [213]Mohanty U S, Tripathy B C, Singh P, et al. Effect of Cd2+on the electrodeposition of nickel from sulfate solutions. Part II:Polarisation behaviour. Journal of Electroanalytical Chemistry,2004,566(1):47-52
    [214]Mohanty U S, Tripathy B C, Singh P, et al. Effect of Cr3+ on the electrodeposition of nickel from acidic sulfate solutions. Minerals Engineering, 2002,15(7):531-537
    [215]Orinakova R, Turonova A, Kladekova D, et al. Recent developments in the electrodeposition of nickel and some nickel-based alloys. Journal of Applied Electrochemistry,2006,36(9):957-972
    [216]Deligianni H, Romankiw L T. In situ surface pH measurement during electrolysis using a rotating pH electrode. IBM J. Res. Develop.1993,37(2): 85-95
    [217]Zhang Y, Liu M, Wang M, et al. In situ monitoring Ni electrodeposition and stripping on gold electrode surface in a static magnetic field using an electrochemical quartz crystal impedance system. Sensors and Actuators B, 2007,123(1):444-453
    [218]Munoz A G, Salinas D R, Bessone J B. First stages of Ni deposition onto vitreous carbon from sulfate solutions. Thin Solid Films,2003,429(1-2): 119-128
    [219]Mockute D, Bernotiene G, Vilkaite R. Reaction mechanism of some benzene sulfonamide and saccharin derivatives during nickel electrodeposition in Watts-type electrolyte. Surface and Coatings Technology,2002,160(2-3): 152-157
    [220]Mockute D, Bernotiene G. The interaction of additives with the cathode in a mixture of saccharin,2-butyne-1,4-diol and phthalimide during nickel electrodeposition in a Watts-type electrolyte. Surface and Coatings Technology, 2000,135(1):42-47
    [221]Li C, Li X, Wang Z, et al. Nickel electrodeposition from novel citrate bath. Transactions of Nonferrous Metals Society of China,2007,17(6):1300-1306
    [222]Podlaha E J, Bonhote C, Landolt D. A mathematical model and experimental study of the electrodeposition of Ni-Cu alloys from complexing electrolytes. Electrochimica Acta,1994,39(18):2649-2657
    [223]Milchev A. Electrocrystallization:Fundamentals of Nucleation and Growth. Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2002
    [224]Paunovic M, Schlesinger M. Fundamentals of Electrochemical Deposition, Second Edition. A John Wiley and Sons, Inc., Publication,2006
    [225]Grujicic D, Pesic B. Electrochemical and AFM study of nickel nucleation mechanisms on vitreous carbon from ammonium sulfate solutions. Electrochimica Acta,2006,51(13):2678-2690
    [226]Sasaki K Y. A study of the electrodeposition of iron-group elemental metals and their binary alloys:[dissertation]. San Diego:University of California,1996, 74-95
    [227]Dahms H, Croll I M. The Anomalous codeposition of iron-nickel alloys. Journal of the Electrochemical Society,1965,112(8):771-775
    [228]Romankiw L T. Proceedings of the symposium on electrodeposition technology, theory and pratice, Romankiw L T and Turner D R, Eds., The Electrochemical Society, New Jersey,1987,87-17:301
    [229]Frederic M and Landau U. Magnetic materials, Processes and devices. Romankiw L T and Herman D A, Jr., Editors, The Electrochemical Society Proceedings,1990,90-8:461
    [230]Gangasingh D, Talbot B. Anomalous electrodeposition of nickel-rion. Journal of the Electrochemical Society,1991,138(12):3605-3611
    [231]Hessami S, Tobias W. A mathematical model for anomalous codeposition of nickel-iron on a rotating disk electrode. Journal of the Electrochemical Society, 1989,136(12):3611-3916
    [232]Grande W C, Talbot J B. Electrodeposition of thin films of nickel-iron, Ⅱ modeling. Journal of the Electrochemical Society,1993,140(3):675-681
    [233]Matlosz M. Competitive adsorption effects in the electrodeposition of iron-nickel alloys. Journal of the Electrochemical Society,1993,140(8): 2272-2279
    [234]Harris T M, Clair J S. Testing the role of metlal hydrolysis in the anomalous electrodeposition of Ni-Fe alloys. Journal of the Electrochemical Society,1996, 143(12):3918-3922
    [235]Baker B C, West A. Electrochemical impedance spectroscopy study of nickel-iron deposition, Ⅱ. Theoretical interpretation. Journal of the Electrochemical Society,1997,144(1):169-175
    [236]Zech N, Podlaha E J, Landolt D. Anomalous codeposition of iron group metal, I. Experimental results. Journal of the Electrochemical Society,1999,146(8): 2886-2891
    [237]Zech N, Podlaha E J, Landolt D. Anomalous codeposition of iron group metal, Ⅱ. Mathematical model. Journal of the Electrochemical Society,1999,146(8): 2892-2900
    [238]Vaes J, Fransaer J, Celis J P. Cathodic inhibition effects during NiFe and ZnNi alloy deposition. Journal of the Electrochemical Society,2002,149(11): C567-C572
    [239]Vaes J, Fransaer J, Celis J P. The role of metal hydroxides in NiFe deposition. Journal of the Electrochemical Society,2000,147(10):3718-3724
    [240]Larson R S. The role of homogeneous chemical kinetics in the anomalous codeposition of binary alloys. Journal of the Electrochemical Society,2007, 154(8):D427-D434
    [241]Harris T M, Clair J S. Testing the role of metlal hyrolysis in the anomalous electrodeposition of Ni-Fe alloys. Journal of the Electrochemical Society,1996, 143(12):3918-3922
    [242]Bento F R, Mascaro L H. Electrocrystallisation of Fe-Ni alloys from chloride electrolytes. Surface and Coatings Technology,2006,201(3-4):1752-1756
    [243]卢志超,倪晓俊,张俊峰等。金属薄膜连续电沉积装置及其方法。中国专利,公开号:CN 1793434A,2006
    [244]崔章铉,任泰泓,姜桌等。制造镍-铁合金薄箔的设备及方法。中国专利, 公开号:CN1297495A,2001
    [245]David E. Dyke, Wayne Neilson. Apparatus for making metal foil. US patent, NO.:5360525.1994
    [246]Shigetada Motohashi, Masashi Amakat. Method and apparatus for producing electrolytic copper foil. U. S. Patent, NO.:6663758,2003
    [247]Kazuko Taniguchi, Makoto Dobashi, Hisao Sakai, et al. Electrodeposition apparatus for producing electrodeposited copper foil and electrodeposited copper foil produced by the appatus. U. S. Patent, NO.:6652725,2003
    [248]Janghyun Choi, Taihong Yim, Tak Kang, et al. Apparatus and method for manufacturing Ni-Fe alloy thin foil. U. S. Patent, No.:6428672,2002
    [249]Palliyil K. Subramanyan, Mieczyslaw Paul Makowski, Robert Joseph Setele. Methode of forming iron foil at high current densities. U. S. Patent, No. 4076597,1978
    [250]Gijsbertus C. Van Haastrecht, Joop N. Mooij. Method of making iron foil by electrodeposition. U. S. Patent, No.:5173168,1992
    [251]卢维昌,徐永兰,赵韫等.电解成型制备纯铁箔的方法。中国专利,公开号:CN 1066478A,1992
    [252]梁点植,林承麟,金相范等.制造电解铜箔的电解质溶液和使用该电解质溶液的电解铜制造方法。中国专利,公开号:CN 1500915A,2004
    [253]Diaz S L, Calderon J A, Barcia O E, et al. Electrodeposition of iron in sulphate solutions. Electrochimica Acta,2008,53(25):7426-7435
    [254]阿伦.J.巴德等著,绍元华等译.电化学方法、原理和应用,第二版.北京:化学工业出版社,2005,1-200
    [255]Zhang Y, Ivey D G. Electroplating of nanocrystalline CoFeNi soft magnetic thin films from a stable citrate-based bath. Chemical Materials,2004,16(7): 1189-1194
    [256]陈天玉.光亮镀镍.北京:化学工业出版社,2007,30-120
    [257]Baker B C, West A. Electrochemical impedance spectroscopy study of nickel-iron deposition, I. Experimental Results. Journal of the Electrochemical Society,1997,144(1):164-169
    [258]Epelboin I, Wiart R. Mechanism of the electrocrystallization of nickel and cobalt in acidic solution. Journal of the Electrochemical Society,1971, 118(10):1577-1582
    [259]曹楚南,张鉴青.电化学阻抗谱导论.北京:科学出版社,2002,37-75
    [260]Fleischmann M, Saraby-Reinties A. The simultaneous deposition of nickel and hydrogen on vitreous carbon. Electrochimca Acta,1984,29(1):69-75
    [261]Ispas A, Matsushima H, Bund A, et al. Nucleation and growth of thin nickel layers under the influence of a magnetic field. Journal of Electroanalytical Chemistry,2009,626(1-2):174-182
    [262]Staikov G, Juttner K, Lorenz W J, et al. Metal deposition in the nanometer range. Electrochimca Acta,1994,39(8-9):1019-1029
    [263]Budevski E, Staikov G, Lorenz W J. Electrochemical Phase Formation and Growth, VCH, Weinheim,1996.
    [264]Herrero E, Buller L J, Abruna H D. Underpotential Deposition at Single Crystal Surfaces of Au, Pt, Ag and Other Materials. Chemical Reviews,2001,101(7): 1897-1930
    [265]Kolb, D. M.; in:Advances in Electrochemical Science and Engineering, Alkire, R. C. and Kolb, D. M. (Eds.), Wiley-VCH, Weinheim,2001.
    [266]Kolb D M, Przasnyski M, Gerischer H. Underpotential deposition of metals and work function differences. Journal of Electroanalytical Chemistry,1974,54(1): 25-38
    [267]Ogaki K, Itaya K. In situ scanning tunneling microscopy of underpotential and bulk deposition of silver on gold (111). Electrochimca Acta,1995,40(10): 1249-1257
    [268]El-Shafei A A. Study of nickel upd at a polycrystalline Pt electrode and its influence on HCOOH oxidation in acidic and nearly neutral media. Journal of Electroanalytical Chemistry,1998,447(1-2):81-89
    [269]Franaszczuck K, Sobkowski J. Nickel adsorption on a platinized platinum electrode. Surface Science,1988,204(2):530-536.
    [270]Kania S, Holze R. Surface enhanced Raman spectroscopy of anions adsorbed on foreign metal modified gold electrodes. Surface Science,1998,408(1-3): 252-259
    [271]Chatenet M, Faure R, Soldo-Olivier Y. Nickel-underpotential deposition on Pt(110) in sulphate-containing media. Journal of Electroanalytical Chemistry, 2005,580(2):275-283
    [272]Chatenet M, Soldo-Olivier Y, Chainet E, et al. Electrochemical quartz crystal microbalance determination of nickel formal partial charge number during nickel-underpotential deposition on platinum in sulphate media. Electrochemistry Communications,2007,9(7):1463-1468
    [273]Lee J Y, Kim J W, Kim M K, et al. Journal of the Electrochemical Society,2004, 151(1):C8-C14
    [274]Paddon C A, Compton R G. Underpotential Deposition of Lithium on Platinum Single Crystal Electrodes in Tetrahydrofuran. Journal of Physical Chemistry C, 2007,111 (26):9016-9018
    [275]Yan J-W, Wu J-M, Wu Q, et al. Competitive Adsorption and Surface Alloying: Underpotential Deposition of Sn on Sulfate-Covered Cu(111). Langmuir,2003, 19(19):7948-7954
    [276]Omar I H, Pauling H J, Jiittner K. Underpotential Deposition of Copper on Au (111) Single-Crystal Surfaces, Journal of the Electrochemical Society,1993, 140(8):2187
    [277]Bubendorff J L, Cagnon L, Costa-Kieling V, et al. Anion promoted Ni-underpotential deposition on Au(111). Surface Science,1997,384(1-3): L836-L843
    [278]Vaskevich A, Sinapi F, Mekhalif Z, et al. Underpotential Deposition of Nickel on{111}-Textured Gold Electrodes in Dimethyl Sulfoxide. Journal of the Electrochemical Society,2005,152 (11):C744-C750
    [279]Mann O, Freyland W. Electrocrystallization of Distinct Ni Nanostructures at the Ionic Liquid/Au(111) Interface:An Electrochemical and in-Situ STM Investigation. Journal of Physical Chemistry C,2007,111 (27):9832-9838
    [280]Morin S, Lachenwitzer A, Moller F A, et al. Comparative In Situ STM Studies on the Electrodeposition of Ultrathin Nickel Films on Ag(111) and Au(111) Electrodes. Journal of The Electrochemical Society,1999,146 (3):1013-1018
    [281]Sudha V, Sangaranarayanan M V. Underpotential Deposition of Metals: Structural and Thermodynamic Considerations Journal Physical Chemistry B 2002,106 (10):2699-2707
    [282]Oviedo O A, Leiva E P M, Rojas M. Energetic and entropic contributions to the underpotential/overpotential deposition shifts on single crystal surfaces from lattice dynamics. Electrochimica Acta,2006,51(17):3526-3536
    [283]Sanchez C G, Leiva E P M. Relevance of Heterometallic Binding Energy for Metal Underpotential Deposition. Langmuir,2001,17 (7):2219-2227
    [284]Milchev A. Electrocrystallization:Nucleation and Growth of Nano-Clusterson Solid Surfaces. Russian Journal of Electrochemistry,2008,44(6):619-645
    [285]Zhang Y, Liu M, Wang M, et al. In situ monitoring Ni electrodeposition and stripping on gold electrode surface in a static magnetic field using an electrochemical quartz crystal impedance system. Sensors and Actuators B, 2007,123(1):444-453
    [286]Paloukis F, Zafeiratos S, Drakopoulos V, et al. Electronic structure modifications and HER of annealed electrodeposited Ni overlayers on Mo polycrystalline surface. Electrochimica Acta,2008,53(27):8015-8025
    [287]Sattar M A, Conway B E. Electrochemistry of the nickel-oxide electrode-VI. Surface oxidation of nickel anodes in alkaline solution. Electrochimica Acta, 1969,14(8):695-710
    [288]Hu C C, Wu Y R. Bipolar performance of the electroplated iron-nickel deposits for water electrolysis. Materials Chemistry and Physics.2003,82(3):588-596
    [289]Moller F A, Kintrup J, Lachenwitzer A, et al. In situ STM study of the electrodeposition and anodic dissolution of ultrathin epitaxial Ni films on Au (111). Physical Review B,1997,56(19):12506-12518
    [290]Harrison J A, Lorenz W J. The simulation of two dimensional nucleation and growth for the potentiostatic and galvanostatic case. Journal of Electroanalytical Chemistry,1977,76(3):375-382
    [291]Vazquez-Gomez L, Cattarina S, Guerriero P, et al. Hydrogen evolution on porous Ni cathodes modified by spontaneous deposition of Ru or Ir. Electrochimica Acta,2008,53(28):8310-8318
    [292]Xu C, Hu Y, Ron J, et al. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation. Electrochemistry Communications,2007,9(8): 2009-2012
    [293]Golikand A N, Asgari M, Maragheh M G, et al. Methanol electrooxidation on a nickel electrode modified by nickel-dimethylglyoxime complex formed by electrochemical synthesis. Journal of Electroanalytical Chemistry,2006,588(1): 155-160
    [294]Singh R N, Singh A, Mishra D. Influence of the nature of conductive support on the electrocatalytic activity of electrodeposited Ni films towards methanol oxidation in 1 M KOH. International journal of hydrogen energy,2008,33(23): 6878-6885
    [295]Ciszewski A, Milcarek G. Kinetics of electrocatalytic oxidation of formaldehyde on a nickel porphyrin-based glassy carbon electrode. Journal of Electroanalytical Chemistry,1999,469(1):18-26
    [296][英]R.S.特贝尔,D.J.克雷克著,北京冶金研究所《磁性材料》翻译组译,磁性材料.北京:科学出版社,1979,50-80
    [297]Robertson N, Lu H L, Tsang C. High performance write head using NiFe 45/55. IEEE Transactions on magnetics,1997,33(5):2818-2820
    [298]Mike Ming Yu Chen, Thomas Edward Dinan, April Hixson-Goldsmith, et al. Method for electroplating a body-centered cubic nickel-iron alloy thin film with a high saturation flux density. U. S. Patent, No.7001499,2006.
    [299]Kim J G, Han K H, Song S H, et al. Magnetic properties of sputtered soft magnetic Fe-Ni films with an uniaxial anisotropy. Thin Solid Films,2003, 440(1-2):54-59
    [300]Gale M T. Replication techniques for diffractive optical elements. Microelectronic Engineering,1997.34(3-4):321-339
    [301]Lee R A. Micro-technology for anti-counterfeiting. Microelectronic Engineering,2000,53(1-4):513-516
    [302]Leech P W, Zeidler H. Microrelief structures for anti-counterfeiting applications Microelectronic Engineering,2003,65(4):439-446
    [303]Gombert A, Rose K, Heinzel A, et al. Antireflective submicrometer surface-relief gratings for solar applications. Solar Energy Materials and Solar Cells,1998,54(1-4):333-342
    [304]Baac H, Lee J H, Seo J-M, et al. Submicron-scale topographical control of cell growth using holographic surface relief grating. Materials Science and Engineering C,2004,24(1-2):209-212
    [305]Monkkonen K, Lautanen J, Kettunen V, et al. Replication of an antireflecting element in COC plastics using a hot embossing technique. Journal of Materials Chemistry,2000,10(12):2634-2636
    [306]Azzaroni O, Schilardi P L, Salvarezza R C. Metal electrodeposition on self-assembled monolayers:a versatile tool for pattern transfer on metal thin films. Electrochimica Acta,2003,48(20-22):3107-3114
    [307]Kim S B, Kim K T, Park C J, et al. Electrochemical nucleation and growth of copper on chromium-plated electrodes. Journal of Applied Electrochemistry, 2002,32(11):1247-1255
    [308]Chetty R, Scott K. Direct ethanol fuel cells with catalysed metal mesh anodes. Electrochimica Acta,2007,52(12):4073-4081
    [309]Tian Y, Yang F. Reduction of hexavalent chromium by polypyrrole-modified steel mesh electrode. Journal of Cleaner Production,2007,15(15):1415-1418
    [310]Kim M, Lee J.-Y, Kwon S.-C, et al. Application of small angle neutron scattering to analyze precision nickel mesh for electro-magnetic interference shielding formed by continuous electroforming technique. Physica B,2006, 385-386(2):914-916
    [311]Lee H C, Kim J Y, Noh C H, et al. Selective metal pattern formation and its EMI shielding efficiency. Applied Surface Science,2006,252(8):2665-2672
    [312]Marikar Y M F, Vasu K I. Electrodeposition of the ternary iron-cobalt-nickel alloy from the fluoborate bath part I. Deposition, anode corrosion, mechanism Electrodeposition and Surface Treatment,1974,2(4):281-294
    [313]Marikar Y M F, Vasu K I. Electrodeposition of the ternary iron-cobalt-nickel alloy from the fluoborate bath part II. Structure and properties of the deposits Electrodeposition and Surface Treatment,1974,2(4):295-302
    [314]Winkler M, Griesche J, Tober O, et al. CISCuT absorber layers-the present model of thin film growth. Thin Solid Films,2001,387(1-2):86-88
    [315]Winkler M, Griesche J, Konovalov I, et al. CISCuT-solar cells and modules on the basis of CuInS2 on Cu-tape. Solar Energy,2004,77(6):705-716
    [316]Penndorf J, Winkler M, Tober O, et al. CuInS2 thin film formation on a Cu tape substrate for photovoltaic applications. Solar Energy Materials and Solar Cells, 1998,53(3):285-298
    [317]Winkler M, Tober O, Griesche J, et al. Phase constitution and element distribution in Cu-In-S based absorber layers grown by the CISCuT-process. Thin Solid Films,2000,361-362(1-2):273-277
    [318]Thuvander M, Abraham M, Cerezo A, et al. Thermal stability of electrodeposited nanocrystalline nickel and iron-nickel alloys. Materials Science and Technology,2001,17(8):961-970
    [319]Huang C H. Effect of organic additives on the electro formed nickel alloys. Metal Finishing,1993,91(6):107-110
    [320]Dini J W, Johnson H R, West L A. Plating and Surface Finishing,1978,65(2): 36-40
    [321]Wearmouth W R, Belt K C. Electroforming with Heat-Resistant, Sulfur-Hardened Nickel.,1979,66(10):53-57
    [322]Huang C H, Jan J R, Shu W Y, et al. Study of sulfur embrittlement in electroformed Ni-Re alloy. Journal of Materials Science,2001,36(18): 4385-4391.
    [323]Dokania A K, Kocdemir B, Diebolder R, et al. a to y phase transformation in electrodeposited Invar film by short pulse laser treatment. Materials Science and Engineering A,2007,456(1):64-71.
    [324]Gomes A, da Silva Pereira M I. Zn electrodeposition in the presence of surfactants:Part I. Voltammetric and structural studies. Electrochimica Acta, 2006,52(3):863-871.
    [325]Trejo G, Ortega R, Meas Y, et al. Nucleation and growth of zinc from chloride concentrated solutions. Journal of the Electrochemical Society,1998,145(12): 4090-4097.
    [326]Miranda-Hernandez M, Gonzalez I. Effect of potential on the early stages of nucleation and growt during silver electrocrystallization in ammonium medium on vitreous carbon. Journal of the Electrochemical Society,2004,151(3): C220-C228.
    [327]Milchev A, Zapryanova T. Nucleation andgrowth of copper under combined charge transfer and diffusion limitations:Part I. Electrochimica Acta,2006, 51(14):2926-2933
    [328]Komsiyska L, Staikov G. Electrocrystallization of Au nanoparticles on glassy carbon from HClO4 solution containing [AuC14]-. Electrochimica Acta,2008, 54(2):168-172.
    [329]Radisic A, Vereecken P M, Hannon J B, et al. Quantifying electrochemical nucleation and growth of nanoscale clusters using real-tile kinetic data. Nano Letters,2006,6(2):238-242.
    [330]Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation. Electrochimica Acta,1983,28(7):879-889.
    [331]Abyaneh M Y, Flesichman M. The role of nucleation and of overlap in electrocrystallisation reactions. Electrochimica Acta,1982,27(10):1513-1518.
    [332]Abyaneh M Y. Calculation of overlap for nucleation and three-dimensional growth of centres. Electrochimica Acta,1982,27(9):1329-1334.
    [333]Abyaneh M Y, Fleischmann M. General models for surface nucleation and three-dimensional growth:the effects of concurrent redox reactions and of diffusion. Journal of the Electrochemical Society,1991,138(9):2491-2496.
    [334]Abyaneh M Y. Modelling diffusion controlled electrocrystallisation processes. Journal of Electroanalytical Chemistry,2006,585(2):196-203.
    [335]Gunawardena G, Hills G, Montenegro I, et al. Electrochemical nucleation:Part I. General considerations. Journal of Electroanalytical Chemistry,1982,138(2): 225-239.
    [336]Heerman L, Tarallo A. Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth. Journal of Electroanalytical Chemistry,1999,470(1):70-76.
    [337]Hyde M E, Compton R G. A review of the analysis of multiple nucleation with diffusion controlled growth. Journal of Electroanalytical Chemistry,2003, 549(1):1-12.
    [338]Palomar-Pardave M, Scharifker B R, Arce E M, et al. Nucleation and diffusion-controlled growth of electroactive centers:Reduction of protons during cobalt electrodeposition. Electrochimica Acta,2005,50(24):4736-4745.
    [339]Mann O, Freyland W. Electrocrystallization of distinct Ni nanostructures at the ionic liquid/Au(111) interface:an electrochemical and in-situ STM investigation. Journal of Physical Chemistry C,2007,111(27):9832-9838.
    [340]Koza J A, Uhlemann M, Gebert A, et al. Nucleation and growth of the electrodeposited iron layers in the presence of an external magnetic field. Electrochimica Acta,2008,53(27):7972-7980.
    [341]Majidi M R, Asadpour-Zeynali K, Hafezi B. Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode. Electrochimica Acta,2009,54(3):1119-1126.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.