Acidithiobacilius ferrooxidans和Acidiphilium spp.细菌的分离鉴定及其协同浸出黄铜矿能力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物冶金是一种从利用微生物从矿物中提取有价金属的经济方法,特别适于处理贫矿、表外矿及废矿,并具有成本低、投入小、能耗低、对环境污染小等突出优点。在生物冶金中,对高效浸矿菌种的选育和机理研究意义重大。在本文研究中,从金属硫化矿区酸性矿坑水(AcidMine Drainage,AMD)中分离纯化得到多株具有浸矿功能自养的嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,简称A.f)和兼养的嗜酸杆菌(Acidiphilium spp.)。随后,从这两种菌的分离、鉴定出发,分别对其生理生化特征和浸矿能力进行了研究,同时考察了它们单独及混合浸出黄铜矿的能力,初步探讨了细菌混合浸矿的协同机理。
     首先,本文从广西高峰,湖南浏阳,广东大宝山,江西德兴的酸性矿坑废水中分离得到四株嗜酸氧化亚铁硫杆菌:GF,LY,DBS,DX。其最佳生长温度为30℃,最佳初始生长pH为2.0,化能自养,能利用亚铁、单质硫和葡萄糖生长,不能利用硫代硫酸钠、蛋白胨生长。对四个菌株的亚铁和硫的氧化能力进行研究,发现不同样点筛选得到的菌株之间的氧化活性存在明显差异,同时四株细菌的亚铁氧化活性和硫氧化能力强弱一致,均为GF>LY>DBS>DX。选取其中氧化活性最高的菌株GF进行摇瓶浸出铁闪锌矿实验,浸出30天后,细菌浸出的锌离子浓度达到7302.5 mg/L,而无菌对照中锌离子浓度只有273.2 mg/L。菌株GF浸出铁闪锌矿效果十分明显,能极大的提高铁闪锌矿的浸出率。
     其次,本文从取自全国8个不同矿山的酸性矿坑废水中分离纯化得到25株嗜酸兼性异养的Acidiphilium spp.细菌。随后,对其中一株DY菌株进行生理生化研究,其最适生长温度为30℃,最适初始生长pH为3.5,该菌具有广泛的底物利用特性,能利用葡萄糖、乳糖、蔗糖等多种有机物,及其单质硫和多种硫化矿生长,不能利用FeSO_4进行生长。同时对上述25株Acidiphilium spp.细菌进行生态多样性分析研究发现,相比16S rRNA基因,通过gyrB基因构建的系统发育树能够区分一些16S rRNA基因无法区分的种类。
     最后,通过摇瓶浸出和反应器柱浸黄铜矿研究发现,虽然Acidiphilium sp.菌DY单独浸出黄铜矿效果不佳,但当和嗜酸自养的氧化亚铁硫杆菌混合浸出时,相比氧化亚铁硫杆菌单独浸矿,两者混合浸矿时能显著提高黄铜矿的浸出率。初步探讨其原因是在混合浸出黄铜矿的过程中,自养的氧化亚铁硫杆菌和异养菌的Acidiphilium spp.之间对矿物存在协同效应,一方面减缓在浸矿过程中黄铜矿表面钝化膜的形成,另一方面阻止浸矿体系中对氧化亚铁硫杆菌的生长起抑止作用的有机化合物的积累,从而提高了黄铜矿的浸出效果。
Bioleaching is an economical method for the recovery of metals from minerals,especially from low grade ores,overburden and waste from current mining operations,which requires moderate capital investment with low operating cost.Furthermore,bioleaching is generally more environmentally friendly than conventional metal recovery processes such as concentration and smelting.In the present study, several autotrophic bacteria Acidithiobacilius ferrooxidans and heterotrophic bacteria Acidiphilium spp.were isolated and characterized from Acid Mine Drainage(AMD).This research worked on the isolation、physiological and bioleaching characterization of Acidithiobacilius ferrooxidans and Acidiphilium spp..To understand the role of autotrophic and heterotrophic bacteria plays in mineral bioleaching,we focused on the effects of one autotrophic iron and sulfur-oxidizing bacterium A.ferrooxidans GF and its synergistic effect with one heterotrophic sulfur-oxidizing bacteriam Acidiphilium sp.DY on copper dissolution from chalcopyrite.
     We isolated four autotrophic bacterial Acidithiobacilius ferrooxidans strains from different mining tailings in China,named as GF、LY、DBS and DX.The optimum growth temperature is 30℃,and the optimum growth pH is 2.0.The four strains can grow autographically by using Fe~(2+), sulfur,glucose as sole energy sources,however,can not grow with NaS_2O_3 and peptone.The data of ferrous sulfate and sulfur oxidation of four strains revealed that the activity of them is consentaneous.The relationship is consistent with the ferrous sulfate and sulfur oxidation activity of the four strains,GF>LY>DBS>DX.Because of the high activity of oxidation ferrous and sulfide mineral,strain GF was used in bioleaching of marmatite.The Zn concentration was 273.25mg/L under the steriled control and 7302.5mg/L with adapted GF strain incubated after 30 d in leaching marmatite.The isolated strain GF can be used for leaching marmatite in industry application.
     25 acidophilic heterotrophic Acidiphilium-like bacterial strains were isolated from eight different mines in China and their physiology was characterized.The optimum growth temperature is 30℃,and the optimum growth pH is 3.5.It can grow facultative heterotrophically by using glucose,lactose,sucrose and elemental sulfur as sole energy sources,but can not grow with FeSO_4.The comparison of 25 Acidiphilium spp.bacterial results by 16S rRNA gene and gyrB gene analysis shows that gyrB gene analysis may provide more accurate information about the microbial community structure than 16S rRNA gene analysis and thus more likely to revealed the true nature of a microbial community.
     The bioleaching experiment of chalcopyrite in shake flasks and bioleaching column revealed that the acidophilic heterotrophic Acidiphilium sp.DY strain had little efficiency of leaching chalcopyrite, but when coupled with acidophilic autotrophilic bacteria A.ferrooxidans GF,compared with Aferrooxidans GF leaching efficiency,it can increase the chalcopyrite leaching efficiency greatly.Acidiphilium sp.DY has the potential role to enhance the recovery of copper from chalcopyrite by oxidizing the sulfur and reducing the organic compound during the bioleaching progress.The combination of the acidophilic heterotrophic Acidiphilium spp.and acidophilic autotrophilic A.ferrooxidans in chalcopyrite bioleaching improved the copper leaching efficiency.
引文
[1]Brieriey L.细菌的氧化作用[J].湿法冶金,1996,4:44-47.
    [2]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003.
    [3]Rohwerder T,Gehrke T,K.Kinzler,et al.Bioleaching review part A:Progress in bioleaching:fundamentals and mechanisms of bacterial metal sulfide oxidation[J].Applied Microbiology Biotechnology,2003,63:239-248.
    [4]Colmer A R,Hinckle M E.The role of microorganisms in acid mine drainage[J].A Preliminary Report,Science,1947,106:253-256.
    [5]Temple K L,Delchamps E W.Autotrophie bacteria and the formation of acid in Bituminous coal mines[J].Applied Microbiology,1953,1:255-258.
    [6]Leathen W W,Kinsel N A and Braley S A.Ferrobacillus ferrooxidans:A chemosynthetic autotrophic bacterium[J].Bacterial,1956,72:700-704.
    [7]Bryner L C.Microorganisms in leaching of sulfide minerals[J].Industrialand Engineering Chemistry,1954,46:2587-2592.
    [8]Zimmerley S R,Wilson D G,Prater J D.Cyclic leaching process employing iron oxidizing bacteria[J].US patent2,1958:829-964.
    [9]Olson G J,Brierley J A,Brierley C L.Bioleaching review part B:Progress in bioleaching:applications of microbial processes by the minerals industries[J].Appllied Microbiology Biotechnology,2003,63:249-257.
    [10]Torma A E.The Role of Thiobacillus ferrooxidans in hydrometallurgical processes[J].Advances in Biochemical Engineering,Springer-Verlag,Berlin,1977,6:1-37.
    [11]Suzuki Isamu.Microbial leaching of metals from sulfide minerals[J].Biotechnology Advances,2001,19:119-132.
    [12]Baker B J,Banfield J F.Microbial communities in acid mine drainage[J].FEMS Microbiolofy Ecology,2003,44:139-152.
    [13]Schrenk M O,Katrina J Edwards,Robert M.Goodman,et al.Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:implications for generation of acid mine drainage[J].Science,1998,279:1519-1522.
    [14]Gonzalez T E,Brossa E L,Casamayor E O,et al.Microbial ecology of an extreme acidic environment,the Tinto River[J].Applied And Environmental Microbiology,2003,69(8):4853-4865.
    [15]Morin D,Lips A,Pinches A,et al.BioMinE integrated project for the development of biotechnology for metal-bearing materials in Europe[J]. Hydrometallurgy, 2006, 83:69—76.
    [16]Yang Songrong, Xie Jiyuan, Qiu Guanzhou, et al. Research and application of bioleaching and biooxidation technologies in China[J]. Minerals Engineering, 2002,15:361-363.
    [17]Ruan Renman, Wen Jiankang. Bacterial heap-leaching: practice in Zijinshan copper mine[C]. In Harrison S.T.L, Rawlings D.E. and Petersen J. Proceedings of 16th IBS, 2005:137-144.
    [18]Rawlings D E, David Dew, Chris du Plessis. Biomineralization of metal-containing ores and concentrates[J]. Trends in Biotechnology, 2003, 21(1): 38-44.
    [19]Clark M E, Batty J, C. van Buuren, et al. Biotechnology in minerals processing: technological breakthroughs creating value[J]. Hydrometallurgy, 2006, 83:3—9.
    [20]Dew D W, Lawson E N, and Broadhurst J L. The BIOX process for biooxidation of gold-bearing ores or concentrates, In D. E. Rawlings (ed.), Biomining: theory, microbes and industrial processes[J]. Springer-Verlag/Landes Bioscience, Georgetown, Tex. 1997:45—80.
    [21]Schippers Axel, Regine Hallmann, Susanne Wentzien, et al. Microbial diversity in uranium mine waste heaps[J]. Applied and environmental microbiology, 1995, 61(8):2930-2935.
    [22]Belly R T, Brock T D. Ecology of Iron-oxidizing bacteria in pyritic materials associated with coal[J]. Journal of Bacteriology, 1974, 117(2):726-732.
    [23]Bond P L, Druschel G K, Banfield J F. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems[J]. Applied and environmental microbiology, 2000, 66(11):4962—4971.
    [24]Johnson D B, Hallberg K B. The microbiology of acidic mine waters[J]. Research in Microbiology, 2003,154:466—473.
    [25]Goebel B M, E Stackebrandt. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments[J]. Applied and environmental microbiology, 1994, 60(5): 1614— 1621.
    [26]Muyzer Gerard, Anke C. Bruyn, Diederik J. M. Schmedding, et al. A combined immunofluorescence-DNA-Fluorescence staining technique for enumeration of Thiobacillus ferrooxidans in a population of acidophilic cacteria[J]. Applied and environmental microbiology, 1987, 53(4):660—664.
    [27]Arredondo Renato,Carlos A.Jerez.Specific dot-Immunobinding assay for detection and enumeration of Thiobacillus ferrooxidans[J].Applied and environmental microbiology,1989,55(8):2025-2029.
    [28]Kerger B D,Nichols P D,W Sand,et al.Association of acid-producing thiobacilli with degradation of concrete:analysis by 'signature' fatty acids from polar lipids and lipopolysaccharide[J].Journal of Industrial Microbiology and Biotechnology,1987,2:63-69.
    [29]Pizarro Jose,Eugenia Jedlicki,Omar Orellana,et al.Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation[J].Applied and environmental microbiology,1996,62(4):1323-1328.
    [30]Amann R I,W Ludwig,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiology Review,1995,59(1):143-169.
    [31]Peccia Jordan,Marchand Eric A,Joann Silverstein,et al.Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium[J].Applied and environmental Microbiology,2000,66(7):3065-3072.
    [32]Rawlings D E.The molecular genetics of Thiobacillus ferrooxidans and other mesophilic,acidophilic,chemolithotrophic,iron- or sulfur-oxidizing bacteria[J].Hydrometallurgy,2001,59:187-201.
    [33]姜成林,徐丽华.微生物资源学[M].上海:科学出版社,1997.
    [34]Rawlings D E.Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J].Microbial Cell Factories,2005,4:13-27.
    [35]钟慧芳,陈秀珠,李雅芹,等.一个嗜热嗜酸细菌的新属—硫球菌属[J].微生物学报,1982,22(1):1-7.
    [36]Dopson M,Lindstrom E B.Analysis of community composition during moderately thermophilic bioleaching of pyrite,arsenical pyrite,and chalcopyrite[J].Microbiology Ecology,2004,48(1):19-28.
    [37]Romero J,Yanez C,Vasquez M,et al.Characterization and identification of an iron-oxidizing,Leptospirillum-like bacterium,present in the high sulfate leaching solution of a commercial bioleaching plant[J].Research Microbiology,2003,154(5):353-359.
    [38]童雄.微生物浸矿的理论与实践[M].北京:冶金工业出版社,1997.
    [39]Robbins E I.Bacteria and archaea in acidic environments and a key to morphological identification[J].Hydrobiologia,2000,433:61-89.
    [40]Naoko Okibe,Mariekie Gericke.Enumeration and characterization of acidophilic microorganismsIsolated from a pilot plant stirred-tank bioleaching operation[J].Applied And Environmental Microbiology,2003,4:1936-1943.
    [41]Yang Yu,Shi Wuyang,Wan Minxi,et al.Diversity of bacterial communities in acid mine drainage from the Shen-bu copper mine,Gansu province,China[J].Electronic journal of biotechnology,2008,11(2):108-120.
    [42]Yang Yu,Wan Minxi,Shi Wuyang,et al.Bacterial diversity and community structure in acid mine drainage from Dabaoshan Mine,China[J].Aquatic microbial ecology,2007,47(2):141-151.
    [43]Rawlings D E.Heavy metal mining using microbes.Annual[J].Review.Microbiology,2002,56:65-91.
    [44]Shaoyuan Shi,Zhaoheng Fang.Bioleaching of marrnatite flotation concentrate by Acidithiobacillus ferrooxidans[J].Hydrometallurgy,2004,75:1-10.
    [45]Brierley J A,Brierley C L.Present and future commercial applications of biohydrometallurgy[J].Hydrometallurgy,2001,59:233-239.
    [46]Rawlings D E,Tributsch H,Hansford G S.Reasons why 'Leptospirillum' like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J].Microbiology,1999,145:5-13.
    [47]Sand W,Rohde K,Sobotke B,et al.Evaluation of Leptospirillum ferrooxidans for leaching[J].Applied and environmental microbiology,1992,58:85-92.
    [48]Harrison A P.Acidiphilium cryptum gen.nov.,sp.Nov.,heterotrophic bacterium from acidic mineral environments[J].Int J syst bacterial,1981,31:327-332.
    [49]Norio Wakao,Tsuneo Shiba,Akira Hiraishi,et al.Distribution of bacteriochlorophyll a in species of the genus Acidiphilium[J].Current microbiology,1993,27:277-279.
    [50]Akira Hiraishi,Kenji V P Nagashima,Katsumi Matsuura,et al.Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria:its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb.nov[J].International journal of systematic bacteriology,1998,48:1389-1398.
    [51]Yanfei Zhang,Yu Yang,Jianshe Liu,et al.Isolation,characterization and phylogenetic analysis of Acidiphilium-like bacteria from acid mine drainage[J].Advanced materials research,2007,20:473-476.
    [52]Thore Rohwerder,Claudia Janosch,Wolfgang Sand[J].Advanced Materials Research,2007,20:583-583.
    [53]Kirsten Kusel,Tanja Dorsch,Georg Acker,et al.Microbial reduction of Fe(Ⅲ)in acidic sediments:isolation of Acidiphilium crytum JF-5 capable of coupling the reduction of Fe(Ⅲ)to the oxidation of glucose[J].Applied and environmental microbiology,1999,65:3633-3640.
    [54]Johnson D B,Bridge T A M.Reduction of ferric iron by acidophiclic heterotrophic bacteria:evidence for constitutive and inducible enzyme systems in Acidiphilium spp[J].Journal of applied microbiology,2002,92:315-321.
    [55]邹俐宏,钱林,张燕飞,等.源自硫化矿区的Acidiphilium属菌的分离及其浸矿性能[J].中国有色金属学报,2008,18(2):336-342.
    [56]Fowler T A,Holmes P R.Mechanism of pyrite dissolution in the presences of thiobacillus ferrooxidans[J].Applied and environmental microbiology,1999,65(6):2987-2993.
    [57]Bustos S,Castro S,Montealegre-.R.The sociedad minera pudahuel bacterial thin-layer leaching process at Lo Aguirre[J].FEMS Microbiology Reviews,1993,11:231-236.
    [58]Ahmad M,Khalidfariq M,Bhatti M.A nim proveds olidm ediumf or isolation,enumeration and genetic investigations of autotrophic iron-and sulphur-oxidizing bacteria[J].Applied microbiology biotechnology,1993,39:259-263.
    [59]Tuovinen O H,Kelley B C,Groudev S N.Mixed cultures in biological leaching processes and mineral biotechnology[J].In:Zeikus G,Johnson EA,eds.Mixed cultures in Biotechnology.New York:McGraw-Hill,1991:373-427.
    [60]刘艳阳,陈志伟,姜成英,等.一株嗜酸化能异养菌Acidiphilium sp.的分离鉴定及其对Fe(Ⅲ)代谢的研究[J].微生物学报,2007,47(2):350-354.
    [61]Watling H R.The bioleaching of sulphide minerals with emphasis on copper sulphides - A review[J].Hydrometallurgy,2006,84:81-108.
    [62]Dopson M,Lindstrom E B.Potential role of Thiobacillus caldus in arsenopyrite bioleaching[J].Applied and environmental microbiology,1999,65(1):36-40.
    [63]Semenza M,Viera M,Curutchet G,et al.The role ofAcidithiobacillus caldus in the bioleaching of metal sulfides[J].Latin American Applied Research,2002, 32(4):303-306.
    [64]Rohwerder T,Sand W.The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp[J].Microbiology,2003,149:1699-1709.
    [65]徐伟昌.生物技术在核工业中的应用[M].长沙:国防科技大学出版社,2002.
    [66]Thompson J D,Gibson T J,Plewniak F.The Clustal X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucleic Acids Research,1997,24:4476-4488.
    [67]Saitou N,Nei M T.The neighbor-joining method:a new method for reconstructing phylogenetic trees[J].Mol.Bio.Evol,1987,4:406-425.
    [68]Felsenstein J.Confidence limits on phylogenies:an approach using the bootstrap[J].Evolution,1985,39:783-791.
    [69]Demergasso C S,Galleguillos P P A,Escudero G L V.Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap[J].Hydrometallurgy,2005,80:241-253.
    [70]Visca P,Bianchi E,Polidoro M,et al.A new solid medium for isolating and enumerating thiobacillus-ferrooxidans[J].Journal of General & Applied Microbiology,1989,35:71-82.
    [71]Schrader J A,Holmes D S.Phenotypic switching of thiobacillus-ferrooxidans[J].Journal of Bacteriology,1988,170:3915-3923.
    [72]魏盛甲.铁闪锌矿与黄铁矿的分离技术进展[J].有色金属(选矿部分),2001(1):1-4.
    [73]Yamamoto S,Bouvet P J,and Harayama S.Phylogenetic structures of the genus Acinetobacter based on gyrB sequences:comparison with the grouping by DNA-DNA hybridization[J].Int.J.Syst.Bacteriol,1999,49:87-95.
    [74]Longan Shang,Min Jiang,Ho Nam Chang.Poly(3-hydroxybutyrate)synthesis in fed-batch culture of Ralstoniaeutropha with phosphate limitation under different glucose concentrations[J].Biotechnology Letters,2003,25:1415-1419.
    [75]Patnaik P R.Neural network designs for poly-b-hydroxybutyrate production optimization under simulated industrial conditions[J].Biotechnology Letters,2005,27:409-415.
    [76]Kessler B,Witholt,B.Poly(3-hydroxyalkanoates).Encyclopaedia of Bioprocess Technology[J].Fermentation,1999,2024-2040.
    [77]WANG Chaogang,HU Zhangli,HU Wei,et al.Expression and molecular analysis of phbB gene in Chlamydomonas reinhardtii[J]. Chinese Science Bulletin, 2004, 49(16):1713—1717.
    [78]Reddy C S K, Ghai R, Rashmi, et al. Polyhydroxyalkanoates: an overview[J]. Bioresource Technology, 2003, 87:137—146.
    [79]Buoyant R G Densty ehanges due to intracollular content of sulfur in chromatlm warm oil and choratlumvlmosam[J]. ArchMicrobiol, 1984,137:350—356.
    [80]Christine B. Flies, Henk M. Jonkers, Dirk de Beer, et al. Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms[J]. FEMS Microbiology ecology, 2005, 52:185—185.
    [81]Lone Hoja, Rolf A Olsen, Vigdis L Torsvik. Archaeal communities in high arctic wetlands at Spitsbergen, Norway (78°N) as characterized by 16S rDNA fingerprinting[J]. FEMS Microbiology ecology, 2005, 53:89—89.
    [82]Cottrell M T, Waidner L A, Liying Yu, et al. Bacterial diversity of metagenomic and PCR libraries from the Delaware River[J]. Environmental Microbiology, 2005, 7:1883-1892.
    [83]Eckburg P B, Elisabeth M B, Bernstein C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005,308:1635—1638.
    [84]Huang W M. Type II DNA topoisomerase genes, In: Liu, L.F. (Ed.), DNA Topoisomerases: Biochemistry and molecular biology. Advances in Pharmacology, 29A[M]. Academic Press, New York, 2005:201 -225.
    [85]Rappe M S, Vergin K, and Giovannoni S J. Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems[J]. FEMS Microbiology Ecology, 2000,33:219—232.
    [86]Harayama S and Yamamoto S. Phylogenetic identification of Pseudomonas strains based on a comparison of gyrB and rpoD sequences[J]. Molecular Biology of Pseudomonads, 1996:250—258
    [87]Xianghua Wen, Herbert E Allen. Mobilization of heavy metals from Le an river sediment[J]. The science of the total environment. 1999, 227:101 — 108.
    [88]Yamamoto S, and Harayama S. Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products[J]. Int. J. Syst. Bacteriol, 1996, 46:506—511.
    [89]Kinnunen P H M, Puhakka J A. High-rate ferric sulfate generation by a Leptospririllum ferriphilium-dominated biofilm and the role of jarosite in biomass retainment in a fluidized-bed reactor[J]. Biotechnol, Bioeng, 2004, 85(7):697— 705.
    [90]尹华群.德兴铜矿酸性浸矿水微生物群落结构与功能研究:[博士学位论文].长沙:中南大学,2007.
    [91]Scott D J.The mineralogy of copper leaching:concentrates and heaps[C].Copper Hydrometallurgy Short Course,Santiago,November 1995.
    [92]Rawlings D E.Mesophilic,autotrophilic bioleaching bacteria:description,physiology and role,In:Rawlings D E eds.Biomining:Theory,microbes and industrial processes[J].Verlag and landes Bioscience,1997,10:229-245.
    [93]杨宇,徐爱玲,张燕飞,等.酸性矿坑水中一株兼性菌及其胞内聚合物的分离及表征[J].武汉大学学报(自然科学版),2007,6(53):753-758.
    [94]杨宇,徐爱玲,张燕飞,等.生物合成材料聚β-羟基丁酸(PHB)的研究进展生命科学研究进展[J].2006,12(4):62-67.
    [95]Mcguire M M,Edwards K J,Banfield J F,et al.Surface chemistry,and structural evolution of microbially mediated sulfide mineral dissolution[J].Geochimica et Cosmochimica Acta,2001,65(8):1243-1258.
    [96]Fowler T A,Crundwell F K.Leaching of zinc sulfide by Thiobacillus ferrooxidans:bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions[J].Applied and environmental microbiology,1999,65:5285-5292.
    [97]Daoud J,Karamanev D.Formation of jarosite during Fe~(2+)oxidantion by Acidithiobacillus ferrooxidans[J].Minerals engineering,2006,19(9):960-967.
    [98]Anne Paiment,Leduc L G,Ferroni G D.The effect of the facultative chemolithotrophic bacterium Thiobacillus acidophilus on the leaching of low-grade Cu-Ni sulfide ore[J].Geomicrobiology Journal,2001,8:157-165.
    [99]Paula Bacelar-Nicolau,Johson D B.Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures[J].Applied and environmental microbiology,1999,5:585-590.
    [100]Wichlacz P L,Thompson D L.The effect of acidophilic heterotrophic bacteria on the leaching of cobalt by Thiobacillus ferrooxidans[C].Biohydrometallurgy,Proceedings of the 1987 International Symposium,Kew,UK,77-88.
    [101]Norris P R,Barr D W,Hinson D.Iron and mineral oxidation by acidophilic bacteria:affinities for iron and attachment to pyrite[J].Biohydrometallurgy:Proceedings of the International Symposium,1988:43-59.
    [102]Johnson D B,Rang L.Effect of acidophilic protozoa on populations of metal-mobilising bacteria during the leaching of pyritic coal[J]. Gen. Microbiology, 1993,139:1417-1423.
    [103]McGinness S, Johnson D B. Grazing of acidophilic bacteria by a flagellate protozoan[J]. Microbiology Ecology, 1992, 23:75—86.
    [104]Johnson D B, Roberto F F. Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals[J]. Biomining, 1997:259—280.
    [105]Hallmann R, Friedrich A, Koops H P, et al. Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physicochemical factors influence microbial metal leaching[J]. Geomicrobiology, 1992, 10:193— 206.
    [106]Norris P R, Ehrlich H L, Brierley C L. Acidophilic bacteria and their activity in mineral sulfide oxidation. Microbialogy mineral recovery ,1990:3—27.
    [107]Clark D A, Norris P R. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species[J]. Microbiology, 1996,141:785-790.
    [108]Gu X Y, Wong J W C. Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge[J]. Environ. Sci. Technol, 2004b, 38:2934-2939.
    [109]Pradhan N, Nathsarma K C, Rao K S, et al. Heap bioleaching of chalcopyrite: A review[J]. Minerals engineering, 2008, 21:355—365.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.