基于S_nO_2气体传感器阵列电子鼻系统研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着传感器技术、电子技术、计算机技术和模式识别技术的发展,电子鼻的应用领域越来越广泛,受到更普遍的关注。电子鼻的应用领域已经渗透到包括质量控制、环境保护、国家安全、消防、汽车、航空航天、疾病诊断和工业过程控制等领域。研究实现低成本、高精度、高集成度、商品化的电子鼻系统可以弥补传统气体检测方法(如气相色谱法)操作复杂、体积大、便携性差、成本高、无法实时自动监测等缺点。
     论文在分析研究电子鼻系统的原理和特点的基础上,根据BP网络在电子鼻系统中的应用原理,提出了将BP网络模式识别用于电子鼻系统的总体技术方案。系统采用MSP430微处理器作为下位机控制器完成A/D转换、数据存储、RS232串口通信、LCD显示和人际交互,采用PC机作为上位机完成数据采集、模式识别功能。在总体方案的基础上设计了E2PROM、RS232、LCD显示、系统电源、键盘等硬件电路及其软件,能够在MSP430控制器的控制下各部分协同工作,并给出了硬件电路和软件流程。考虑到气体传感器的功耗较大,论文设计了输出电压恒定为5V、最大输出功率为15W的传感器阵列加热控制电路。根据传感器阵列的输出电压信号变化范围,设计了传感器阵列的信号测量、放大及A/D转换电路。根据BP网络应用特点,设计了电子鼻上位机软件和BP网络模式识别算法,并给出了系统的功能测试结果。
     研制的电子鼻系统进行了单一气体定性分析和定量计算实验,实验结果表明BP网络模式识别算法用于电子鼻系统是切实可行的,并取得预定效果。本文还对影响BP网络训练和网络性能的关键因素进行了研究。此外,本系统对于采用传感器阵列和BP网络模式识别算法的电子鼻系统具有一定的通用性。
With the development of sensor, electronics, computer and pattern recognition technology, the application fields of electronic nose systems are being more and more widespread and also receiving a more universal attention. Electronic nose’s applications have penetrated into quality control, environmental protection, national security, fire control, automobile, aerospace, disease diagnostics and industrial process control and other fields. Research and implementation of electronic nose system of low-cost, high accuracy, high integration and commercialization can make up the shortcomings of operation complicated, bulky, poor portability, high cost and no real-time automatic monitoring of traditional gas detection methods (such as gas chromatography).
     With analyzing the principles and characteristics of electronic nose system, the paper puts forward the overall technical solution of electronic nose system using BP neural network as the pattern recognition. According to the theory of BP neural network used in electronic nose systems, system uses the MSP430 microprocessor controller as subordinate computer to complete A/D conversion, data storage, RS232 serial communication, LCD display, and interpersonal interaction, and also uses PC as host computer to complete data acquisition, pattern recognition. On the basis of the overall solution, paper also designs hardware circuits and the software of E2PROM, RS232, LCD display, system power, keyboard and others, all these parts can work together under the control of MSP430, and gives realization of the hardware circuits and program flow of the software. Considering the larger power consumption of gas sensors array, paper designs the heating control circuits with constant 5V and 15W maximum output power. And paper also designs signal measurement, amplification and analog-digital conversion circuits. According to the characteristics of electronic nose using BP network, paper designs host computer software and BP network pattern recognition algorithms, and gives the system’s functional test’s results.
     At the end of the paper, the experimental results of single gas’s qualitative analysis and quantitative calculation using developed system shows that BP network pattern recognition algorithm applied to electronic nose system is feasible, and able to achieve the desired results. Paper also researches key factors which affect the performance and train of BP network. In addition, the system has a certain degree of generality for electronic nose system which using sensor arrays and BP network pattern recognition algorithm.
引文
[1] Korenman Y I,Kalach A V.Application of multi-sensor system for determination of nitro ethane in the air [J].Sensors and Actuators B,2003(88):324-334.
    [2]马学童.室内空气品质监控系统的开发与研制[D].西安:西北工业大学,2002,1-5.
    [3]陈长庆,胡明.气敏传感器的发展[J].材料导报,2003(1):33-35.
    [4] Sauter D,Weimar U,Noetzel G,et al.Development of modular ozone sensor System for application in practical use[J].Sensors and Actuators B,2001(69):1-9.
    [5]刘亭利,胡国清.电子鼻的应用综述[J].传感器世界,2007(8):6-10.
    [6] Claude D,Martine L,Maryam S.Discrimination and identification of a refrigerant gas in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic nose[J].Sensors and Actuators B,2004(98):46-53.
    [7] Young R C,Buttner W J,Linnell B R,et al.Electronic nose for space program applications[J].Sensors and Actuators B,2003(93):7-16.
    [8] Dutta R,Hines E L,Gardner J W,et al.Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach[J].Sensors and Actuators B,2003(94):228–237.
    [9] Claude D,Martine L,Maryam S.Discrimination and identification of a refrigerant gas in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic nose[J].Sensors and Actuators B,2004(98):46-53.
    [10]高大启,杨根兴.电子鼻技术新进展及其应用前景[J].传感器技术,2001,20(9):1-5.
    [11] Du C J,Sun D W.Learning techniques used in computer vision for food quality evaluation: a review[J].Journal of Food Engineering,2006(72):39-55.
    [12] Mart M P,Boqu R,Busto O,et al.Electronic noses in the quality control of alcoholic beverages[J].Trends in Analytical Chemistry,2005,24(1):132-139.
    [13] Andrea B,Paola S,Marcela,et al.Electronic nose based discrimination of a perfumery compound in a fragrance[J].Sensors and Actuators B,2003(92):222-227
    [14] R.C.Luo.Multisensor integration and fusion: issues and approaches [J].SPIE,931:42-47.
    [15] W.F.Wilkens,A.D.Hatman,An electronic analog for the olfactory process[M].Ann.NY Acad.Sci.,964(116):608-609.
    [16] T.M.Buck,F.G.ALLen,M.Dalton,Detection of chemical species by surface effects on metals and semiconductors,in T.Bregman and A.Dravnieks (eds.),Surface Effects in Detection[M],Spartan Books Inc.USA,1965.
    [17] J.M.Richardson,Fusion of multisensor data[J].The Int.J.of Robotics Research,1988,17(6):78-96.
    [18] K.Persand,G.Dodd,Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose [J],Nature,1982(299):352-355.
    [19] M.Garcia,M.Aleixandre,J.Gutierrez,et al.Electronic nose for wine discrimination [J].Sensors and Actuators B,2006(113): 911–916.
    [20] Luo,D,Hosseini,H.G.,Stewart,J.R.Application of ANN with extracted Parameters from an electronic nose in cigarette brand identification [J].Sensors and Actuators B,2004(99):253-257.
    [21] Macagnano,A.,Careche,M.,Herrero,A.,et al.A model to predict fish quality from instrumental features [J].Sensors and Actuators B,2005(111-112):293-298.
    [22] Panigrahi S.,Balasubramanian,S.,Gu,H.,et al.Neural-network-integrated electronic nose system for identification of spoiled beef [J].LWT,2006(39):135-145.
    [23] Suman,M.,Riani,G.,Dalcanale,E.MOS-based artificial olfactory system for the assessment of egg products freshness [J].Sensors and Actuators B,2007,578-582.
    [24] Biolatto,Andrea,Grigioni,Gabriela,Irurueta.Martin,et al.Seasonal variation in the odor characteristics of whole milk powder [J].Food Chemistry,2007(103):960-967.
    [25] Marin,S.,Vinaixa,M.,Brezmes,J.,et al.Use of a MS-electronic nose for prediction of early fungal spoilage of bakery products [J].International Journal of Food Microbiology,2007(114):10-16.
    [26] Bari’e,N.,B”ueking,M.,Rapp,M.A novel electronic nose based on miniaturized SAW sensor arrays coupled with SPME enhanced headspace-analysis and its use for rapid determination of volatile organic compounds in food quality monitoring[J].Sensors and Actuators B,2006(114):482-488.
    [27] Nabarun Bhattacharyya,Sohan Seth,Bipan Tudu,et al.Detection of optimum fermentation time for black tea manufacturing using electronic nose [J].Sensors and Actuators B,2007(122):627–63.
    [28] Antihus Hernandez Gomez,Jun Wang,Guixian Hu,et al.Electronic nose technique potential monitoring mandarin maturity [J].Sensors and Actuators B,2006(113): 347–35.
    [29] M.Falasconi,M.Pardo,G.Sberveglieri,et al.The novel EOS electronic nose and data analysis for evaluating coffee ripening [J].Sensors and Actuators B,2005(110):73–80.
    [30] Vemat-Rossi V,Garcia C,Talon R,et al.Rapid discrimination of meat products and bacterial strains using semi-conductor gas sensors[J].Sensors and Actuators B,1996(37):43-48.
    [31] J.P.Santos,M.J.Fernandez,J.L.Fontecha,et al.SAW sensor array for wine discrimination [J].Sensors and Actuators B 2005(107):291–29.
    [32] Nanto H,T subakino S,Ikeda M,et al.Identification of aromas from wine using quartz-resonator gas sensors in conjunction with neural-network analysis[J].Sensors and Actuators B,1995(24-25):794-796.
    [33]黄骏雄,蒋弘将,阎哲.应用电子鼻检测香烟质量的研究[J].化学通报,2000(1):51-53.
    [34]秦树基,黄林.用于酒类识别的电子鼻研究[J].郑州轻工学院学报,2001,15(04):17-19.
    [35]邹小波,赵杰文.电子鼻在饮料识别中的应用研究[J].农业工程学报,2002,18(02):146-149.
    [36]于慧春,王俊,张红梅,于勇.龙井茶叶品质的电子鼻检测方法[J].农业机械学报,2007,38(07):103-106.
    [37] S.Semancik,R.E.Cavicchi,M.C.Wheeler,et al.Microhotplat platforms for chemical sensor research [J].Sensor and Actuators B,2001(77):579-591.
    [38] Yolanda G M,Conception C O,Jose L P P,et al,Electronics nose based on metal oxide semiconductor sensors and pattern recognition techniques characterization of vegetable oils [J].Analytica Chinica Acta 2001(449):69-80.
    [39] Schreyer S K,Mikkelsen S R.Chemometric analysis of square wave voltammograms for classification and quantitation of untreated beverage samples [J].Sensors and Actuators B,2000(1):47-153.
    [40] Claude D,MartineL,Maryam S.Discrimination and identification of a refrigerant gas in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic nose [J].Sensors and Actuators B,2004,98:46-53.
    [41] Andrea B,Paola S,Marcela,et al.Electronic nose based discrimination of a perfumery compound in a fragrance [J].Sensors and Actuators B,2003,92:222-227.
    [42] Dutta R,Hines E L,Gardner J W,et al.Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach [J].Sensors and Actuators B,2003,94:228-237.
    [43] Shaffer R E,Rose-Pehrsson S L,McGill R A.A comparison study of chemical sensor array pattern recognition algorithms [J].Analytica Chimica Acta,1999,384:305-317.
    [44]李啸,闫卫平,郝应光.气体传感器阵列信号处理的混合神经网络[J].传感器技术,2000:19(4):20-22.
    [45] CosimoD,Pietro S,Lorenzo V.Odor discrimination using adaptive resonance theory [J].Sensors and Actuators B,2000(69):248-252.
    [46] Takahiro H,Haruhiko K,Takashi O.Recognition of human activities by gas sensor response using genetic algorithm [J].Scripta Technica,2001(85):50-61.
    [47]张覃轶,谢长生,黄永彬.气体传感器阵列常用模式识别算法[J].传感器技术,2005,24(5):1-4.
    [48] H L Tuller,R Mlcak.Photo-assisted silicon micromachining:opportunities for chemical sensing [J],Sensors and Actuators B,1996(35-36):255-261.
    [49] P I Neavs,J V Hartfield,A new generation of integrated electronic noses [J],Sensors and Actuators B.1995 (26-27):223-231.
    [50]石志标.智能仿生鼻及其应用研究[D].长春:吉林大学,2004:3-21.
    [51]葛哲学,孙志强.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007:1-8.
    [52]吴昌友.神经网络的研究及应用[D].哈尔滨:东北农业大学.2007:8-18.
    [53]闻新.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003:258-281.
    [54]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2007:43-76.
    [55]董长虹.Matlab神经网络与应用[M].北京:国防工业出版社,2007:64-120.
    [56]魏海坤,徐嗣鑫,宋文忠.神经网络的泛化理论和泛化方法[J].自动化学报2001,27(6):806-815.
    [57]杨建华,候宏,王磊等.基于集成气敏传感器阵列的电子鼻系统环境响应特性分析[J].传感器技术学报.2002(3):197-203.
    [58]姚智慧,徐保港,郝博.基于气体传感器阵列的电子鼻对混合气体定量识别的研究[J].电子工业专用设备,2006(137):57-60.
    [59]史志存.电子鼻及其应用研究[D].北京:中国科学院,2000:9-17.
    [60]秦龙.MSP430单片机常用模块与综合系统实例精讲[M].北京:电子工业出版社,2007:101-117.
    [61]沈建华,杨艳琴.MSP430系列16位超低功耗单片机原理与实践[M].北京:北京航空航天大学出版社,2008:336-390.
    [62]沈建华,杨艳琴,翟骁曙.MSP430系列16位超低功耗单片机实践与系统设计[M].北京:北京航空航天大学出版社,2005:1-162.
    [63]龚建伟,熊光明.Visual C++/Turbo C串口通信编程实践(第2版)[M].北京:电子工业出版社,2007:27-63.
    [64]宋坤,刘锐宁,李伟明.MFC程序开发参考大全[M].北京:人民邮电出版社,2007:113-290.
    [65]明日科技.Visual C++程序开发范例宝典[M].北京:人民邮电出版社,2007:520-568.
    [66]杨高波,亓波.精通MATLAB 7.0混合编程[M].北京:电子工业出版社,2006:45-108.
    [67]刘维.精通Matlab与C/C++混合程序设计[M].北京:北京航空航天大学出版社,2005:21-96.
    [68]飞思科技.MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003:13-69.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.