三唑和四唑杂环配体配位聚合物的合成、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在水热和溶剂热条件下,以1,2,4-三唑(Htrz)和四唑乙酸(Htza)为配体进行了金属有机配位聚合物的合成、结构及性能研究。并对该体系金属有机配位聚合物的合成条件如:金属源、溶剂、温度、时间、pH值及添加剂等进行了系统考察。成功设计合成了一系列化合物,利用单晶x射线、粉末X射线、红外光谱、元素分析、热重分析和荧光光谱等手段对化合物进行了表征,为金属有机配位聚合物的合成积累了有价值的原始数据。
     在第二章中,以Htrz和刚性多羧酸(4,4’-联苯二甲酸,2’,4-联苯二甲酸,1,2,4-苯三甲酸和均苯四甲酸)为配体合成了六个金属有机配位聚合物。其中化合物1,3,4,5和6均为三维骨架结构,金属中心Zn(Ⅱ)通过三唑配体连接成不同的多核金属簇,这些簇进一步拓展成具有不同结构的一维棒状次级结构,该次级结构单元通过不同的刚性多羧酸配体连接成三维骨架结构。化合物2是二维层状结构。在化合物1和4中形成的[Zn4(μ4-O)(trz)2]4+和[Zn4(trz)3]5+簇在金属三唑体系中第一次被合成。化合物1是以[Zn4(μ4-O)(trz)2]为基元形成一个二重穿插的金刚石结构。化合物2是以[Zn2(trz)2]为基元形成一个6-连接的hxl拓扑结构。化合物3和4是(3,8)-双连接的tfZ-d拓扑结构,分别以[Zn5(trz)4]为基元和[Zn4(trz)3]为基元。化合物5是(4,12)-双连接的{(32.44)(38.424.524.610)}拓扑结构以[Zn7(trz)6]为基元。化合物6是(4,6)-双连接的{44.610.8}{44.6}拓扑结构。化合物1-6在室温下具有较强的荧光发射,可能成为潜在的荧光材料。在第三章中,以Htza为配体合成了两个铅的金属有机聚合物。化合物7是通过弱键形成三维超分子的骨架结构。化合物8是Pb(Ⅱ)和三桥联Cl-形成的二维无机层通过四唑乙酸连接成三维网络结构。在第四章中,以Htrz和Htza为添加剂,合成了两个铅的化合物。化合物9为三维无限网络结构,配体呈现三种配位模式。化合物10是3-连接二维骨架结构。同时还讨论了弱键对化合物7-10整体结构的影响。
Coordination polymers are involved with the behavior of crystal engineering. Recently, the research of coordination polymers has attracted much attention because of their flexible tailoring, various topologies and their potential applications, such as gas adsorption, ion-exchange, molecular recognization, catalysts, magnetism, optics and so on. Up to now, according to the principle of crystal engineering, the design and synthesis of coordination polymers are invested a great deal of effort based on appropriate metal ions and versatile bridging organic ligands.
     In this paper, we report the preparations, crystal structures and properties of coordination polymers constructed from 1,2,4-triazole (Htrz) and tetrazole-1-acetic acid (Htza). Triazoles and tetrazoles are aromatic five-membered heterocycles containing three and four nitrogen atoms, respectively. Htrz as a multifunctional ligand, exhibits a strong bridged bonding ability for metal ions. The Htrz ligand through five different coordination modes can bridge metal ions. The protonated trz ligand may function as a dinucleating ligand (μ1,2 andμ2,4 binding modes), while deprotonated trz ligand can coordinate two or three metal ions (μ1,2,μ1,4 andμ1,2,4 binding modes). Its interesting bridging modes can afford polynuclear clusters as secondary building units (SBUs), such as dinuclear, linear trinuclear, tetranuclear, pentanuclear, hexanuclear, heptanuclear clusters and so on. Coordination polymers using Htrz ligand show various topologies and their potential applications. Compared to triazole, tetrazole holds an additional nitrogen atom and exhibits more bridging coordination possibilities. Tetrazole-1-acetic acid is bifunctional ligand containing of tetrazolate and carboxylate groups. Htza with four nitrogen atoms and two oxygens potential binding centers can serve as a class of excellent polydentate ligands. On the other hand, the -CH2- group between the tetrazole ring and carboxylate group offers flexible orientations of the carboxylate arm, which have been employed in construction of coordination polymers with structure varieties and novel performance. The Htza ligand is a suitable hydrogen bond donor and can form interesting supramolecular architectures throughπ-πinteractions. So we choose Htrz and Htza as organic ligands to design and synthesize a series of coordination polymers.
     In the second chapters, under hydrothermal or solvothermal conditions, six compounds were synthesized successfully with the aromatic carboxylate ligands in zinc-trz system, namely, Zn4(μ4-O)(trz)2(4,4'-bpdc)2 (1), Zn2(trz)2(2,4'-bpdc) (2), [Zn5(trz)4(btc)2(DMF)2(H2O)2]·2H2O·DMF (3), Zn4(trz)3(btc)2(CH3CN)(H2O)]·5H2O·(Bu4N) (4), [Zn7(trz)6(H2btec)2(btec)]·H2O (5) and [Zn3(trz)2(btec)(H2O)4]·2H2O (6), [4,4'-H2bpdc= 4,4'-biphenyldicarboxylate, 2,4'-H2bpdc= 2,4'-biphenyldicarboxylate, H3btc=1,2,4-benzenetricarboxylate, Bu4N= tetrabutylammonium, H4btec= benzenetetracarboxylate]. Compounds 1,3,4,5 and 6 also exhibt three-dimensional frameworks based on rod-link secondary building units (SBUs). Compound 2 is two-dimensional structures. All compounds also contain polynuclear zinc clusters. There are some distinct features in the structures of compounds 1 to 6. Compound 1 is a 2-fold interpenetrating diamond topology constructed from {[Zn4(μ4-O)(trz)24+]}n SBUs. Compound 2 is a two-dimensional 6-connected hxl network based on {[Zn2(trz)2]2+}n SBUs. Both compounds 3 and 4 exhibit three-dimensional (3,8)-connected tfz-d nets with{43}2{46.618.84} topology symbol built from rod-shaped {[Zn5(trz)4]6+}n SBUs (3) and {[Zn4(trz)3]5+}n SBUs (4). In 3 and 4 compounds, rod-like units are connected by btc ligands via different modes. Compound 5 is a three-dimensional (4,12)-connected network with (32.44)(38.424.524.610) topology symbol built from rod-shaped {[Zn7(trz)6]8+}n. Compound 6 shows a (4,6)-connected three-dimensional structure with Schlafli symbol {44.610.8}{44.62}, containing infinite straight {[Zn2(trz)2][ZnO4]}n chain with dinuclear [Zn2(trz)2] and [ZnO4] unit. The structure of compounds 3,4 and 6 are all high-connected nodes networks built from polynuclear metal clusters. The synthesis conditions of compounds 3 and 4 are also discussed, the experimental data show that the structures of 3 and 4 depend closely on the addition of Na2CO3 or tetrabutylammonium hydroxide. At the same time, the effect of action conditions were discussed between compounds 5 and 6, too.
     In the third chapter, we choose metal lead react with tetrazole-1-acetic acid and gain two coordination polymers Pb(tza)2 (7) and PbCl(tza) (8) under hydrothermal condition. We discussed the effect of alkali metal and alkali-earth metal on the synthesized compounds 7 and 8. Compound 7 is a three-dimensional supramolecular architecture. The coordination geometry of Pb(1) will transfer from hemidirected to holodirected geometry through the potential weak Pb-O and Pb-N bonds in 7. Compound 8 consists of two-dimensional inorganic layers by Pb(II) andμ3-Cl-, which are further linked by tza ligand to generate a novel a three-dimensional structure. There are three different rings [Pb2Cl2], [Pb2O2] and [Pb4Cl4] within the two-dimensional inorganic layers of 8. Compared to the structure of 7, we omitted Cl-atom in 8.
     Under hydrothermal conditions, the self-assembly of Pb(NO3)2,2,2'-oxydiacetic acid and Htrz (additive) generates a three-dimensional lead(Ⅱ) framework [Pb(oda)] (9). Compound 9 contains a one-dimensional infinite Pb-O chain which is connected throughμ3-,μ4-,μ5-coordination modes of oda to form a new three-dimensional structure. Compound [Pb(sui)] (10) was synthesized with succinic acid as organic ligand and Htza as additive. The structure of 10 containing one-dimensional rod-like linked adjacent [Pb2O2] units through together lead, which are connected by succinic acid ligand to form a 3-connected two-dimensional framework. For 9 and 10 when the bonding limit of Pb-O extends from 2.76 to 2.90 A and Pb-Pb extends 4.3 A, the potential weak bonds of Pb-O and Pb-Pb can be found, which construct a more complicated structure. The effect of additives (Htrz and Htza) was discussed between compounds 9 and 10.
     In conclusion, we report the preparations, crystal structures and properties of a series of coordination polymers constructed from aromatic five-membered heterocycles ligands (Htrz and Htza) in this paper. We also study the effect factors of the reactions and summarize the rules of synthesis. All the compounds charactrized by single-crystal X-ray diffraction analyses, X-ray power diffraction, elemental analyses, infrared absorption spectra and thermogravimetric analyses. Additionally, solid state fluorescent emission spectra of 1-6 compounds show fluorescent properties at room temperature.
引文
[1]M. Eddaoudi, D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O'Keeffe and O.M. Yaghi, Modular chemistry:secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks., Ace. Chem. Res.,2001,34,319-330.
    [2]C. Janiak and J.K. Vieth, MOFs, MILs and more:concepts, properties and applications for porous coordination networks (PCNs), New. J. Chem.,2010, 34,2366-2388.
    [3]N.W. Ockwig, O.D. Friedrichs, M. O'Keeffe and O.M. Yaghi, Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks, Acc. Chem. Res.,2005,38,176-182.
    [4]A.Y. Robin and K.M. Fromm, Coordination polymer networks with O- and N-donors:What they are, why and how they are made, Coord. Chem. Rev., 2006,250,2127-2157.
    [5]R.J. Kuppler, D. J. Timmons, Q.R. Fang, J.R. Li, T.A. Makal, M.D. Young, D.Q. Yuan, D. Zhao, W.J. Zhuang and H.C. Zhou, Potential applications of metal-organic frameworks, Coord. Chem. Rev.,2009,253,3042-3066.
    [6]S. Kitagawa, R. Kitaura and S.I. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed.,2004,43,2334-2375.
    [7]J. Perles, N. Snejko, M. Iglesias and M.A. Monge,3D scandium and yttrium arenedisulfonate MOF materials as highly thermally stable bifunctional heterogeneous catalysts, J. Mater. Chem.,2009,19,6504-6511.
    [8]M. Meilikhow, K. Yusenko and R.A. Fischer, Incorporation of metallocenes into the channel structured Metal-Organic Frameworks MIL-53(Al) and MIL-47(V), Dalton. Trans.,2010,39,10990-10999.
    [9]P.L. Llewellyn, G. Maurin, T. Devic, S.L. Serna, N. Rosenbach, C. Serre, S. Bourrelly, P. Horcajada, Y. Filinchuk and G. Ferey, Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray Powder diffraction, microcalorimetry, and molecular simulation, J. Am. Chem. Soc.,2008,130,12808-12814.
    [10]R.H. Wang, D.Q. Yuan, F.L. Jiang, L. Han, S. Gao and M.C. Hong, Syntheses, Structures, and Characterization of Two Manganese(Ⅱ)-Aminobenzoic Complexes, Eur. J. Inorg. Chem.,2006,1649-1656.
    [11]X.M. Zhang, X.H. Jing and E.Q. Gao, Three-dimensional iron-series coordination networks based on antiferromagnetic and ferromagnetic dinuclear motifs with mixed carboxylate and aqua bridges, Inorg. Chim. Acta.,2011,365, 240-245.
    [12]P. Jensen, S.R. Batten, B. Moubaraki and K.S. Murray, Syntheses, crystal structures, and magnetic properties of first row transition metal coordination polymers containing dicyanamide and 4,4'-bipyridine, Dalton. Trans.,2002, 3712-3722.
    [13]B.F. Abrahams, S.R. Batten, M.J. Grannas, H. Hamit, B.F. Hoskins and R. Robson, Ni(tpt)(NO3)2 A Three-Dimensional Network with the Exceptional (12,3) Topology:A Self-Entangled Single Net, Angew. Chem. Int. Ed.,1999, 38,1475-1477.
    [14]Z.B. Han, Y.K. He, C.H. Ge, J. Ribas and L. Xu, Hydrothermal syntheses, crystal structures and magnetic properties of two copper (Ⅱ) complexes involved in situ ligand synthesis, Dalton. Trans.,2007,3020-3024.
    [15]S.M. Hawxwell, G.M. Espallargas, D. Bradshaw, M.J. Rosseninsky, T.J. Prior, A.J. Florence, J.V. Streek and L. Brammer, Ligand flexibility and framework rearrangement in a new family of porous metal-organic frameworks, Chem. Comm,2007,1532-1534.
    [16]X. He, C.Z. Lu and D.Q. Yuan, Two 3D Porous Cadmium Tetrazolate Frameworks with Hexagonal Tunnels, Inorg. Chem.,2006,45,5760-5766.
    [17]Y.B. Zhou, W.Z. Chen and D.Q.Wang, Mononuclear, dinuclear, hexanuclear, and one-dimensional polymeric silver complexes having ligand-supported and unsupported argentophilic interactions stabilized by pincer-like 2,6-bis(5-pyrazolyl)pyridine ligands, Dalton. Trans.,2008,1444-1453.
    [18]F.F. Jian, H.L. Xiao and F.Q. Liu, Heterobimetallic thiocyanato-bridged coordination polymers based on [Hg(SCN)4]2-:Synthesis, crystal structure, magnetic properties and ESR studies, J. Solid. State. Chem.,2006,179, 3695-3703.
    [19]D. Bannerjee, S.J. Kim and J. B. Parise, Lithium Based Metal-Organic Framework with Exceptional Stability, Cryst. Growth. Des.,2009,9, 2500-2503.
    [20]L. Lin, T.J. Zhang, Y.T. Fan, D.G. Ding and H.W. Hou, Synthesis, crystal structures and characterization of three novel main group metal diphosphonate coordination polymers of Ca(Ⅱ), Sr(Ⅱ) and Pb(Ⅱ) with 1-aminodiphosphonic acid, J. Mol. Struct.,2007,837,107-117.
    [21]G. Hundal, M.S. Hundal, S. Obrai, N. S. Poonia and S. Kumar, Metal Complexes of Tetrapodal Ligands:Synthesis, Spectroscopic and Thermal Studies, and X-ray Crystal Structure Studies of Na(Ⅰ), Ca(Ⅱ), Sr(Ⅱ), and Ba(Ⅱ) Complexes of Tetrapodal Ligands N,N,N',N'-Tetrakis(2-hydroxypropyl)ethylenediamine and N,N,N',N'-Tetrakis(2-hydroxyethyl)ethylenediamine, Inorg. Chem.,2002,41, 2077-2086.
    [22]T. Loiseau, L. Lecroq, C. Volkringer, J. Marrot, G. Ferey, M. Haouas, F. Taulelle, S. Bourrelly, P.L. Llewellyn and M. Latroche, MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and μ3-Oxo-Centered Trinuclear Units, J. Am. Chem. Soc.,2006,128,10332-10230.
    [23]Z.F. Tian, T.Y. Song, Y. Fan, S.H. Shi and L. Wang, Synthesis and characterization of two new metal-organic materials based on InⅢ/btec, Inorg. Chim. Acta.,2007,360,3424-3430.
    [24]A. Crispini, M. Ghedini, I.D. Franco, I. Aiello, M. L. Deda, N. Godbert and A. Bellusci, Synthesis and solid state characterization of hexacoordinated 1:1 ionic gallium(Ⅲ) complexes, Dalton. Trans.,2008,1186-1194.
    [25]K. Akhbari and A. Morsali, Synthesis and solid state characterization of hexacoordinated 1:1 ionic gallium(Ⅲ) complexes, Inorg. Chem. Commun., 2007,10,1189-1193.
    [26]F.N. Shi, L.C. Silva, M.J. Hardie, T. Trindade, F.A. Almeida. Paz and J. Rocha, Heterodimetallic Germanium(Ⅳ) Complex Structures with Transition Metals, Inorg. Chem.,2007,46,6502-6515.
    [27]R.G. Zarracino, J. R. Quinones and H. Hopfl, Self-Assembly of Dialkyltin(IV) Moieties and Aromatic Dicarboxylates to Complexes with a Polymeric or a Discrete Trinuclear Macrocyclic Structure in the Solid State and a Mixture of Fast Interchanging Cyclooligomeric Structures in Solution, Inorg. Chem.,2003, 42,3835-3845.
    [28]A. Puls, M. Schaefer, C. Nather, W. Bensch, A.V. Powell, S. Boissiere and A.M. Chippindale, Solvothermal syntheses, crystal structures and properties of five new thioantimonates(Ⅲ) containing the [Sb4S7]2-anion, J. Solid. State. Chem., 2005,178,1171-1181.
    [29]X.H. Yu, H.H. Zhang, Y.N. Cao, Z.J. Hu, Y.P. Chen and Z. Wang, Two novel 3-D bismuth oxalates with organic amines protruding in channels, J. Solid. State. Chem.,2006,179,3095-3100.
    [30]Y.H. Zhao, H.B. Xu, Y.M. Fu, K.Z. Shao, S.Y. Yang, Z.M. Su, X.R. Hao, D.X. Zhu and E.B. Wang, A Series of Lead(Ⅱ)-Organic Frameworks Based on Pyridyl Carboxylate Acid N-Oxide Derivatives:Syntheses, Structures, and Luminescent Properties, Cryst. Growth. Des.,2008,8,3566-3576.
    [31]J.N. Rebilly, J. Basca and M. J. Rosseinsky, 1D Tubular and 2D Metal-Organic Frameworks Based on a Flexible Amino Acid Derived Organic Spacer, Chem. Asian. J.,2009,4,892-903.
    [32]Y.K. Park, S.B. Choi, H. Kim, K. Kim, B.H. Won, K. Choi, J.S. Choi, W.S. Ahn, N. Won, S. Kim, D.H. Jung, S.H. Choi, G.H. Kim, S.S. Cha, Y.H. Jhon, J.K. Yang and J. Kim, Crystal Structure and Guest Uptake of a Mesoporous Metal-Organic Framework Containing Cages of 3.9 and 4.7nm in Diameter, Angew. Chem. Int. Ed.,2007,46,8230-8233.
    [33]W. Dou, J.N. Yao, W.S. Liu, Y.W. Wang, J.R. Zheng and D.Q. Wang, Crystal structure and luminescent properties of new rare earth complexes with a flexible Salen-type ligand, Inorg. Chem. Commun.,2007,10,105-108.
    [34]R. Sarma, H. Deka, A.K. Boudalis and J.B. Baruah, Coordination Polymers of Lanthanide(Ⅲ):Toward Encapsulation of Well-Defined Assembly of Guest Molecules, Cryst. Growth. Des.,2011,11,547-554.
    [35]C.L. Cahill, D.T. Lill and M. Frisch, Homo- and heterometallic coordination polymers from the f elements, CrystEngComm.,2007,9,15-26.
    [36]Z.L. Liao, G.D. Li, M.H. Bi and J.S. Chen, Preparation, Structures, and Photocatalytic Properties of Three New Uranyl-Organic Assembly Compounds Inorg. Chem.,2008,47,4844-4853.
    [37]W. Chen, H.M. Yuan, J.Y. Wang, Z.Y. Liu, J.J. Xu, M. Yang and J.S. Chen, Synthesis, Structure, and Photoelectronic Effects of a Uranium-Zinc-Organic Coordination Polymer Containing Infinite Metal Oxide Sheets, J. Am. Chem. Soc.,2003,125,9266-9267.
    [38]B. Liu, B.L. Li, Y.Z. Li, Y. Chen, S.S. Bao and L.M. Zheng, Lanthanide Diruthenium (Ⅱ, Ⅲ) Compounds Showing Layered and PtS-Type Open Framework Structures, Inorg. Chem.,2007,46,8524-8532.
    [39]A.R. Dieguez, A.J. Mota, J.M. Seco, M.A. Palacios, A. Romerosa and E. Colacio, Influence of metal ions, coligands and reaction conditions on the structural versatility and properties of 5-pyrimidyl-tetrazolate containing complexes, Dalton. Trans.,2009,9578-9586.
    [40]R. Bolligarla and S.K. Das, Dimensionality of coordination polymers decided by the type of hybridization of the central carbon atom of the solvent molecule that coordinates to an alkali metal cation:from discrete to 3D networks based on a gold(Ⅲ) bis(dithiolene) complex, CrystEngComm.,2010,12,3409-3412.
    [41]D.J. Tranchemontagne, J.L. Mendoza-Cortes, M. O'Keeffe and O.M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev.,2009,38,1275-1283.
    [42]M. Eddaoudi, J. Kim, J.B. Wachter, H.K. Chas, M. O'Keeffe and O.M. Yaghi, Porous Metal-Organic Polyhedra:25 A Cuboctahedron Constructed from 12 Cu2(CO2)4 Paddle-Wheel Building Blocks, J. Am. Chem. Soc.,2001,123, 4368-4369.
    [43]X.M. Zhang, Y.Z. Zheng, C.R. Li, W.X. Zhang and X.M. Chen, Unprecedented (3,9)-Connected (42.6)3(46.621.89) Net Constructed by Trinuclear Mixed-Valence Cobalt Clusters, Cryst. Growth. Des.,2007,7,980-983.
    [44]H.L. Li, M. Eddaoudi, M. O'Keeffe and O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature., 1999,402,276-279.
    [45]H.P. Xiao, A. Morsali. A novel 3D polymeric PbⅡ complex involving three different hemidirected PbⅡ coordination spheres, [Pb3(phen)3(H2O)2(sip)2]n·3H2O (phen=1,10-phenanthroline), Helv. Chim. Acta, 2005,88,2543.
    [46]A. Majumder, S. Shit, C.R. Choudhury, S.R. Batten, G. Pilet, D. Luneau, N. Daro, J.P. Sutter, N. Chattopadhyay and S. Mitra, Synthesis, structure and fluorescence of two novel manganese(Ⅱ) and zinc(Ⅱ)-1,3,5-benzene tricarboxylate coordination polymers:Extended 3D supramolecular architectures stabilized by hydrogen bonding, Inorg. Chim. Acta.,2005,358, 3855-3864.
    [47]Y.H. Wan, L.P. Zhang, L.P. Jin, S. Gao and S.Z. Lu, High-Dimensional Architectures from the Self-Assembly of Lanthanide Ions with Benzenedicarboxylates and 1,10-Phenanthroline, Inorg. Chem.,2003,42, 4985-4994.
    [48]A. F. Wells, Oxford Univ. Press,1983.
    [49]T. L. Hennigar, D. C. MacQuarrie, P. Losier, R. D. Rogers and M. J. Zaworotko, Supramolecular Isomerism in Coordination Polymers: Conformational Freedom of Ligands in [Co(NO3)2(1,2-bis(4-pyridyl)ethane)1.5]n, Angew. Chem. Int. Ed.,1997,36, 972.
    [50]S.S. Chui, S.M-F. Lo, J.P.H. Charmant, A.G. Orpen and I.D. Williams, A chemically functionlizable nanoporous material [Cu(TMA)2(H2O)3]n, Science, 1999,283,1148-1150.
    [51]M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe and O.M. Yaghi, Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage, Science,2002,295,469-472.
    [52]Q.W. Li, W.Y. Zhang, O.S. Miljanic, C.H. Sue, Y.L. Zhao, L.H. Liu, C.B. Knobler, J.F. Stoddart and O.M. Yaghi, Docking in Metal-Organic Frameworks, Science,2009,325,855-859.
    [53]H.X. Deng, C.J. Doonan, H. Furukawa, R.B. Ferreira, J. Towne, C.B. Knobler, B. Wang and O.M. Yaghi, Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks, Science,2010,327,836-850.
    [54]T. Sagara, J. Klassen and E. Ganz, Computational study of hydrogen binding by metal-organic framework-5, J. Chem. Physics.,2004,121,12543-12547.
    [55]S.L. Gould, D. Tranchemontagne, O.M. Yaghi and M. A. G-Garibay, Amphidynamic Character of Crystalline MOF-5:Rotational Dynamics of Terephthalate Phenylenes in a Free-Volume, Sterically Unhindered Environment, J. Am. Chem. Soc.,2008,130,3246-3247.
    [56]B.C. Petit and T.J. Bandosz, Enhanced Adsorption of Ammonia on Metal-Organic Framework/Graphite Oxide Composites:Analysis of Surface Interactions, Adv. Funct. Mater.,2010,20,111-118.
    [57]S.H. Feng and R.R. Xu, New Materials in Hydrothermal Synthesis, Acc. Chem. Res.,2001,34,239-247.
    [58]X.M. Zhang, Hydro(solvo)thermal in situ ligand syntheses, Coord. Chem. Rev., 2005,249,1201-1219.
    [59]Y.Z Zheng, W. Xue, M.L Tong, X.M. Chen, F. Grandjean and G.J. Long, A Two-Dimensional Iron(Ⅱ) Carboxylate Linear Chain Polymer that Exhibits Metamagnetic Spin-Canted Antiferromagnetic to Single-Chain Magnetic Transition, Inorg. Chem.,2008,47,4077-4087.
    [60]O.R Evans and W.B. Lin, Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks, Acc. Chem. Res.,2002,35,511-522.
    [61]O.R. Evans, R.G. Xiong, Z. Wang, G,K, Wong and W.B. Lin, Highly Efficient Ruthenium-Based Catalytic Systems for the Controlled Free-Radical Polymerization of Vinyl Monomers, Angew. Chem., Int. Ed.,1999,38, 536-540.
    [62]E. R. Parnham, R. E. Morris, Ionothermal Synthesis of Zeolites, Metal-Organic Frameworks, and Inorganic-Organic Hybrids, Acc.Chem.Res., 2007,40,1005-1013.
    [63]K. Jin,X.Y Huang, L. Pang, J.Li, A. Appel, S. Wherland, [Cu(Ⅰ)(bpp)]BF4:the first extended coordination network prepared solvothermally in an ionic liquid solvent, Chem. Commun.,2002.2872-2873.
    [64]D. N. Dybtsev, H. Chun, K. Kim, Three-dimensional metal-organic framework with (3,4)-connected net, synthesized from an ionic liquid medium, Chem.Commun.,2004,1594-1595.
    [65]R.E. Morris, Ionothermal synthesis—ionic liquids as functional solvents in the preparation of crystalline materials, Chem. Commun.,2009,2990-2998.
    [66]Z.J. Lin, D.S. Wragg, P. Lightfoot and R.E. Morris, A novel non-centrosymmetric metallophosphate-borate compound via ionothermal synthesis, Dalton Trans.,2009,5287-5289.
    [67]H.S. Liu, Y.Q. Lan and S.L. Li. Metal-Organic Frameworks with Diverse Structures Constructed by Using Capsule-like Ligand and NiⅡ Based on Ionothermal and Hydrothermal Methods, Cryst. Growth. Des.,2010.10, 5221-5226.
    [68]E.R. Parnham, E.A. Drylie, P.S. Wheatlety, A.M.Z. Slawin and R.E. Morris, Ionothermal Materials Synthesis Using Unstable Deep-Eutectic Solvents as Template-Delivery Agents, Angew. Chem. Int. Ed.,2006,45,4962-4966.
    [69]J.L.C. Rowsell and O.M. Yaghi, Strategies for Hydrogen Storage in Metal-Organic Frameworks, Angew. Chem. Int. Ed.,2005,44,4670-4679.
    [70]J.L.C. Rowsell and O.M. Yaghi, Metal-organic frameworks:a new class of porous materials, Micro. Meso. Mater.,2004,73,3-14.
    [71]R.E. Morris and P.S. Wheatley, Gas Storage in Nanoporous Materials, Angew. Chem. Int. Ed.,2008,47,4966-4981.
    [72]M. Dinca and J.R. Long, Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites, Angew. Chem. Int. Ed.,2008,47, 6766-6779.
    [73]L.J. Murray, M. Dinca and J.R. Long, Hydrogen storage in metal-organic frameworks, Chem. Soc. Rev.,2009,38,1294-1314.
    [74]S.S. Han, J.L. Mendoza-Cortes and W.A. Goddard, Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks, Chem. Soc. Rev.,2009,38,1460-1476.
    [75]S.Q. Ma and H.C. Zhou, Gas storage in porous metal-organic frameworks for clean energy applications, Chem. Commun.,2010,46,44-53.
    [76]B.L. Chen, N.W. Ockwing, A.R. Willward, D.S. Conteras and O.M. Yaghi, High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites, Angew. Chem. Int. Ed.,2005,44,4745-4749.
    [77]S.S. Kaye, A. Dailly, O.M. Yaghi and J.R. Long, Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5), J. Am. Chem. Soc.,2007,129, 14176-14177.
    [78]S.S. Han and W.A. Goddard, Lithium-Doped Metal-Organic Frameworks for Reversible H2 Storage atAmbient Temperature, J. Am. Chem. Soc.,2007,129, 8422-8423.
    [79]Y. Yan, X. Lin, S.H. Yang. A.J. Blake, A. Dailly, N.R. Champness, P. Hubbersty and M. Schroder, Exceptionally high H2 storage by a metal-organic polyhedral framework. Chem. Commun.,2009,1025-1027.
    [80]Y. Yan, I. Telepeni, S.H. Yang, X. Lin, W. Kockelmann, A. Dailly, A.J. Blake, W. Lewis, G.S. Walker, D.R. Allan, S.A. Barnett, N.R. Champness and M. Schroder, Metal-Organic Polyhedral Frameworks:High H2 Adsorption Capacities and Neutron Powder Diffraction Studies, J. Am. Chem. Soc.,2010, 132,4092-4094.
    [81]K. Sumida, C.M. Brown, Z.R. Herm, S. Chavan, S. Bordiga and J.R. Long, Hydrogen storage properties and neutron scattering studies of Mg2(dobdc)—a metal-organic framework with open Mg2+ adsorption sites, Chem. Commun., 2011,47,1157-1159.
    [82]C.A. Bauer, T.V. Timofeeva, T.B. Settersten, B.D. Patterson, V.H. Liu, B.A. Simmons and M.D. Allendorf, Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metal-Organic Frameworks, J. Am. Chem. Soc.2007,129,7136-7144.
    [83]J. Rocha, L.D. Carlos, F.A.A. Paz and D. Ananias, Luminescent multifunctional lanthanides-based metal-organic Frameworks, Chem. Rev., 2011,40,926-940.
    [84]Y.F. Zhou, B.Y. Lou, D.Q. Yuan, Y.Q. Xu, F.L. Jiang and M.C. Hong, pH-value-controlled assembly of photoluminescent zinc coordination polymers, Inorg. Chimi. Acta.,2005,358,3057-3064.
    [85]Y. Li, G. Xu, W.Q. Zou, M.S. Wang, F.K. Zheng, M.F. Wu, H.Y. Zeng. G.C. Guo and J.S. Huang, A Novel Metal-Organic Network with High Thermal Stability:Nonlinear Optical and Photoluminescent Properties, Inorg. Chem., 2008,47,7945-7947.
    [86]D. Tian, Y. Pang, Y.H. Zhou, L. Guan and H. Zhang, A series of complexes based on biphenyl-2,5,2',5'-tetracarboxylic acid:syntheses, crystal structures, luminescent and magnetic properties, CrystEngComm.,2011,13,957-966.
    [87]M.D. Allendorf, C.A. Bauser, R.K. Bhakta and R.J.T. Houk, Luminescent metal-organic frameworks, Chem. Soc. Rev.,2009,38,1330-1152.
    [88]Y.Q. Xiao, Y.J. Cui, Q. Zheng, S.C. Xiang, G.D. Qian and B.L. Chen, A microporous luminescent metal-organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution, Chem. Commun.,2010,46, 5503-5505.
    [89]J. Luo, X.G. Zhou, S. Gao, L.H. Weng, Z.H. Shao, C.M. Zhang, Y.R. Li, J. Zhang and R.F. Cai, Synthesis and characterization of copper(Ⅱ) azide complexes containing polyamines as co-ligands, Polyhedron,2004,23, 1243-1248.
    [90]K.C. Mondal and P.S. Mukherjee, Three New Cu-Azido Polymers and Their Systematic Interconversion:Role of the Amount of the Blocking Amine on the Structural Diversity and Magnetic Behavior, Inorg. Chem.,2008,47, 4215-4225.
    [91]A. Das, G.M. Rosair, M.S.E. Fallah, J. Ribas and S. Mitra, Weak Metamagnetic-like 1D Manganese(Ⅱ) Complex with a Double μ1,1-Azido Bridge:A Structure and Magnetic Study, Inorg. Chem.,2006,45,3301-3306.
    [92]G. Lazari, T.C. Stamatatos, C.P. Raptopoulou, V. Psycharis, M. Pissas, S.P. Perlepes and A.K. Boudalis, A metamagnetic 2D copper(Ⅱ)-azide complex with 1D ferromagnetism and a hysteretic spin-flop transition, Dalton. Trans., 2009,3215-3221.
    [93]X.M. Zhang, Y.Q. Wang, K. Wang, E.Q. Gao and C.M. Liu, Metamagnetism and slow magnetic dynamics in an antiferromagnet composed of cobalt(Ⅱ) chains with mixed azide-carboxylate bridges, Chem. Commun.,2011,47, 1815-1817.
    [94]Z.X. Li, Y.F. Zeng, H. Ma and X.H. Bu, Homospin single-chain magnet with 1D ferromagnetic azido-cobalt Ising-type chain, Chem. Commun.,2010,46. 8540-8542.
    [95]X.Y. Wang, L. Wang, Z.M. Wang and S. Gao, Solvent-Tuned Azido-Bridged Co2+ Layers:Square, Honeycomb, and Kagome, J. Am. Chem. Soc.,2006,128, 674-675.
    [96]G.F. Xu, Q.L. Wang, P. Gamez, Y. Ma, R. Clerac, J.K. Tang, S.P. Yan, P. Cheng and D.Z. Liao, A promising new route towards single-molecule magnets based on the oxalate ligand, Chem. Commun.,2010,46,1506-1508.
    [97]H. Z. Kou, B. C. Zhou, S. Gao and R. J. Wang, A 2D Cyano- and Oxamidato-Bridged Heterotrimetallic CrⅢ-CuⅡ-GdⅢ Complex, Angew. Chem. Int. Ed.,2003,42,3288-3291.
    [98]M. Kurmoo, Magnetic metal-organic frameworks, Chem. Soc. Rev.,2009,38, 1353-1379.
    [99]J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal-organic prous material for enantioselective separation and catalysis, Nature,2000,404,982-986.
    [100]C.D.Wu and W.B. Lin, Heterogeneous Asymmetric Catalysis with Homochiral Metal-Organic Frameworks:Network-Structure-Dependent Catalytic Activity, Angew. Chem. Int. Ed,2007,46,1075-1078.
    [101]J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen and J.T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev.,2009,38, 1450-1459.
    [102]A. Corma, H. Garcia and F.X. L. Xamena, Engineering Metal Organic Frameworks for Heterogeneous Catalysis, Chem. Rev.,2010,110,4606-4655.
    [103]F. Millange, C. Serre and G. Ferey, Synthesis, structure determination and properties of MIL-53as and MIL-53ht:the first CrⅢ hybrid inorganic-organic microporous solids:CrⅢ(OH){O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}, Chem. Commun.,2002,822-823.
    [104]C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier D. Louer and G. Ferey, Very Large Breathing Effect in the First Nanoporous Chromium(Ⅲ)-Based Solids:MIL-53 or CrⅢ(OH)·{O2C-C6H4-CO2}· {HO2C-C6H4-CO2H}x·H2Oy, J. Am. Chem. Sco.,2002,124,13519-13526.
    [105]Z.G. Guo, R. Gao, X. Wang, H.F. Li, W.B. Yuan, G.J. Wang, H.H. Wu and J. Li, A Multifunctional 3D Ferroelectric and NLO-Active Porous Metal-Organic Framework, J. Am. Chem. Sco.,2009,131,6894-6895.
    [106]S. Vaucher, J. Fielden, M. Li, E. Dujardin, S. Mann, Molecule-Based Magnetic Nanoparticles:Synthesis of Cobalt Hexacyanoferrate, Cobalt Pentacyanonitrosylferrate, and Chromium Hexacyanochromate Coordination Polymers in Water-in-Oil Microemulsions, Nano. Lett.,2002,2,225-229.
    [107]T. Uemura, S. Kitagawa, Prussian Blue Nanoparticles Protected by Poly(vinylpyrrolidone), J. Am. Chem. Soc.,2003,125,7814-7815.
    [108]M. Taguchi, K. Yamada, K. Suzuki, O. Sato and Y. Einaga, Photoswitchable Magnetic Nanoparticles of Prussian Blue with Amphiphilic Azobenzene, Chem. Mater.,2005,17,4554-4559.
    [109]K.M.L. Taylor, A. Jin and W.B. Lin, Surfactant-Assisted Synthesis of Nanoscale Gadolinium Metal-Organic Frameworks for Potential Multimodal Imaging, Angew. Chem. Int. Ed. En.,2008,47,7722-7725.
    [110]A.M. Spokoyny, D. Kim, A. Sumrein and C.A. Mirkin, Infinite coordination polymer nano- and microparticle structures Chem. Soc. Rev.,2009,38, 1218-1227.
    [111]W.B. Lin, W.J. Rieter and K.M.L. Taylor, Modular Synthesis of Functional Nanoscale Coordination Polymers, Angew. Chem. Int. Ed.,2009,48,650-658.
    [112]A. Carne, G. Carbonell, I. Imaz and D. Maspoch, Nanoscale metal-organic materials, Chem. Rev.,2011,40,291-305.
    [113]S.K. Ghosh, J.P. Zhang, S. Kitagawa, Reversible Topochemical Transformation of a Soft Crystal of a Coordination Polymer, Angew. Chem. Int. Ed.,2007,46, 7965-7968.
    [114]M.H. Mir, L.L. Koh, G.K. Tan and J.J. Vittal, Single-Crystal to Single-Crystal Photochemical Structural Transformations of Interpenetrated 3D Coordination Polymers by [2+2] Cycloaddition Reactions, Angew. Chem. Int. Ed.,2010,49, 400-403.
    [115]C.L. Chen, A.M. Goforth, M.D. Smith, C.Y. Su and H.C. Loye, [Co2(ppca)2(H2O)(V4O12)0.5]:A Framework Material Exhibiting Reversible Shrinkage and Expansion through a Single-Crystal-to-Single-Crystal Transformation Involving a Change in the Cobalt Coordination Environment, Angew. Chem. Int. Ed.,2005,45,6673-6677.
    [116]J.W. Ye, Y. Liu, Y.F. Zhao, X.Y. Mu, P. Zhang and Y. Wang, Porous lanthanide-copper coordination frameworks exhibiting reversible single-crystal-to-single-crystal transformation based on variable coordination number and geometry, CrystEngComm,2008,10,598-640.
    [117]Y.J. Zhang, T. Liu, S. Kanagawa and O. Sato, Reversible Single-Crystal-to-Single-Crystal Transformation from Achiral Antiferromagnetic Hexanuclears to a Chiral Ferrimagnetic Double Zigzag Chain, J. Am. Chem. Soc.,2009,131,7942-7943.
    [118]S. Hermes, F. Schroder, R. Chelmowski, C. Woll and R. A. Fischer, Selective Nucleation and Growth of Metal-Organic Open Framework Thin Films on Patterned COOH/CF3-Terminated Self-Assembled Monolayers on Au(111), J. Am. Chem. Soc.,2005,127,13744-13745.
    [119]J.Gascon, S. Aguado, F. Kapteijn, Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on a-alumina, Microporous Mesoporous Mater.,2008, 113,132-138.
    [120]H.L. Guo, G.S. Zhu, I.J. Hewitt and S.L. Qin, "Twin Copper Source" Growth of Metal-Organic Framework Membrane:Cu3(BTC)2 with High Permeability and Selectivity for Recycling H2, J. Am. Chem. Soc.,2009,131,1646-1647.
    [121]R. Amloot, L. Pandey, M.V. Auweraer, L. Alaerts, B.F. Sels and D.E.D. Vos., Patterned film growth of metal-organic frameworks based on galvanic displacement, Chem. Commun.,2010,46,3735-3737.
    [122]D. Zacher, O. Shekhah, C. Woll and R.A. Fischer, Thin films of metal-organic frameworks, Chem. Soc. Rev.,2009,38,1418-1429.
    [123]B.Q. Ma, H.L. Sun, S. Gao, Formation of Two-Dimensional Supramolecular Icelike Layer Containing (H2O)12 Rings, Angew. Chem. Int. Ed.,2004,43, 1374-1376.
    [124]P. S. Lakshminarayanan, E. I. Suresh, P. Ghost, Formation of an Infinite 2D-Layered Water of (H2O)45 Cluster in a Cryptand-Water Supramolecular Complex:A Template Effect, J. Am. Chem. Soc.,2005,127,13132-13133.
    [125]C.Y. Duan, M.L. Wei, D. Guo, C. He and Q.J. Meng, Crystal Structures and Properties of Large Protonated Water Clusters Encapsulated by Metal-Organic Frameworks, J. Am. Chem. Soc.,2010,132,3321.
    [126]K.T. Potts, THE CHEMISTRY OF 1,2,4-TRIAZOLES, Chem. Rev.,1961,61, 87-127.
    [127]W.P. Fehlhamm, L.F. Dahl, Structural Characterization of a 1-Substituted 5-Tetrazolyl (transition metal) Complex Containing Metal-Carbon Bonding. Stereochemistry of the Tetrakis (1-isopropyltetrazol-5-ato) aurate(111) Anion, [Au(CN4R),](R= i-C, H,), J. Am. Chem. Soc.,1972,94,3370-3077.
    [128]J.G. Haasnoot, Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands, Coord. Chem. Rev., 2000,200,131-185.
    [129]G. Aromi, L.A. Barrios, O. Roubeau and P. Gamez, Triazoles and tetrazoles: Prime ligands to generate remarkable coordination, Coord. Chem. Rev.,2011, 255,485-546.
    [130]J.P. Zhang, S.L. Zheng, X.C. Huang and X.M. Chen, Two Unprecedented 3-Connected Three-Dimensional Networks of Copper(I) Triazolates:In Situ Formation of Ligands by Cycloaddition of Nitriles and Ammonia, Angew. Chem. Int. Ed.,2004.43,206-209.
    [131]P.X. Yin, J.K. Cheng, Z.J. Li, L. Zhang, Y.Y. Qin, J. Zhang and Y.G. Yao, Ag(I)-Mediated In situ Dehydrogenative Coupling of 3-Amino-1,2,4-triazole into 3,3'-Azobis(1,2,4-triazole) in Cd(Ⅱ) Coordination Polymers, Inorg. Chem., 2009,10859-10861.
    [132]P.X. Yin, Z.J. Li, J. Zhang, L.Zhang, Q.P. Lin, Y.Y. Qin and Y.G. Yao, Protonated 3-amino-1,2,4-triazole templated luminescent lanthanide isophthalates with a rare (3,6)-connected topology, CryEngComm,2009, 2734-2738.
    [133]J.P. Zhang, Y.Y. Lin, X.C. Huang and X.M. Chen, Copper(Ⅰ) 1,2,4-Triazolates and Related Complexes:Studies of the Solvothermal Ligand Reactions, Network Topologies, and Photoluminescence Properties, J. Am. Chem. Sco., 2005,127,5495-5506.
    [134]W. Ouellette, B.S. Hudson and J. Zubieta, Hydrothermal and Structural Chemistry of the Zinc(Ⅱ)-and Cadmium(Ⅱ)-1,2,4-Triazolate Systems, Inorg. Chem.,2007,46,4887-4904.
    [135]K. Muller-Buschbaum and Y. Mokaddem, Three-dimensional networks of lanthanide 1,2,4-triazolates:3∞[Yb(Tz)3] and 3∞[Eu2(Tz)5(TzH)2], the first 4f networks with complete nitrogen coordination, Chem. Comm.,2006, 2060-2062.
    [136]K. Muller-Buschbaum and Y. Mokaddem, MOFs by solvent free high temperature synthesis exemplified by ∞3[Eu3(Tz*)6(Tz*H)2], Solid. State. Sci., 2008,10,416-420.
    [137]K. Muller-Buschbaum, Y. Mokaddem and C.J. Holler, On an Unexpected 2D-linked Rare Earth 1,2,4-Triazolate Network:Synthesis, Crystal Structure, Spectroscopic and Thermal Properties of ∞2[Ho(Tz)3(TzH)2]TzH, Z. Anorg. Allg. Chem.,2008,634,2973-2977.
    [138]J.C. Yao, X.L. Mei, K. Jiang, Y.G. Li and L.F. Ma, A new 3D supramolecular compound containing 1D [Na2(H2O8)]n2+ chains and 1D water chains, Inorg. Chem. Commun.,2009,12,941-944.
    [139]W. Ouellette, M.H. Yu, C.J. O'Connor; D. Hagrman and J. Zubieta, Hydrothermal Chemistry of the Copper-Triazolate System:A Microporous Metal-Organic Framework Constructed from Magnetic {Cu3(μ3-OH) (triazolate)3}2+ Building Blocks, and Related Materials, Angew. Chem. Int. Ed. 2006,45,3497.
    [140]W. Ouellette, A.V. Prosvirin, V. Chieffo, K.R. Dunbar, B. Hudson and J. Zubieta, Solid-State Coordination Chemistry of the Cu/Triazolate/X System (X = F-, Cl-, Br-, I-, OH-, and SO42-), Inorg. Chem.2006,45,9346-9366.
    [141]W. Ouellette, A.V. Prosvirin, J. Valeich, K.R. Dunbar, J. Zubieta, Hydrothermal Synthesis, Structural Chemistry, and Magnetic Properties of Materials of the MⅡ/Triazolate/Anion Family, Where MnⅡ= Mn, Fe, and Ni, Inorg. Chem.,2007,46,9067-9082.
    [142]Q.G. Zhai, C.Z. Lu, S.M. Chen, X.J. Xu and W.B. Yang, Design of Novel Three-Dimensional Coordination Polymers Based on Triangular Trinuclear Copper 1,2,4-Triazolate Units, Cryst. Growth. Des.,2006,6,1393-1398.
    [143]G. Wei, Y.F. Shen, Y.R. Li and X.C. Huang, Synthesis, Crystal Structure, and Photoluminescent Properties of Ternary Cd(Ⅱ)/Triazolate/Chloride System, Inorg. Chem.,2010,49,9191-9199.
    [144]J.R. Li, Q. Yu. E.C. Sanudo, Y. Tao and X.H. Bu, An azido-CuⅡ-triazolate complex with utp-type topological network, showing spin-canted antiferromagnetism, Chem. Commun.,2007,2602-2604.
    [145]Q.G. Zhai, X.Y. Wu, S.M. Chen, C.Z. Lu and W.B. Yang, Construction of Cd/Zn(Ⅱ)-1,2,4-Triazolate Coordination Complexes via Changing Substituents and Anions, Cryst. Growth. Des.,2006,6,2126-2135.
    [146]W. Ouellette, J.R. Galan-Mascaros, K.R. Dunbar and J. Zubieta, Hydrothermal Synthesis and Structure of a Three-Dimensional Cobalt(Ⅱ) Triazolate Magnet, Inorg. Chem.2006,45,1909-1911.
    [147]X. He, Z.X. Wang, F.F. Xing and M.X. Li,3D copper coordination polymers based on N-heterocyclic ligands with different topology, Inorg. Chem. Commun.,2010,13,417-420.
    [148]X. He, C.Z. Lu, C.D. Wu and L.J. Chen, A Series of One- to Three-Dimensional Copper Coordination Polymers Based on N-Heterocyclic Ligands, Eur. J. Inorg. Chem.2006,2491-2503.
    [149]G. Mahmoudi, A. Morsali and L.G. Zhu, A New Two-Dimensional Coordination Polymer of Mercury(Ⅱ) with very High Thermal Stability, Z. Anorg. Allg. Chem.,2007,633,539-541.
    [150]A.A. Soudi, A. Morsali and S. Moazzenchi, A first 1,2,4-triazole PbⅡ Complex: Thermal, spectroscopic and structural studies, [Pb2(trz)2(CH3COO)(NO2)]n, Inorg. Chem. Comm.,2006,9,1259-1262.
    [151]E. Barea, A. R. Dieguez, J.A.R. Navarro, G.D'Alfonso and A. Sironi, [Re2(μ-1,2,4-triazolate)2(μ-OH)(CO)6]-:a novel metalloligand for the construction of flexible porous coordination networks, Dalton. Trans.,2008, 1825-1827.
    [152]J. Krober, I. Bkouche-Waksman, C. Pascard, M. Thomann and O. Kahn, Crystal structure of Zn(trz)Cl (trz= 1,2,4-triazolato); a layered compound with triply bridging triazolato groups, Inorg. Chimica. Acta.,1995,230,159-163.
    [153]A.M. Goforth, C.Y. Su, R. Hipp, R.B. Macquart, M.D. Smith and H.-C. Z. Loye. Connecting small ligands to generate large tubular metal-organic architectures, J. Solid. State. Chem.,2005,178,2511-2518.
    [154]D.P. Li, X.H. Zhou, X.Q. Liang, C.H. Li, C. Chen, J. Liu and X.Z. You, Novel Structural Diversity of Triazolate-Based Coordination Polymers Generated Solvothermally with Anions, Cryst. Growth Des.,2010,10,2136-2145.
    [155]Z.H. Weng, Z.L. Chen and F.P. Liang, A novel three-dimensional coordination polymer:poly[di-l3-acetato-di-12-acetato-di-13-hydroxido-octa-l3-triazolato-he ptamanganese(Ⅱ)], Acta. Cryst.,2008, C64, m64-m66.
    [156]H. Park, D.M. Moureau and J.B. Parise, Hydrothermal Synthesis and Structural Characterization of Novel Zn-Triazole-Benzenedicarboxylate Frameworks, Chem. Mater.,2006,18,525-531.
    [157]H. Park, J.F. Britten, U. Mueller, J.Y. Lee, J. Li and J.B. Parise, Synthesis, Structure Determination, and Hydrogen Sorption Studies of New Metal-Organic Frameworks Using Triazole and Naphthalenedicarboxylic Acid, Chem. Mater.,2007,19,1302-1308.
    [158]H. Park, G. Krigsfeld and J.B. Parise, Solvothermal Synthesis and Structural Characterization of New Zn-Triazole-Sulfoisophthalate Frameworks, Cryst. Growth. Des.,2007,7,736-740.
    [159]Q.G. Zhai, C.Z. Lu, X.Y. Wu and S.R. Batten, Coligand Modulated Six-, Eight-, and Ten-Connected Zn/Cd-1,2,4-Triazolate Frameworks Based on Mono-, Bi-, Tri-, Penta-, and Heptanuclear Cluster Units, Cryst. Growth. Des., 2007,7,2332-2342.
    [160]Y.C. Lu, X.R. Li, Z.H. Zhang and M. Du, Hydrothermal Synthesis, Crystal Structure and Properties of a Novel 2-D Grid-like CdⅡ Metal-organic Framework, Chinese J. Struct. Chem.,2007,26,15-20.
    [161]刘正,周建豪,李一志,宋友和陈学太,一维链状猛三氮唑配合物的合成,结构与磁性质,无机化学学报,2005,21,1601-1604.
    [162]X.L. Wang, C. Qin, Y.Q. Lan, K.Z. Shao, Z.M. Su and E.B. Wang, Metal-organic replica of γ-Pu:the first uninodal 10-connected coordination network based on pentanuclear cadmium clusters, Chem. Commun.,2009, 410-412.
    [163]J. Qin, C. Qin, C.X. Wang, H. Li, L. Cui, T.T. Li and X.L. Wang, A lacuna in reticular chemistry:an unprecedented binodal (6,10)-connected network based on two distinct zinc clusters, CrystEngComm.,2010,12,4071-4073.
    [164]Z.Y. Liu, X.G. Wang, E.C. Yang and X.J. Zhao, Two 1,2,4-Triazole-based Zinc(II) Complexes with Aromatic Acid as Coligand:Synthesis, Structure and Fluorescence Properties, Z. Anorg. Allg. Chem.,2008,634,1807.
    [165]Q.Q. Liang, Z.Y. Liu, E.C. Yang and X.J. Zhao,1,2,4-Triazole Controlled CdⅡ/MnⅡ Complexes with Discrete Mononuclear, Polymeric 1D Chain, and 2D Layer Motifs, Z. Anorg. Allg. Chem.,2009,635,2653-2659.
    [166]E.C. Yang, Q.Q. Liang, P. Wang and X.J. Zhao, A 3D photoluminescent cadmium(Ⅱ)-organic framework with unusual pentanuclear cluster as secondary building unit, Inorg. Chem. Commun.,2009,12,211-213.
    [167]F. Luo, Y.X. Che and J.M. Zheng, Two new metal-triazole-benzenedicarboxylate frameworks affording an uncommon 3,4-connected net and unique 4,6-connected rod packing:hydrothermal synthesis, structure, thermostability and luminescence studies, CrystEngComm.,2009,11,1097-1102.
    [168]Z. Song, H.Z. Gao, G.H. Li, Y. Yu, Z. Shi and S.H. Feng, Influence of noncovalent intermolecular interactions on crystal packing:syntheses and crystal structures of three layered Zn(Ⅱ)/1,2,4-triazole/carboxylate coordination polymers, CrystEngComm.,2009,11,1579-1584.
    [169]Q. Yang, S.P. Chen and S.L. Gao. An unexpected 3D (6,8)-connected metal-organic framework {[Cu5(trz)2(mal)2(fma)(H2O)4]·2H2O}n:Synthesis, structure and catalytic thermodecomposition for ammonium perchlorate. Inorg. Chem. Commun.,2009,12,1224-1226.
    [170]P. Mahata, M. Prabu and S. Natarajan, Time- and Temperature-Dependent Study in the Three-Component Zinc-Triazolate-Oxybis(benzoate) System: Stabilization of New Topologies, Cryst. Growth. Des.,2009,9,3683-3691.
    [171]Z. Hulvey, E.H.L. Falcao, J. Eckert and A.K. Cheetham, Enhanced H2 adsorption enthalpy in the low-surface area, partially fluorinated coordination polymer Zn5(triazole)6(tetrafluoroterephthalate)2(H2O)2·4H2O, J. Mater. Chem., 2009,19,4307-4309.
    [172]Q.G. Zhai, S.N. Li, W.J. Ji, Y.C. Jiang and M.C. Hu, A Cd/triazolate/carboxylate metal-organic framework with unprecedented (3,10)-connected topology based on tetranuclear clusters, Inorg. Chem. Commun.,2010,13,891-894.
    [173]D.S. Chowdhhuri, A. Rana, M. Bera, E. Zangrando and S. Dalai,3D zinc(Ⅱ) coordination polymers built up by triazole and benzene-polycarboxylate anions: Synthesis, crystal structure, thermal and photoluminescence characterization, Polyhedron.,2009,28,2131-2136.
    [174]H. Ren, T.Y. Song, J.N. Xu, S.B. Jing, Y. Yang, P. Zhang and L.R. Zhang, Four Novel Three-Dimensional Pillared-Layer Metal-Organic Frameworks in the Zn/Triazolate/Carboxylate System:Hydrothermal Synthesis, Crystal Structure, and Luminescence Properties, Cryst. Growth. Des.,2009,9, 105-112.
    [175]J.M. Ellsworth, K.L. Seward, M.D. Smith and H.C. Loye, Synthesis of mixed-ligand coordination polymers containing 1,2,4-triazole, oxalate, and cadmium, Solid. State. Sci.,2008,10,267-282.
    [176]X.C. Huang, W. Luo, Y.F. Shen, X.J. Lin and D. Li, A metal-organic framework containing discrete single-walled nanotubes based on curved trinuclear [Cu3(μ3-O)(μ-OH)(triazolate)2]+ building blocks, Chem. Commun., 2008,3995-3997.
    [177]E.C. Yang, Z.Y. Liu, X.J. Shi, Q.Q. Liang and X.J. Zhao, Two 3D Triazolate-Tricarboxylate-Bridged CuⅡ/Ⅰ Frameworks by One-Pot Hydrothermal Synthesis Exhibiting Spin-Canted Antiferromagnetism and Strong Antiferromagnetic Couplings, Inorg. Chem.,2010,49,7969-7975.
    [178]Z.L. Zhang, G.L. Shen, Y. Cheng, Y.B. Ding, Y.G. Yin and D. Li, Isomorphic polysupramolecules assembled from mixed valent Cu-triazolate sheets, benzene-1,3,5-tricarboxylates and halides, CrystEngComm.,2010,12, 1171-1174.
    [179]L. Cheng, J.Q. Wang and S.H. Gou, A new three-dimensional cobalt(II) coordination polymer based on biphenyl-2,2',6,6'-tetracarboxylic acid and 1,2,4-triazole:Synthesis, crystal structure and magnetic properties, Inorg. Chem. Commun.,2011,14,261-264.
    [180]P.J. Hagrman, C. Bridges, J.E. Greedan and J. Zubieta, A three-dimensional organic-inorganic composite material constructed from copper-triazolate networks linked through vanadium oxide chains:[{Cu3(trz)2}V4O12], Dalton Trans.,1999,2901-2903.
    [181]D. Hagrman, J. Zubieta, Organic-inorganic composite oxide phases: one-dimensional molybdenum oxide chains entrained within a three-dimensional coordination complex cationic framework in [{Cu2(triazolate)2(H2O)2}Mo4O13], Chem. Comm,1998,2005-2006.
    [182]P.J. Hagrman, R.L. LaDuca, Jr., H.J. Koo, R. Rarig, R.C. Haushalter, M.H. Whangbo, J. Zubieta, Ligand Influences on the Structures of Molybdenum Oxide Networks, Inorg. Chem.,2000,39,4311-4317.
    [183]Q.G. Zhai, X.Y. Wu, S.M. Chen, Z.G. Zhao and C.Z. Lu, Construction of Ag/1,2,4-Triazole/Polyoxometalates Hybrid Family Varying from Diverse Supramolecular Assemblies to 3-D Rod-Packing Framework, Inorg. Chem., 2007,46,5046-5058.
    [184]Q.G. Zhai, X.Y. Wu, S.M. Chen, L.J. Chen and C.Z. Lu, Keggin polyoxometalates-supported assembly of 2D supramolecular isomers: Synthesis, crystal structures and characteristics of two novel hybrid host-guest complexes, Inorg. Chim. Acta.,2007,360,3484-3492.
    [185]A.X. Tian, J. Ying, J. Peng, J.Q. Sha, Z.M. Su, H.J. Pang, P.P Zhang, Y. Chen, M. Zhu and Y. Shen, Using Flexible and Rigid Organic Ligands to Tune Topology Structures Based on Keggin Polyoxometalates, Cryst. Growth Des., 2010,10,1104-1110.
    [186]B. Malaman, R. Bagtache and K. Abdmeziem, Synthesis and structure of Cu3PO4[1,2,4-triazole]2OH with a hybrid layered structure:A new organically templated copper (Ⅱ) hydroxyphosphate, Solid. State. Sci.,2010,12, 1178-1182.
    [187]B. E. Coronado, J.R. Galan-Mascaros, M. Monrabal-Capilla, J. Garcinez and P. Pardo-Ibanz, Bistable Spin-Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature, Adv. Mater.,2007,19, 1359-1361.
    [188]F. He, M.L. Tong, X.L. Yu and X.M. Chen, Controlled Aggregation of Heterometallic Nanoscale Cu12Ln6 Clusters (Ln=GdⅢ or NdⅢ) into 2D Coordination Polymers, Inorg. Chem.,2005,44,559-565.
    [189]Q. Yu, X.Q. Zhang, H.D. Bian, H. Liang, B. Zhao, S.P. Yan and D.Z. Liao, pH-Dependent Cu(Ⅱ) Coordination Polymers with Tetrazole-1-acetic Acid: Synthesis, Crystal Structures, EPR and Magnetic Properties, Cryst. Growth Des.,2008,8,1140.
    [190]W.W. Dong, J. Zhao and L. Xu, Remarkable Structural Transformation of [Zn(tza)2] During Recrystallization, Syntheses and Crystal Structures of [M(tza)2] (M= Zn, Cd, Mn, Co; Htza= Tetrazole-1-acetic Acid), Cryst. Growth. Des.,2008,8,2882-2886.
    [191]H.Y. Yang, L.K. Li, J. Wu, H.W. Hou, B. Xiao and Y.T. Fan,3D Coordination Framework with Uncommon Two-Fold Interpenetrated {33-59-63}-lcy Net and Coordinated Anion Exchange, Chem, Eur, J.,2009,15,4049-4056.
    [192]D.C. Zhong, W.X. Zhang, F.L. Cao, L. Jiang and T.B. Lu, A three-dimensional microporous metal-organic framework with large hydrogen sorption hysteresis, Chem. Commun.,2011,47,1204-1206.
    [193]M.F. Wu, F.K. Zheng, A.Q. Wu, Y. Li, M.S. Wang, W.W. Zhou, F. Chen, G.C. Guo and J.S. Huang, Hydrothermal syntheses, crystal structures and luminescent properties of zinc(Ⅱ) coordination polymers constructed by bifunctional tetrazolate-5-carboxylate ligands, CrystEngComm,,2010,12, 260-269.
    [194]M.F. Wu, F.K. Zheng, G. Xu, A.Q. Wu, Y. Li, H.F. Chen. S.P. Guo, F. Chen, Z.F. Liu, G.C. Guo and J.S. Huang, Hydrothermal syntheses, structures and luminescent properties of group ⅡB metal coordination polymers based on bifunctional 1H-tetrazolate-5-acetic acid ligand, Inorg. Chem. Commun.,2010, 13,250-253.
    [195]W.W. Dong, J. Zhao and L. Xu, Syntheses, crystal structure and properties of two novel coordination polymers with the flexible tetrazole-1-acetic acid (Htza), J. Solid. State. Chem.,2008,181,1149-1154.
    [196]Y. Li, X.H. Zhong, F.K. Zheng, M.F. Wu, Z.F. Liu and G.C. Guo, A novel metal-organic framework with bifunctional tetrazolate-5-carboxylate ligand: Crystal structure and luminescent properties, Inorg. Chem. Commun.,2011,14, 407-410.
    [197]X.Q. Zhang, Q. Yu, H.D. Bian, X.G. Bao and H. Liang, Syntheses, crystal structures, and properties of 2-(1H-tetrazol-1-yl) acetic acid complexes, J. Coord. Chem.,2009,62,2108-2117.
    [198]A.Q. Wu, Q.Y Chen, M.F. Wu, F.K. Zheng, F. Chen, G.C. Guo and J.S. Huang, New Copper(Ⅱ). and Nickel(Ⅱ) Complexes with Bifunctional Tetrazolate-5-carboxylate Ligands:Syntheses, Crystal Structures, and Magnetic Properties, Australlian. J. Chem.,2009,62,1622-1630.
    [199]X.Q. Zhang, Q. Yu, H.D. Bian, S.P. Yan, D.Z. Liao, W. Gu and H. Liang, New coordination polymers of lanthanide(Ⅲ) with tetrazole-1-acetic acid:Synthesis, crystal structures, and magnetic properties, Australlian. J. Chem.,2008,61, 303-309.
    [200]X.L. Wang, C. Qin, E.B. Wang, Z.M. Su, L. Xu and S.R. Batten, An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks, Chem. Commun.,2005,4789-4791.
    [201]M.H. Zeng, H.H. Zou, S. Hu, Y.L. Zhou, M. Du and H.L. Sun, Unique (3,13)-Connected Coordination Framework Based on Pentacobalt Clusters Constructed from the (3,12)-Connected Analogue and 4,4'-Bipyridyl Spacer: Structural and Magnetic Aspects, Cryst. Growth. Des.,2009,9,4239-4242.
    [202]D.L. Long, A.J. Blake, N.R. Champness, C. Wilson and M. Schroder, Unprecedented Seven- and Eight-Connected Lanthanide Coordination Networks, Angew. Chem. Int. Ed.,2001,40,2443-2447.
    [203]C. Serre, F. Millange, S. Surble and G. Ferey, A Route to the Synthesis of Trivalent Transition-Metal Porous Carboxylates with Trimeric Secondary Building Units, Angew. Chem. Int. Ed.,2004,43,6285-6289.
    [204]N. Zheng, X. Bu and P. Feng, Pentasupertetrahedral Clusters as Building Blocks for a Three-Dimensional Sulfide Superlattice, Angew. Chem. Int. Ed., 2004,43.4753-4755.
    [205]S.L. Zheng and X.M. Chen, Aust. J. Chem.,2004,57,703.
    [206]M.B. Zhang, J. Zhang, S.T. Zheng and G.Y. Yang, A 3D Coordination Framework Based on Linkages of Nanosized Hydroxo Lanthanide Clusters and Copper Centers by Isonicotinate Ligands, Angew. Chem. Int. Ed.,2005,44, 1385-1388.
    [207]D. Li, T. Wu, X.P. Zhou, R. Zhou and X.C. Huang, Twelve-Connected Net with Face-Centered Cubic Topology:A Coordination Polymer Based on [Cu12(μ4-SCH3)6]6+ Clusters and CN- Linkers, Angew. Chem. Int. Ed.,2005, 44,4175-4178.
    [208]X. Zhang, R. Fang and H. Wu, A Twelve-Connected Cu6S4 Cluster-Based Coordination Polymer, J. Am. Chem. Soc.,2005,127,7670-7671.
    [209]P.L. Caradoc-Davies and L.R. Hanton, Formation of a single-stranded silver(I) helical-coordination polymer containing p-stacked planar chiral N4S2 ligands, Chem. Commun.,2001,1098-1099.
    [210]R. J. Hill, D.L. Long, M.S. Turvey, A.J. Blake, N.R. Champness, P. Hubberstey, C. Wilson and M. Schoder, Unprecedented bilayer topologies in 5- and 6-connected framework polymers, Chem. Commun.,2004,1792-1793.
    [211]J. Zhang, Y. Kang, J. Zhang, Z.J. Li, Y.Y. Qin and Y.G. Yao, Syntheses, Structures and Characterisation of Two CuⅡ Polymers with 8-Connected Topologies Based on Highly Connected SBUs, Eur. J. Inorg. Chem.,2006, 2253-2258.
    [212]J. J. Morris, B.C. Noll and K.W. Henderson, High-connectivity networks: characterization of the first uninodal 9-connected net and two topologically novel 7-connected nets, Chem. Commun.,2007,5191-5193.
    [213]J.H. Jia, X. Lin, C. Wilson, A.J. Blake, N.R. Champness, P. Hubberstey, G. Walker, E. J. Cussena and M. Schroder, Twelve-connected porous metal-organic frameworks with high H2 adsorption, Chem. Commun.,2007, 840-842.
    [214]A.M. Kutasi, A.R. Harris, S.R. Batten, B. Moubaraki and K.S. Murray, Coordination Polymers of Dicyanamide and Methylpyrazine:Syntheses, Structures, and Magnetic Properties, Cryst. Growth. Des.,2004,4,605-610.
    [215]G.J. Xu, Y.H. Zhao, K.Z. Shao, Y.Q. Lan, X.L. Wang, Z.M. Su, L.K. Yan, Three novel 3D (3.8)-connected metal-organic frameworks constructed from flexible-rigid mixed ligands, CrystEngComm.,2009,11,1842-1148.
    [216]C. Borel, M. Hakansson and L. Ohrstrom, Coordination bonds and strong hydrogen bonds giving a framework material based on a 4- and 8-connected net in [Ca[Co(en)(oxalato)2]2]n, CrystEngComm.,2006,8,666-669.
    [217]X.M. Zhang, Y.Z. Zheng, C.R. Li, W.X. Zhang and X.M. Chen, Unprecedented (3,9)-Connected (42.6)3(46.621.89) Net Constructed by Trinuclear Mixed-Valence Cobalt Clusters, Cryst. Growth. Des.,2007,7,980-983.
    [218]W.Q. Zou, M.S. Wang, Y. Li, Q. Wu, F.K. Zheng, Q.Y. Chen, G.C. Guo and J.S. Huang, Unprecedented (3,10)-Connected 2-D Metal-Organic Framework Constructed from Octanuclear Cobalt(Ⅱ) Clusters and a Newn Bifunctional Ligand, Inorg. Chem.,2007,46,6852-6854.
    [219]Y.Q. Lan, S.L. Li, K.Z. Shao, X.L. Wang, D.Y. Du, Z.M. Su and D.J. Wang, A (3,12)-Connected 3D Metal-Organic Framework Based on Nanosized Octanuclear Zinc Clusters, Cryst. Growth. Des.,2008,8,3490-3492.
    [220]F. Nouar, J.L. Eubank, T. Bousquet, L. Wojtas, M.J. Zaworotko and M. Eddaoudi, Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks, J. Am. Chem. Soc., 2008,130,1833-1835.
    [221]G.M. Sheldrick, SHELXL-97, A Program for Crystal Structure Determination; University of Gottingen:Gottingen,1997.
    [222]A.F. Wells, Three-Dimensional Netsand Polyhedra, Wiley, New York,1977.
    [223]V. A. Blatov,2006, http://www.topos.ssu.samara.ru/starting.html.
    [224]N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, O.M. Yaghi, Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units, J. Am. Chem. Soc.,2005,127,1504-1518.
    [225]C.A.Williams, A.J. Blake, P. Hubberstey, M. Schroder, A unique example of a 36 tessellated 2-D net based on a tri-nuclear zinc(Ⅱ)-1,4-benzenedicarboxylate framework, Chem. Commun.,2005,5435-5437.
    [226]M. Du, X.J. Jiang, X.J. Zhao, Molecular Tectonics of Mixed-Ligand Metal-Organic Frameworks:Positional Isomeric Effect, Metal-Directed Assembly, and Structural Diversification, Inorg. Chem.,2007,46,3984-3995.
    [227]M. Edgar, R. Mitchell, A.M.Z. Slawin, P. Lightfoot, P.A. Wright, Solid-State Transformations of Zinc 1,4-Benzenedicarboxylates Mediated by Hydrogen-Bond-Forming Molecules,Chem. Eur. J.,2001,5168-5175.
    [228]A.D. Burrows, K.Cassar, R.M.W. Friend, M.F. Mahon, S.P. Rigby, J.E. Warren, Solvent hydrolysis and templating effects in the synthesis of metal-organic frameworks, CrystEngComm,2005,7,548-550.
    [229]S.M. Hawxwell, H. Adams, L. Brammer, Two-dimensional metal-organic frameworks containing linear dicarboxylates, Acta Crystallogr,2006, B62, 808-814.
    [230]C.Y. Su, Y.P. Cai, C.L Chen, B.S. Kang, Unusual Noninterpenetrating (3,6) Topological Network Assembled by Semirigid Benzimidazole-Based Bridging Ligand, Inorg. Chem.,2001,40,2210-2211.
    [231]J.H. Jia, A.J. Blake, N.R. Champness, P. Hubberstey, C. Wilson, M. Schroder, Multi-Dimensional Transition-Metal Coordination Polymers of 4,4'-Bipyridine-N,N'-dioxide:1D Chains and 2D Sheets, Inorg.Chem.,2008, 47,8652-8664.
    [232]Z.R. Pan, J. Xu, H.G. Zheng, K.X. Huang, Y.Z. Li, Z.J. Guo, Stuart.R. Batten, Three New Heterothiometallic Cluster Polymers with Fascinating Topologies Inorg.Chem.,2009,48,5772-5778.
    [233]R.J. Hill, D. Long, N.R. Champness, P. Hubberstey and M. Schroder, New Approaches to the Analysis of High Connectivity Materials:Design Frameworks Based upon 44- and 63-Subnet Tectons, Acc. Chem. Res.,2005, 38.337-350.
    [234]H. Kim, G. Park and K. Kim, Two-dimensional metal-organic network with an unusual 36 topology and a cubic close packing pattern, CrystEngComm.,2008, 10,954-956.
    [235]M. O'Keeffe, M.A. Peskov, S.J. Ramsde and O.M. Yaghi, The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets, Acc. Chem. Res.,2008,41,1782-1789.
    [236]S.J. Garibay, J.R. Stork Z.Q. Wang, S.M. Cohen and S.G. Telfer, Enantiopure vs. racemic metalloligands:impact on metal-organic framework structure and synthesis, Chem. Commun,2007,4881-4883.
    [237]F. Luo, Y.X Che and J.M. Zheng, Employing La2-(La=Eu, Tb, Pr) or Co3-Based Molecule Building Blocks To Construct 3,8-Connected Nets: Hydrothermal Synthesis, Structure, Luminescence, and Magnetic Properties, Cryst. Growth. Des.,2008,8,2006-2010.
    [238]A.L. Spec, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr.,2003,36,7-13.
    [239]M. Dinca, A.Dailly, Y. Liu, C. M. Brown, D.A. Neumann, J.R. Long, Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites, J. Am. Chem. Soc.,2006,128,16876-16883.
    [240]G.X. Liu, K. Zhu, H. Chen, R.Y. Huang, H. Xu, X.M. Ren, Two novel three-dimensional coordination polymers based on metal clusters: Hydrothermal syntheses, crystal structures and luminescence, Inorg. Chim. Acta.,2009,362,1605-1610.
    [241]L. Wang, M. Yang, G.H. Li, Z.S and S.H. Feng, Highly Stable Chiral Cadmium 1,2,4-Benzenetricarboxylate:Synthesis, Structure, and NLO and Fluorescence Properties, Inorg. Chem.,2006,45,2474-2478.
    [242]F. Hu, Q.G. Zhai, S.N. Li, Y.C. Jiang and M.C. Hu, Ionothermal synthesis of a new (4,12)-connected heterometallic iodoplumbate with [Pb4(OH)4] cubane as joint points of the helices, CrystEngComm.,2011,13,414-427.
    [243]W. T. Ai, H. Y. He, L. J. Liu, Q. J Liu, X. L. Lv, J. Li and D. F. Sun, Synthesis, crystal structures and properties of three metal-organic supramolecular architectures based on mixed organic ligands, CrystEngComm,2008, 1480-1486;
    [244]A. M. Kutasi, A. R. Harris, S. R. Batten, B. Moubaraki and K. S. Murray, Coordination Polymers of Dicyanamide and Methylpyrazine:Syntheses, Structures, and Magnetic Properties, Cryst. Growth. Des.,2004,4,605-610;
    [245]P. K. Chen Y. X. Che and J. M. Zheng, A 3D heteropolynuclear network with 4,6-connected (44.62)(48.66.8) topology:Synthesis, structure, thermal and magnetic properties, Inorg. Chem. Commun.,2007,10,187-190.
    [246]J.D. Lin, J.W. Cheng and S.W. Du, Five d10 3D metal-organic frameworks constructed from aromatic polycarboxylate acids and flexible imidazole-based ligands, Cryst. Growth Des.,2008,8,3345-3353.
    [247]E.C. Yang, J. Li, B. Ding, Q.Q. Liang, X.G. Wang, X.J. Zhao, An eight-connected 3D lead(II) metal-organic framework with octanuclear lead(II) as a secondary building unit:synthesis, characterization and luminescent property, CrystEngComm.,2008,10,158-161.
    [248]M.J. Katz, V.K. Michaelis, P.M. Aguiar, R. Yson, H. Lu, H. Kaluarachchi, R.J. Batchelor, G..Schreckenbach, S. Kroeker, H.H. Patterson, D.B. Leznoff, Inorg. Chem.,2008,47,6353-6363.
    [249]X.R. Meng, Y.L. Song, H.W. Hou, Y.T. Fan, G.. Li, Y. Zhu, Novel Pb and Zn Coordination Polymers:Synthesis, Molecular Structures, and Third-Order Nonlinear Optical Properties, Inorg. Chem.,2003,42,1306-1315.
    [250]K. Kavallieratos, J.M. Rosenberg, J.C. Bryan, Pb(Ⅱ) Coordination and Synergistic Ion-Exchange Extraction by Combinations of Sulfonamide Chelates and 2,2'-Bipyridine, Inorg. Chem.,2005,44,2573-2575.
    [251]B. Xiao, H.W. Hou, Y.T. Fan,1-D chain metal-organic polymers bridged by bis-benzimidazole-based ligands:syntheses, structures, and fluorescent properties, J. Coor. Chem.,2009,62,1827-1834.
    [252]Y.H. Zhao, H.B. Xu, Y.M. Fu, K.Z. Shao, S.Y. Yang, Z.M. Su, X.R. Hao, D.X. Zhu, E.B. Wang, A Series of Lead(Ⅱ)-Organic Frameworks Based on Pyridyl Carboxylate Acid N-Oxide Derivatives:Syntheses, Structures, and Luminescent Properties, Cryst.Growth. Des.,2008,8,3566-3576.
    [253]C. Kazak, N.B. Arslan, S. Karabulut, A.D. Azaz, H. Namli, R. Kurtaran, Supramolecular lead(Ⅱ) azide complex of 2,6-diacetylpyridine dihydrazone: synthesis, molecular structure, and biological activity, J. Coor. Chem.,2009, 62.2966-2973.
    [254]M.R.S.J. Foreman, T. Gelbrich, M.B. Hursthouse, M.John. Plate, Hydrothermal synthesis and characterisation of lead(Ⅱ) benzene-1,3,5-tricarboxylate [Pb3BTC2]·H2O:a lead(Ⅱ) carboxylate polymer, Inorg. Chem. Commun.,2000, 3,234-238.
    [255]X.J. Li, R. Cao, Y.Q. Sun, W.H. Bi, X. Li, Y.Q. Wang, Syntheses and Characterizations of Multidimensional Metal-Organic Frameworks Based on Rings and 1D Chains, Eur. J. Inorg. Chem.,2005,321-329.
    [256]A. Aslani, A. Morsali, M. Zeller, Dynamic crystal-to-crystal conversion of a 3D-3D coordination polymer by de- and re-hydration, Dalton. Trans.,2008, 5173-5177.
    [257]L. Hashemil and P. Retailleau, Synthesis and structural characterization of new one- and two-dimensional lead(Ⅱ) coordination polymers; new precursors for preparation of pure phase lead(Ⅱ) oxide nanoparticles via thermal decomposition, Inorg. Chimica. Acta.,2011,367,207-211.
    [258]D.J. Zhang, T.Y. Song, J. Shi, K.R. Ma, Y. Wang, L. Wang, P. Zhang, Y. Fan, J.N. Xu, Solvothermal synthesis a novel hemidirected 2-D (3,3)-net metal-organic framework [Pb(HIDC)]n based on the linkages of left- and right-hand helical chains, Inorg. Chem. Commun.,2008,11,192-195.
    [259]J. Shi, J.W. Ye, T.Y. Song, D.J. Zhang, K. R. Ma, J. Ha, J.N. Xu, P. Zhang, A hemidirected 1-D coordination polymer [Pb2(H2O)2(HBTC)2]·3H2O extended in holodirected 3-D by weak Pb-O interactions, Inorg. Chem. Commun.,2007, 10,1534-1536.
    [260]C.P. Li, J. Chen and M. Du, Structural diversification and metal-directed assembly of coordination architectures based on tetrabromoterephthalic acid and a bent dipyridyl tecton 2,5-bis(4-pyridyl)-1,3,4-oxadiazole, CrystEngComm.,2010.,12,4392-4402.
    [261]J.P. Zhang, Y.Y. Lin, X.C. Huang and X.M. Chen, Supramolecular isomerism within three-dimensional 3-connected nets:unusual synthesis and characterization of trimorphic copper(Ⅰ) 3,5-dimethyl-1,2,4-triazolate, Dalton. Trans.,2005,3681-3685.
    [262]X.C. Huang, J.P. Zhang and X.M. Chen, One-Dimensional Supramolecular Isomerism of Copper(Ⅰ) and Silver(Ⅰ) Imidazolates Based on the Ligand Orientations, Cryst.Growth. Des.,2006,6,1194-1198.
    [263]E.C. Yang, J. Li, B. Ding, Q.Q. Liang, X.G. Wang and X.J. Zhao, An eight-connected 3D lead(Ⅱ) metal-organic framework with octanuclear lead(Ⅱ) as a secondary building unit:synthesis, characterization and luminescent property, CrystEngComm,2008,10,158-161.
    [264]Z.H. Wei, Z.L. Chen and F.P. Liang, Glycine-Templated Manganese Sulfate with New Topology and Canted Antiferromagnetism, Inorg. Chem.,2009,48, 8703-8708.
    [265]A. Pellissier, Y. Bretonniere, N. Chatterton, J. Pecaut, P. Delangle, M. Mazzanti, Relating Structural and Thermodynamic Effects of the Pb(Ⅱ) Lone Pair:A New Picolinate Ligand Designed to Accommodate the Pb(Ⅱ) Lone Pair Leads to High Stability and Selectivity, Inorg. Chem.,2007,46, 3714-3725.
    [266]M. Kourgiantakis, M. Matzapetakis, C.P. Raptopoulou, A. Terzis, A. Salifoglou, Lead-citrate chemistry. Synthesis, spectroscopic and structural studies of a novel lead(Ⅱ)-citrate aqueous complex, Inorg. Chim. Acta.,2000, 297,134-138.
    [267]J. Shi, J.N. Xu, P. Zhang, Y. Fan, L. Wang, M.H. Bi, K.R. Ma, T.Y. Song, Hydrothermal synthesis and characterization of two coordination polymers of flexible acid and lead:[Pb6(H2O)(cit)]·3H2O and Pb(tar)(H2O)2, Chem. J. Chinese Universities,2007,9,1617-1621.
    [268]C. Gabriel, C.P. Raptopoulou, V. Psycharis, A. Terzis, M. Zervou, C. Mateescu and A. Salifoglou,1D-3D Metal-Organic Lattice Assemblies through Chemical Reactivity and Metal-Assisted Ligand Transformations in Ternary Pb(Ⅱ)-Phenanthroline-(Hydroxy)dicarboxylic Acid, SystemsCryst. Growth Des.,2011,11,382-395.
    [269]S. Norberg, G. Svensson, J. Albertsson, Lead (Ⅱ) oxydiacetate hydrate, Acta Cryst,1999, C55,356-358.
    [270]H.P. Xiao, A. Morsali, A Novel Three-Dimensional Coordination Polymer Involving Pb-Pb Interactions and Three Different Hemidirected Lead(II) Coordination Spheres:X-Ray Crystal Structure of Tris(1,10-phenanthroline-κN1, κN1')-bis[{μ3-[5-(sulfo-KO) enzene-1,-dicarboxylate(3-)κO1,κO1':κO2, κO2':κO2]}trilead (Pb-Pb) Trihydrate ([Pb3(phen)3(H2O)2(sip)2]n·3H2O), Helvetica. Chimica. Acta.,2005,88, 2543-2549.
    [271]M.R.S. Foreman, M.J. Plater and J.M.S.Skakle, Synthesis and characterisation of polymeric and oligomeric lead(Ⅱ) carboxylates, Dalton. Trans.,2001, 1897-1903.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.