单畴GdBCO超导块材的研制及应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单畴RE-Ba-Cu-O(简称REBCO,其中RE为稀土元素Nd、Sm、Gd、Eu、Y、 Yb等)高温超导块材具有较高的临界温度和临界电流密度、较强的捕获磁通和较大的磁悬浮力性能,以及良好的自稳定磁悬浮特性,在微型高场永磁体和超导磁悬浮等高新技术方面有着广泛的应用前景。GdBCO超导体便是高温超导家族中性能最好并最有可能早日投入实际应用的材料之一。
     本文对单畴GdBCO超导块材的制备、特性及应用进行了比较系统的研究,主要包括以下三方面的内容:(1)采用顶部籽晶熔渗生长(TSIG)方法制备单畴GdBCO超导块材,并对影响样品单畴生长的关键工艺参数(慢冷温区、慢冷时间)进行了详细的调试和优化;(2)通过改变熔渗生长方法使用的液相源成分及前驱坯块的装配方式,对传统的TSIG工艺进行改进研究,以简化实验步骤,缩短实验周期,提高TSIG方法的制备效率和稳定性;(3)对制备的高温超导块材进行应用研究探索。介绍了本实验室设计发明的超导磁悬浮推进系统模型、超导磁悬浮列车模型等实验和演示装置。主要结论如下:
     (1)用等温生长与淬火工艺相结合的方法研究了GdBCO样品在不同温度下的生长情况。实验结果表明,当样品在1040℃保温20h后没有出现籽晶诱导成核及生长的现象。在1040℃以下,样品开始在籽晶处成核并外延生长,且随着温度的降低(过冷度的增加),生长速率越来越大。在1020℃保温时,样品边缘开始出现随机成核。样品的微观结构研究表明,随着过冷度的增加,样品内捕获了越来越多的小尺寸Gd2BaCu05(Gd-211)粒子,使得块材中Gd-211第二相粒子所占的体积分数逐渐增大,粒子的平均尺寸逐渐减小,这种现象有利于样品J。的提高。综合以上实验现象并参考样品在慢冷生长过程中的实例,最终选定适合GdBCO单畴块材生长的慢冷温区为1035-1015℃。
     (2)研究了不同慢冷时间(20h~90h)对GdBCO块材形貌及性能的影响。结果表明,当样品在1035-1015℃的温区内慢冷生长时,随着慢冷时间的延长,样品的单畴区生长得越来越大,样品边缘的随机成核可被有效抑制,样品的单畴生长越来越安全和稳定。样品的侧面形貌和剖面形貌均表明当慢冷时间达到70h-80h时,籽晶引导的单畴区扩展到样品底部,整个块材生长成为完整单畴体,在此情况下样品的磁悬浮力性能达到饱和值。样品的微观结构研究表明,随着慢冷时间的延长,样品内捕获的Gd-211粒子数目越来越少,且粒子在液相中的Ostwald粗化现象越来越严重。
     (3)介绍了本实验室设计发明的高温摄像装置。利用该装置可以清楚观察到REBCO样品在高温下的晶体生长细节,实现对样品生长过程的实时观测。根据样品在不同温度下的生长形貌及随时间的变化情况,我们可以在短时间内制定出针对不同尺寸样品的最优化热处理程序,提高了工作效率,在探索研究大尺寸超导块材的制备技术时可发挥重大的作用。
     (4)用两种新液相源LS2(Gd-211+3Ba3Cu508)和LS3(Gd2O3+10BaCuO2+6CuO)熔渗生长单畴GdBCO超导块材。结果表明,和传统熔渗生长方法使用的液相源LS1(Gd-123+Ba3Cu508)一样,使用新成分的液相源也可成功制备出单畴GdBCO超导块材,这是因为虽然三种液相源的物相成分不同,但却具有相同的Gd、Ba、Cu原子组分比,因此可起到相同的作用。此外,使用这两种新型液相源,整个熔渗生长工艺仅需Gd-211和BaCuO2两种前驱粉,这简化了实验步骤,缩短了实验周期,提高了制备效率,对单畴GdBCO超导块材的批量化制备有重要的意义。
     (5)用一种新型Y2O3基液相源LS4(Y2O3+10BaCuO2+6CuO)成功熔渗生长出了单畴GdBCO超导块材。研究表明,样品内部捕获了较小尺寸的Gd-211粒子,表现出更高的磁悬浮力性能(28N)。此外,由于本文采用的GdBCO样品生长的慢冷温区(1035-1015℃)始终高于Y-123相的包晶分解温度(约1010℃),所以在GdBCO块材的生长过程中,Y2O3基液相源会一直保持Y-211相和液相的半熔融状态,不会出现Y-123相的生成及固化,因此液相源块可以最大程度地向上面的坯块供应液相,从而提高了液相源粉的利用率。
     (6)比较了三种RE2O3基液相源LS3(Gd2O3+10BaCuO2+6CuO), LS4(Y2O3+10BaCuO2+6CuO)和LS5(Yb2O3+10BaCuO2+6CuO)熔渗生长的GdBCO单畴超导块材。结果表明,用这三种RE2O3基液相源均可成功制备出直径30mm的单畴GdBCO超导块材。其中由Y2O3基液相源LS4制备的样品中捕获的Gd-211粒子平均尺寸最小,样品的磁悬浮力最大(67.8N),因此我们认为Y2O3基液相源LS4是熔渗生长GdBCO超导块材的最佳选择。
     (7)采用新型的前驱坯块装配方式熔渗生长单畴GdBCO超导块材。在该装配方式中,我们使用较大直径(30mm)的液相源块支撑并熔渗生长较小直径(20mm)的GdBCO样品。结果表明,该方法可以提高液相源块的支撑能力,有效避免样品出现倾斜或倒塌的现象,从而提高了熔渗生长方法的稳定性。此外,由于液相源块的直径始终大于其上的GdBCO样品,可以保证在生长过程中样品的整个底部始终与液相源直接接触,因此可为样品的完整生长提供充足的液相条件。超导性能的研究表明,由新型装配方式制备的GdBCO样品表现出比较高的超导转变温度(约91K)和自场临界电流密度(4.7×104A/cm2)。
     (8)利用超导磁悬浮原理及直线电机驱动技术,设计制作了一种超导磁悬浮推进系统模型。该模型由装有YBCO或GdBCO超导块材的小车,永磁轨道,直线电机,光电开关等组成,可以演示小车在悬浮状态下,直线电机的驱动力与超导小车爬升高度之间的关系。该模型综合了直线电机驱动,超导磁悬浮,液氮冷却,轨道导向及光电自动控制技术,具有良好的演示效果。
     (9)在超导磁悬浮推进系统模型的基础上,我们实验室设计发明了一种新型的高温超导磁悬浮列车演示装置,其结构简单、体积小、演示直观。该装置主要有两部分组成,一是直线电机,用于给小车提供动力,克服小车运动过程中因空气阻力等引起的能量损耗。二是环形闭合永磁轨道,可实现小车周而复始的自动悬浮运行。该演示装置涉及到力学、磁学、超导、电子电工、自动控制、低温等多方面的知识,不仅可获得良好的演示效果,还能增加人们对现代科技的认识并激发其对高新技术的兴趣。
Because of the high critical temperature and high critical current density, large levitation force and trapped field, also the property of self-stabilized levitation, the single-domain RE-Ba-Cu-O (REBCO, where RE is a rare earth element such as Nd, Sm, Gd, Eu, Y or Yb) high-temperature bulk superconductors have broad application prospects in the high and new technology areas such as high-magnetic-field permanent magnets and superconducting magnetic levitation systems. In the family of high-temperature superconductors, GdBCO superconductor is one of that which has the best performance and may be used earlier in practical applications.
     In this paper, the fabrication, property and application of single-domain GdBCO bulk superconductors have been investigated in detail. The main work consists of three parts:(1) the single-domain GdBCO bulk superconductors have been fabricated by top seeded infiltration and growth (TSIG) technique, and the key technique parameters (slow-cooling temperature window and slow-cooling time) which affect the single-domain growth of the bulk have been optimized.(2) The conventional TSIG technique has been modified using liquid sources with new compositons and employing a novel configuration of the precursor pellets, which can simplify the fabrication process, save the experimental time, and improve the working efficiency and stability of the TSIG method.(3) Some application devices based on the produced bulk superconductors have been designed and constructed in our laboratory, including a superconducting maglev propeller system model and a superconducting maglev car model.
     The main results are summarized as follow:
     (1) The growth character of the GdBCO sample at different temperatures was investigated using a combined isothermal growth and quench technique. Experimental results indicated that, when the sample was held at1040℃for20h, the nucleation and epitaxial growth of GdBCO crystal from the seed did not occur. At temperatures just below1040℃, the nucleation and epitaxial growth started, and the growth rate of GdBCO crystal increased with the decreasing of undercooling temperature. When the sample was held at1020℃, random nucleation at the edge of the bulk appeared. Microstructural observation shows that, the sample can trap more and more small (Gd-211) particles with the increase of the undercooling. This phenomenon leads to an increase in volume fraction of Gd-211particles, as well as a decrease in the mean particle size, which are both beneficial to the improvement of Jc. According to the above results, the optimal temperature window for GdBCO bulk growth was selected as1035-1015℃.
     (2) The effect of slow-cooling time on the morphology and performance of the GdBCO bulk was investigated. The results indicated that, when the sample was grown in the temperature window of1035-1015℃, the growth region of the GdBCO single domain increases with the increasing cooling time. The random nucleation of GdBCO grains can be effectively suppressed with prolonging the cooling time, thus the single-domain bulk grows more steadily. Both of the side and cross-section morphology view indicated that, the single domain expanded to the whole sample when the cooling time reaches to70h~80h, and then the levitation force of the sample nearly reached to a saturated value. Micro structural result showed that, the number of Gd-211particles entrapped in the bulk decreased with the increasing cooling time, and the Ostwald ripening phenomenon became more serious.
     (3) A high temperature video camera device has been developed in our laboratory, and the growth details of REBCO sample at high temperatures can be observed in real time. According to the obtained information, we can establish the optimum heat treatment process for the crystal growth of different-sized samples in a rather short time, which can improve the work efficiency and will play an important role in the exploration and development of the fabrication technology for large bulks.
     (4) Two new liquid sources LS2(Gd-211+3Ba3Cu5O8) and LS3(Gd2O3+10BaCuO2+6CuO) were employed for the infiltration and growth of single-domain GdBCO bulk superconductor. The results indicate that, just as the regular liquid source LS1(Gd-123+Ba3Cu5O8) used in the conventional IG process, the new luquid sources can also be used to fabricate single-domain GdBCO sample, because that they have the same atomic ratio of Gd, Ba and Cu. Furthermore, after employing the new liquid sources, only two precursor powders (Gd-211and BaCuO2) are needed to prepare for the whole TSIG process flow, which can simplify the experimental procedure, shorten the experimental period, and improve the fabrication efficiency.
     (5) Single-domain GdBCO bulk superconductors have been fabricated successfully using a new kind of Y2O3-based liquid source. It was shown that much more small Gd-211particles were trapped in the samples and enhanced the sample to a higher levitation force (28N). Moreover, the lower temperature of slow-cooling temperature window for GdBCO growth used in this study (1015℃), is always higher than the peritectic decomposition temperature of Y-123phase (1010℃), thus the liquid source can be always kept in a partial melting state composed of Y-211and liquid. This can make the liquid source pellet supply liquid as much as possible, and the utilization rate of the liquid source powder is enhanced.
     (6) Three RE2O3-based liquid sources LS3(Gd2O3+10BaCuO2+6CuO), LS4(Y2O3+10BaCuO2+6CuO) and LS5(Yb2O3+10BaCuO2+6CuO) have been used to fabricate large GdBCO single-domain bulks of30mm in diameter by the TSIG technique. More refined Gd-211particle distribution was observed in the sample fabricated using LS4, which also exhibited largest levitation force (67.8N). Thus the Y2O3-based liquid source LS4was considered as the best choice for TSIG process of GdBCO bulk.
     (7) A novel configuration was employed for TSIG process of single-domain GdBCO bulk. In this configuration, we used liquid source pellet of largle diameter to support and grow small GdBCO sample, which could increase the support ability of the liquid source pellet and make a sufficient condition for the growth of the bulk in all dimensions. Superconductive measurements revealed that, the sample exhibited high superconducting transition temperature (about91K) and large self-field critical current density (4.7×104A/cm2).
     (8) A superconducting maglev propeller system model was designed and constructed in our laboratory using the fabricated REBCO products, based on the principle of Superconducting magnetic levitation and the driving technology of linear motor. This system can demonstrate the levitated running of a small car model, and the climbing along the track drived by the linear motor, which can give a nice demonstration of maglev propeller system.
     (9) On the basis of the maglev propeller system model, a superconducting maglev car demonstration device has been designed and constructed in our laboratory, which consists of two parts:i) a pair of linear motors, which can drive the car model to climb to a higher position; ii) a closed magnet track loop, to accomplish the automic and circular levitated-motion of the car model. This demonstration device has many advantages such as simple structure, small volume, and the intuitionistic demonstration effects.
引文
[1]Onnes H K. The resistance of puremercury at helium temperatures [J]. Commun. Phys. Lab. Univ. Leiden,1911,120b,122b,124c.
    [2]Meissner W. Ochsenfeld R. Neuer effekter bei eintritt der supraleitfahigkeit[J]. Naturwissenschaften,1933,21:787-788.
    [3]Bardeen J, Cooper L N, Schrieffer J R. Theory of superconductivity [J]. Phys. Rev., 1957,108:1175-1204.
    [4]Bednorz J G, Muller K A. Possible high Tc superconducutivity in the Ba-La-Cu-O system[J]. Z. Phys. B,1986,64:189-193.
    [5]Chu C W, Beehtold J, Gao L, Hor P H, Huang Z J, Meng R L, Sun Y Y, Wang Y Q, Xue Y Y. Superconductivity at 93K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Phys. Rev. Lett.,1987,58:908-910.
    [6]Maeda H, Tanak Y, Fukutomi M, Asano T. A new high-Tc oxide superconductor without a rare earth element[J]. Jpn. J. Appl. Phys.,1988,27:L209-L210.
    [7]Sheng Z Z, Hermann A M. Bulk superconductivity at 120K in the Tl-Ca/Ba-Cu-O system[J]. Nature,1988,332:138-139.
    [8]Putilin S N, Antipov E V, Chmaissem O, Marezio M. Superconductivity at 94K in HgBa2Cu04+s[J]. Nature,1993,362:226-228.
    [9]Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K. Superconductivity up to 164K in HgBa2Cam-1Cum02m+2+δ (m=1,2, and 3) under quasihydrostatic pressures[J]. Phys. Rev. B,1994,50:4260-4263.
    [10]Abrikosov A A. On the magnetic properties of superconductors of the second group[J]. Zh. Ekep. Teor. Fiz.,1957,32:1442-1445.
    [11]Jin S, Tiefel T H, Sherwood R C, Davis M E, Van Dover R B, Kammlott G W, Fastnacht R A, Keith H D. High critical current density in bulk Y-Ba-Cu-O superconductors[J]. Appl. Phys. Lett.,1988,52:2074-2076.
    [12]Murakami M, Morita M, Koyama N. Magnetization of a YBa2Cu3O7 crystal prepared by the quench and melt growth process[J]. Jpn. J. Appl. Phys.,1989,28: L1125-L1127.
    [13]Zhou L, Zhang P X, Ji P, Wang K G, Wang J R, Wu X Z. The properties of YBCO superconductors prepared by a new approach:the'powder melting process'[J]. Supercond. Sci. Technol.,1990,3:490-492.
    [14]Murakami M, Oyama T, Fujimoto H, Gotoh S, Yamaguchi K, Shiohara Y, Koshizuaka N, Tanaka S. Melt processing of bulk high Tc superconductors and their application[J]. IEEE Trans. Magn.,1991,27:1479-1486.
    [15]Salama K, Selvamanickam V, Gao L, Sun K. High current density in bulk YBa2Cu307-δSuperconductor[J]. Appl. Phys. Lett.,1989,54:2352-2354.
    [16]Meng R L, Gao L, Gautier-Picard P, Ramirez D, Sun Y Y, Chu C W. Growth and possible size limitation of quality single-grain YBa2Cu3O7[J]. Physica C,1994,232: 337-346.
    [17]Chen Y L, Chan H M, Harmer M P, Todt V R, Sengupta S, Shi D. A new method for net-shape forming of large, single-domain YBa2Cu3O6+x[J].Physica C,1994,234: 232-236.
    [18]朱思华YBCO超导体的制备及其物理性能研究[D].西安:陕西师范大学,2007.
    [19]Chow J C L, Leung H T, Lo W, Cardwell D A. Analysis of the spatial distribution of Y2BaCu05 inclusions in large-grain YBa2Cu3O7-δ[J]. J. Mater. Sci.,1998,33: 1083-1089.
    [20]Hari Babu N, Kambara M, Reddy E S, Shi Y, Cardwell D A. Improved magnetic flux pinning in melt processed (Y, Nd)Ba2Cu3O7-δ superconductor[J]. Supercond. Sci. Technol.,2005,18:S38-S42.
    [21]Cardwell D A, Murakami M, Zeisberger M, Gawalek W, Gonzalez-Arrabal R, Eisterer M, Weber H W, Fuchs G, Krabbes G, Leenders A, Freyhardt H C, Hari Babu N. Round robin tests on large grain melt processed Sm-Ba-Cu-O bulk superconductors[J]. Supercond. Sci. Technol.,2005,18:S173-S179.
    [22]Cardwell D A, Hari Babu N, Shi Y, Iida K. A practical processing method for the fabrication of high performance, single grain (LRE)-Ba-Cu-O superconductors[J]. Supercond. Sci. Technol.,2006,19:S510-S516.
    [23]Hari Babu N, Iida K, Shi Y, Cardwell D A. Processing of high performance (LRE)-Ba-Cu-O large, single-grain bulk superconductors in air[J]. Physica C,2006, 445.448:286-290.
    [24]唐耀龙.Na掺杂对单畴YBCO超导块材性能的影响[D].西安:陕西师范大学,2009.
    [25]Izumi T, Nakamura Y, Shiohara Y. Diffusion solidification model on Y-system superconductors[J]. J. Mater. Res.,1992,7:1621-1628.
    [26]Izumi T, Shiohara Y. Growth mechanism of YBa2Cu3Oy superconductors prepared by the horizontal Bridgman method[J]. J. Mater. Res.,1992,7:16-23.
    [27]Nakamura Y, Shiohara Y. Peritectic solidification model for Y-system superconductive oxides[J]. J. Mater. Res.,1996,11:2450-2457.
    [28]程晓芳TSMTG法制备GdBCO块材及对其性能的研究[D].西安:陕西师范大学,2010.
    [29]Nakamura Y, Endo A, Shiohara Y. The relation between the undercooling and the growth rate of YBa2Cu3O6+x superconductive oxide[J]. J. Mater. Res.,1996,11: 1094-1110.
    [30]Endo A, Chauhan H S, Nakamura Y, Shiohara Y. Relationship between growth rate and undercooling in Pt-addedY1Ba2Cu307-x[J].J. Mater. Res.,1996,11:1114-1119.
    [31]Shi Y, Hari Babu N, Iida K, Cardwell D A. Growth rate and superconducting properties of Gd-Ba-Cu-O bulk superconductors melt processed in air[J]. IEEE Trans. Appl. Supercond.,2007,17:2984-2987.
    [32]Yoo S I, Sakai N, Takaichi H, Murakami M. Melt processing for obtaining NdBa2Cu3Oy superconductors with high Tc and large Jc[J]. Appl. Phys. Lett.,1994, 65:633-635.
    [33]Hari Babu N, Lo W, Cardwell D A, Campbell A M. The irreversibility behavior of NdBaCuO fabricated by top-seeded melt processing[J]. Appl. Phys. Lett.,1999,75: 2981-2983.
    [34]Muralidhar M, Sakai N, Chikumoto N, Jirsa M, Machi T, Nishiyama M, Wu Y, Murakami M. New type of vortex pinning structure effective at very high magnetic fields[J]. Phys. Rev. Lett.,2002,89:237001.
    [35]Nariki S, Sakai N, Murakami M, Hirabayashi I. High critical current density in RE-Ba-Cu-O bulk superconductors with very fine RE2BaCuO5 particles[J]. Physica C,2004,412-414:557-565.
    [36]Murakami M, Sakai N, Higuchi T, Yoo S I. Melt-Processed Light Rare Earth Element-Ba-Cu-O[J]. Supercond. Sci. Technol.,1996,9:1015-1032.
    [37]Yoo S I, McCallum R W. Phase diagram in the Nd-Ba-Cu-O system[J]. Physica C, 1993,210:147-156.
    [38]Lo W, Hari Babu N, Cardwell D A, Shi Y, Astill D M. Fabrication and characterization of large Nd-Ba-Cu-O grains prepared under low oxygen pressure[J]. J. Mater. Res.,2000,15:33-39.
    [39]Nariki S, Sakai N, Murakami M. Processing of GdBa2Cu3O7-y bulk superconductor and its trapped magnetic field[J]. Physica C,2001,357-360:629-634.
    [40]Muralidahar M, Murakami M. A new technique for pinning enhancement in ternary REBa2Cu30y systems[J]. Physica C,2002,378-381:627-630.
    [41]Nariki S, Sakai N, Murakami M. Development of Gd-Ba-Cu-O bulk magnets with very high trapped magnetic field[J]. Physica C,2002,378-381:631-635.
    [42]Matsui M, Sakai N, Murakami M. Effect of Nd422 content on the trapped fields of Nd-Ba-Cu-O bulk superconductors[J]. Physica C,2002,378-381:732-737.
    [43]Hinai H, Nariki S, Seo S J, Sakai N., Murakami M, Otsuka M. Superconducting properties of Gd123 superconductor fabricated in air[J]. Supercond. Sci. Technol., 2000,13:676-678.
    [44]郑明辉,肖玲,任洪涛,焦玉磊GdBaCuO单畴超导块材的制备与性能[J].低温物理学报,2005,27:775-778.
    [45]代建清,赵忠贤.空气中制备高性能单畴Gd-Ba-Cu-O熔融织构块材[J].稀有金属材料与工程,2008,37:650-654.
    [46]Sudhakar Reddy E, Rajasekharan T. Fabrication of textured REBa2Cu3O7/RE2BaCuO5 (RE= Y, Gd) composites by infiltration and growth of preforms by liquid phases[J]. Supercond. Sci. Technol.,1998,11: 523-534
    [47]Sudhakar Reddy E, Noudem J G, Tarka M, Schmitz G J. Single-domain YBa2Cu30y thick films and fabrics prepared by an infiltration and growth process[J]. J. Mater. Res.,2001,16:955-966.
    [48]Chaud X, Bourgault D, Chateigner D, Diko P, Porcar L, Villaume A, Sulpice A, Tournier R. Fabrication and characterization of thin-wall YBCO single-domain samples[J]. Supercond. Sci. Technol.,2006,19:S590-S600.
    [49]Noudem J G, Meslin S, Horvath D, Harnois C, Chateigner D, Ouladdiaf B, Eve S, Gomina M, Chaud X, Murakami M. Infiltration and top seed growth-textured YBCO bulks with multiple holes[J]. J. Am. Ceram. Soc.,2007,90:2784-2790.
    [50]Noudem J G. Development of shaping textured YBaCuO superconductors [J]. J. Supercond. Nov. Magn.,2011,24:105-110.
    [51]Yang W M, Zhou L, Feng Y, Zhang P X,Wu M Z, Wu X Z, Gawalek W. Effects of processing parameters on the grain growth and levitation force of large bulk YBCO superconductors[J]. Rare Metal Mater. Eng.,1999,28:231-235.
    [52]Murakami M, Yamaguchi K, Fujimoto H, Nakamura N, Taguchi T, Koshizuka N, Tanaka S. Flux pinning by non-superconducting inclusions in melt-processed YBaCuO superconductors[J]. Cryogenics,1992,32:930-935.
    [53]Endo A, Chauhan H S, Shiohara Y. Entrapment of Y2BaCuO5 particles in melt-textured YBa2Cu3O7-δ crystals and its effect on Jc properties[J]. Physica C,1996, 273:107-119.
    [54]Iida K, Hari Babu N, Withnell T D, Shi Y, Haindl S, Weber H W, Cardwell D A. High-performance single grain Y-Ba-Cu-O bulk superconductor fabricated by seeded infiltration and growth[J]. Physica C,2006,445-448:277-281.
    [55]Kim C J, Kim K B, Hong G W. Nonuniform distribution of second phase particles in melt-textured Y-Ba-Cu-O oxide with metal oxide (CeO2, SnO2, and ZrO2) addition[J]. J. Mater. Res.,1995,10:1605-1610.
    [56]Endo A, Chauhan H S, Egi T, Shiohara Y. Macrosegregation of Y2Ba1Cu1O5 particles in Y1Ba2Cu3O7-δ crystals grown by an undercooling method[J]. J. Mater. Res.,1996,11:795-803.
    [57]Cloots R, Koutzarova T, Mathieu J P, Ausloos M. From RE-211 to RE-123. How to control the final microstructure of superconducting single-domains [J]. Supercond. Sci. Technol.,2005,18:R9-R23.
    [58]Yang W M, Zhou L, Feng Y, Zhang P X, Chen S k, Wu M Z, Zhang C P, Wang J R, Du Z H, Wang F Y, Yu Z M, Wu X Z, Gawalek W, Gornert P. The grain-alignment and its effect on the levitation force of melt processed YBCO single-domained bulk superconductors[J]. Physica C,1998,307:271-276.
    [59]Yang W M, Feng Y, Zhou L, Zhang P X, Wu M Z, Chen S k, Wu X Z, Gawalek W. The effect of the grain alignment on the levitation force in single domain YBa2Cu3Oy bulk superconductors[J]. Physica C,1999,319:164-168.
    [60]Yang W M, Chao X X, Bian X B, Liu P, Feng Y, Zhang P X, Zhou L. The effect of magnet size on the levitation force and attractive force of single-domain YBCO bulk superconductors [J]. Supercond. Sci. Technol.,2003,16:789-792.
    [61]杨万民,钞曦旭,舒志兵,朱思华,武晓亮,边小兵,刘鹏.超导体与磁体间的三维磁力及磁场测试装置研制[J].低温物理学报,2005,27:944-949.
    [62]Yang W M, Chao X X, Shu Z B, Zhu S H, Wu X L, Bian X B, Liu P. A levitation force and magnetic field distribution measurement system in three dimensions[J]. Physica C,2006,445-448:347-352.
    [63]裴佳良.单畴GdBCO超导体的制备及物性研究[D].西安:陕西师范大学,2008.
    [64]Izumi T,Nakamura Y,Shiohara Y.Doping effects on coarsening of Y2BaCuO5 phase in liquid[J].J.Mater.Res.,1993,8:1240-1246.
    [65]Athur S P,Selvamanickam V,Balachandran U,Salama K.Study of growth kinetics in melt-textured YBa2Cu3O7-x[J].J.Mater.Res.,1996,11:2976-2989.
    [66]Kim C J,Hong G W.Defect formation,distribution and size reduction of Y2BaCuO5 in melt-processed YBCO superconductors[J].Supercond.Sci.Technol.,1999,12: R27-R41.
    [67]Xu C,Hu A,Sakai N,Izumi M,Hirabayashi I.Effect of BaO2 and fine Gd2BaCuO7-δ addition on the superconducting properties of air-processed GdBa2Cu3O7-δ[J]. Supercond.Sci.Technol.,2005,18:229-233.
    [68]Cai C, Tachibana K, Fujimoto H. Study on single-domain growth of Y1.8Ba2.4Cu3.4Oy/Ag system by using Nd123/MgO thin film as seed[J].Supercond. Sci.Technol.,2000,13:698-702.
    [69]Wu X D,Xu K X,Pan P J.Study on single domain growth of Ag-doped Sm-Ba-Cu-O bulk using cold seeding technique[J].Physica C,2009,469:225-229.
    [70]Shi Y,Hari Babu N,Iida K,Cardwell D A.Mg-doped Nd-Ba-Cu-O generic seed crystals for the top-seeded melt growth of large-grain(rare earth)-Ba-Cu-O bulk superconductors[J].J.Mater.Res.,2006,21:1355-1362.
    [71]Campbell A M,Cardwell D A.Bulk high temperature superconductors for magnet applitations[J].Cryogenics,1997,37:561-575.
    [72]Cardwell D A.Processing and properties of large grain(RE)BCO[J].Mater.Sci.Eng. B,1998,53:1-10.
    [73]Nariki S,Sakai N,Murakami M.Processing of GdBa2Cu3O7-y bulk superconductor and its trapped magnetic field[J].Physica C,2001,357-360:629-634.
    [74]Nariki S,Sakai N,Murakami M.Development of Gd-Ba-Cu-O bulk magnets with very high trapped magnetic field[J].Physica C,2002,378-381:631-635.
    [75]Litzkendorf D,Habisreuther T,Bierlich J,Surzhenko O,Zeisberger M,Kracunovska S,Gawalek W.Increased efficiency of batch-processed melt-textured YBCO[J]. Supercond.Sci.Technol.,2005,18:S206-S208.
    [76]Nariki S,Sakai N,Murakami M.Melt-processed Gd-Ba-Cu-O superconductor with trapped field of 3 T at 77 K[J].Supercond.Sci.Technol.,2005,18:S126-S130.
    [77]Xu C,Hu A,Sakai N,Izumi M,Hirabayashi I.Enhanced Jc in air-processed GdBa2Cu3O7-δ superconductors[J]. Physica C,2005,426-431:613-617.
    [78]Murakami M. Processing and applications of bulk RE-Ba-Cu-O superconductors[J]. Int. J. Appl. Ceram. Technol.,2007,4:225-241.
    [79]Sakai N, Nariki S, Nagashima K, Miryala M, Murakami M, Hirabayashi I. Magnetic properties of melt-processed large single domain Gd-Ba-Cu-O bulk superconductor 140 mm in diameter[J]. Physica C,2007,460-462:305-309.
    [80]Iida K, Hari Babu N, Shi Y, Cardwell D A. Seeded infiltration and growth of large, single domain Y-Ba-Cu-O bulk superconductors with very high critical current densities[J]. Supercond. Sci. Technol.,2005,18:1421-1427.
    [81]Iida K, Hari Babu N, Shi Y H, Cardwell D A, Murakami M. Gd-Ba-Cu-O bulk superconductors fabricated by a seeded infiltration growth technique under reduced oxygen partial pressure[J]. Supercond. Sci. Technol.,2006,19:641-647.
    [82]Hari Babu N, Iida K, Shi Y, Cardwell D A. Fabrication of high performance light rare earth based single-grain superconductors in air[J]. Appl. Phys. Lett.,2005,87: 202506 (3pp).
    [83]Iida K, Hari Babu N, Shi Y, Cardwell D A. Seeded infiltration and growth of single-domain Gd-Ba-Cu-O bulk superconductors using a generic seed crystal [J]. Supercond. Sci. Technol.,2006,19:S478-S485.
    [84]Iida K, Hari Babu N, Shi Y, Pathak S K, Yeoh W K, Miyazaki T, Sakai N, Murakami M, Cardwell D A. The microstructure and properties of single grain bulk Ag-doped Y-Ba-Cu-O fabricated by seeded infiltration and growth[J]. Physica C, 2008,468:1387-1390.
    [85]Chen S Y, Hsiao Y S, Chen C L, Yan D C, Chen I G, Wu M K. Remarkable peak effect in Jc(H, T) of Y-Ba-Cu-O bulk by using infiltration growth (IG) method[J]. Mater. Sci. Eng. B,2008,151:31-35.
    [86]Mahmood A, Jun B H, Han Y H, Kim C J. Effective pore control and critical current density in liquid infiltration growth processed Y-123 superconductors with Ag addition[J]. Supercond. Sci. Technol.,2010,23:065005 (7pp).
    [87]Hari Babu N, Shi Y H, Dennis A R, Pathak S K, Cardwell D A. Seeded infiltration and growth of bulk YBCO nano-composites[J]. IEEE Trans. Appl. Supercond.,2011, 21:2698-2671.
    [88]Diko P. Growth-related microstructure of melt-grown REBa2Cu3Oy bulk[J]. Supercond. Sci. Technol.,2000,13:1202-1213.
    [89]Kim C J, Kuk I H, Hong G W, Sung T H, Han S C, Kim J J. CeO2 as a growth inhibitor of Y2BaCuO5 in a Ba3Cu5Ox liquid phase[J]. Mater. Lett.1998,34: 392-397.
    [90]Chen S K, Zhou L, Wang K G, Wu X Z, Zhang P X, Feng Y. Refinement mechanism of CeO2 addition on Y2BaCuO5 particles in PMP YBCO bulks[J]. Physica C,2002,366:190-194.
    [91]Diko P, Sefcikova M, Kanuchova M, Zmorayova K. Microstructure of YBCO bulk superconductors with CeO2 addition[J]. Mater. Sci. Eng. B,2008,151:7-10.
    [92]梁伟Gd2Ba4CuNbOy掺杂对单畴GdBCO超导块材性能的影响[D].西安:陕西师范大学,2011.
    [93]沙建军,姚仲文,郁金南,郁刚,罗金汉,闻海虎,杨万里,李世亮Y2BaCuO5粒子掺杂的单畴熔融织构YBCO超导体工艺与性能研究[J].物理学报,2000,49:1356-1361.
    [94]Mahmood A, Jun B H, Park H W, Kim C J. Pre-sintering effects on the critical current density of YBCO bulk prepared by infiltration method[J]. Physica C,2008, 468:1350-1354.
    [95]http://rsbweb.nih.gov/ij/.
    [96]Varanasi C, McGinn P J, Blackstead H A, Pullinga D B. Flux pinning enhancement in melt processed YBa2Cu3O7-δ through rare-earth ion (Nd, La) substitutions[J]. Appl. Phys. Lett.,1995,67:1004-1006.
    [97]Zheng H, Jiang M, Huang Y, Veal B W, Claus H. Growth and physical properties of melt textured (Gd,Y)Ba2Cu3Ox[J]. Physica C,1998,307:284-290.
    [98]冯勇,周廉.元素替代对PMP YBCO超导体磁通钉扎的影响[J].稀有金属材料与工程,1998,27:130-134.
    [99]Feng Y, Zhou L, Wen J G, Koshizuka N, Sulpice A, Tholence J L, Vallier J C, Monceau P. Fishtail effect, magnetic properties and critical current density of Gd-added PMP YBCO[J]. Physica C,1998,297:75-84.
    [100]冯勇,周廉,杨万民,张翠萍,汪京荣,于泽铭,吴晓祖.PMP法YGdBaCuO超导体的磁通钉扎研究[J].物理学报,2000,49:146-151.
    [101]Umezawa A, Crabtree G W, Liu J Z, Weber H W, Kwok W K, Nunez L H, Moran T J, Showers C H, Claus H. Enhanced critical magnetization currents due to fast neutron irradiation in single-crystal YBa2Cu3O7-δ[J]. Phys. Rev. B,1987,36: 7151-7154.
    [102]Gyorgy E M, van Dover R B, Jackson K A, Schneemeyer L F, Waszczak J V. Anisotropic critical currents in Ba2YCu3O7, analyzed using an extended Bean model[J]. Appl. Phys. Lett.,1989,55:283-285.
    [103]Chen D X, Goldfarb R B. Kim model for magnetization of type-II superconducductors[J]. J. Appl. Phys.,1989,66:2489-2500.
    [104]Jirsa M, Pust L, Dlouhy D, Koblischka M R. Fishtail shape in the magnetic hysteresis loop for superconductors:Interplay between different pinning mechanisms[J]. Phys. Rev. B,1997,55:3276-3284.
    [105]Koblischka M R, van Dalen A J J, Higuchi T, Yoo S I, Murakami M. Analysis of pinning in NdBa2Cu3O7-δ superconductors [J]. Phys. Rev. B,1998,55:2863-2867.
    [106]Koblischka M R, Muralidhar M, Murakami M. Engineering of pinning sites in melt-processed (Ndo.33Euo.33Gdo.33)Ba2Cu3Oy superconductors [J]. Mater. Sci. Eng. B, 1999,65:58-65.
    [107]Koblischka M R, Murakami M. Pinning mechanisms in bulk high-Tc superconductors [J]. Supercond. Sci. Technol.,2000,13:738-744.
    [108]代建清,赵忠贤.Ar气氛退火对LRE-Ba-Cu-O单畴熔融织构样品超导性能的影响[J].无机材料学报,2008,23:309-314.
    [109]周廉,甘子钊.中国高温超导材料及应用发展战略研究[M].北京:化学工业出版社,2007,9-21.
    [110]Tournier R, Beaugnon E, Belmont O, Chaud X, Bourgault D, Isfort D, Porcar L, Tixador P. Processing of large Y1Ba2Cu3O7-x single domains for current-limiting applications[J]. Supercond. Sci. Technol.,2000,13:886-895.
    [111]Tixador P, Obradors X, Tournier R, Puig T, Bourgault D, Granados X, Duval J M, Mendoza E, Chaud X, Varesi E, Beaugnon E, Isfort D. Quench in bulk HTS materials—application to the fault current limiter[J]. Supercond. Sci. Technol.,2000, 13:493-497.
    [112]Tixador P, Porcar L, Floch E, Buzon D, Isfort D, Bourgault D, Chaud X, Tournier R. Current limitation with bulk Y-Ba-Cu-O[J]. IEEE Trans. Appl. Supercond.,2001,11: 2034-2037.
    [113]Gruss S, Fuchs G, Krabbes G, Verges P, Stover G, Muller K H, Fink J, Schultz L. Superconducting bulk magnets:very high trapped fields and cracking[J]. Appl. Phys. Lett.,2001,79:3131-3133.
    [114]Nariki S, Sakai N, Murakami M. Development of Gd-Ba-Cu-O bulk magnets with very high trapped magnetic field[J]. Physica C,2002,378-381:631-635.
    [115]Miki M, Tokura S, Hayakawa H, Inami H, Kitano M, Matsuzaki H, Kimura Y, Ohtani I, Morita E, Ogata H, Izumi M, Sugimoto H, Ida T. Development of a synchronous motor with Gd-Ba-Cu-O bulk superconductors as pole-field magnets for propulsion system[J]. Supercond. Sci. Technol.,2006,19:S494-S499.
    [116]Gawalek W, Habisreuther T, Zeisberger M, Litzkendorf D, Surzhenko O, Kracunovska S, Prikhna T A, Oswald B, Kovalev L K, Canders W. Batch-processed melt-textured YBCO with improved quality for motor and bearing applications [J]. Supercond. Sci. Technol.,2004,17:1185-1188.
    [117]Park B J, Han Y H, Jung S Y, Kim C H, Han S C, Lee J P, Park B C, Sung T H. Static properties of high temperature superconductor bearings for a 10 kWh class superconductor flywheel energy storage system[J]. Physica C,2010,470: 1772-1776.
    [118]Strasik M, Hull J R, Mittleider J A, Gonder J F, Johnson P E, McCrary K E, McIver C R. An overview of boeing flywheel energy storage systems with high-temperature superconducting bearings[J]. Supercond. Sci. Technol.,2010,23:034021 (5pp).
    [119]Zhou J, Zhang X Y, Zhou Y H. Temperature dependence of levitation force and its relaxation in a HTS levitation system[J]. Physica C,2010,470:336-339.
    [120]Liu M X, Lu Y Y, Wang S Y, Ma G T. Influence of AC external magnetic field on the levitation force relaxation of HTS bulk above NdFeB guideway[J]. J. Supercond. Nov. Magn.,2011,24:1809-1813.
    [121]Del-Valle N, Sanchez A, Navau C, Chen D X. Magnet guideways for superconducting maglevs:comparison between halbach-type and conventional arrangements of permanent magnets[J]. J. Low Temp. Phys.,2011,162:62-71.
    [122]Werfel F N, Floegel-Delor U, Rothfeld R, Riedel T, Goebel B, Wippich D, Schirrmeister P. Superconductor bearings, flywheels and transportation [J]. Supercond. Sci. Technol.,2012,25:014007 (16pp).
    [123]金建勋.高温超导体及其强电应用技术[M].北京:冶金工业出版社,2009,108-113.
    [124]霍海宽.超导块材脉冲磁化研究及超导永磁同步电机性能仿真[D].北京:中国科学院研究生院,2004.
    [125]岑翼娜.脉冲励磁高温超导块材悬浮特性研究[D].成都:西南交通大学,2006.
    [126]Surzhenko A B, Schauroth S, Litzkendorf D, Zeisberger M, Habisreuther T, Gawalek W. Growth-related profiles of remanent flux in bulk melt-textured YBaCuO crystal magnetized by pulsed fields[J]. Supercond. Sci. Technol.,2001,14: 770-774.
    [127]Ikuta H, Ishihara H, Yanagi Y, Itoh Y, Mizutani U. Extracting the utmost from the high performance of Sm-Ba-Cu-O bulk superconductors by pulse field magnetization[J]. Supercond. Sci. Technol.,2002,15:606-612.
    [128]Ida T, Matsuzaki H, Akita Y, Izumi M, Sugimoto H, Hondou Y, Kimura Y, Sakai N, Nariki S, Hirabayashi I, Miki M, Murakami M, Kitano M. Magnetization properties for Gd-Ba-Cu-O bulk superconductors with a couple of pulsed-field vortex-type coils[J]. Physica C,2004,412-414:638-645.
    [129]Yanagi Y, Itoh Y, Yoshikawa M, Oka T, Ikuta H, Mizutani U. Pulsed field magnetization of a 36 mm diameter single-domain Sm-Ba-Cu-O bulk superconductor at 30,35 and 77 K[J]. Supercond. Sci. Technol.,2005,18:839-849.
    [130]Kimura Y, Matsuzaki H, Ohtani I, Morita E, Izumi M, Sakai N, Hirabayashi I, Miki M, Kitano M, Ida T. Recovery of trapped field distribution around a growth sector in a Gd-Ba-Cu-O HTS bulk with pulsed-field magnetization[J]. Supercond. Sci. Technol.,2006,19:S466-S471.
    [131]Tokuyama M, Yanagi Y, Ikuta H. Local measurement of the pulsed field magnetization process of melt-processed bulk superconductor[J]. Physica C,2007, 463-465:405-409.
    [132]Yamaguchi K, Kimura Y, Izumi M, Nariki S, Hirabayashi I. Single pulsed field magnetization for a Gd-Ba-Cu-O high-temperature superconductor large bulk with a diameter of 140mm[J]. Mater. Sci. Eng. B,2008,151:101-106.
    [133]Deng Z, Miki M, Felder B, Tsuzuki K, Shinohara N, Taguchi R, Suzuki K, Izumi M. The effectiveness of pulsed-field magnetization with respect to different performance bulk superconductors[J]. J. Supercond. Nov. Magn.,2012,25:61-65.
    [134]叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2000,1-13.
    [135]罗芳,赵国明,王远波.磁浮车演示线上的直线感应电动机设计[J].电力机车技术,2001,24:5-6.
    [136]郭明珠,方进,李永亮,张威,张宏杰.新型高温超导直线感应电机的设计及有限元分析[J].稀有金属材料与工程,2008,37:389-393.
    [137]Yang W M, Li G Z, Ma J, Chao X X, Li J W. A small high-temperature superconducting maglev propeller system model[J]. IEEE Trans. Appl. Supercond., 2010,20:2317-2321.
    [138]唐苏亚.直线电机驱动的磁悬浮列车的研究开发概况[J].微电机,2003,36:51-54.
    [139]许建国.磁悬浮列车电力拖动技术的创新及发展趋势[J].武汉科技学院学报,2005,18:20-23.
    [140]周军.高温超导磁悬浮车运行速度检测仪的研制[D].成都:西南交通大学,2007.
    [141]白雪.高速超导磁悬浮列车的转向架设计[D].成都:西南交通大学,2011.
    [142]Wang J S, Wang S Y, Zeng Y W, Huang H Y, Luo F, Xu Z P, Tang Q X, Lin G B, Zhang C F, Ren Z Y, Zhao G M, Zhu D G, Wang S H, Jiang H, Zhu M, Deng C Y, Hu P F, Li C Y, Liu F, Lian J S, Wang X R, Wang L H, Shen X M, Dong X G. The first man-loading high temperature superconducting maglev test vehicle in the world[J]. Physica C,2002,378-381:809-814.
    [143]Sotelo G G, Dias D H N, Machado O J, David E D, de Andrade Jr R, Stephan R M, Costa G C. Experiments in a real scale magLev vehicle prototype[J]. J. Phys.:Conf. Ser.,2010,234:032054 (7pp).
    [144]顾晨,邢华伟,周彤,尹文生,宗军,刘树立,刘梦林,韩征和.一种高温超导磁悬浮装置[J].物理与工程,2004,14:19-23.
    [145]Shi Y, Hari Babu N, Cardwell D A. Development of a generic seed crystal for the fabrication of large grain (RE)-Ba-Cu-O bulk superconductors [J]. Supercond. Sci. Technol.,2005,18:L13-L16.
    [146]Hari Babu N, Shi Y, Iida K, Cardwell D A. A practical route for the fabrication of large single-crystal (RE)-Ba-Cu-O superconductors [J]. Nat. Mater.,2005,4: 476-480.
    [147]Shi Y, Hari Babu N, Iida K, Cardwell D A. Properties of Mg-doped Nd-Ba-Cu-O generic seed crystals for the top seeded melt growth of (RE)-Ba-Cu-O bulk superconductors[J]. J. Phys.:Conf. Ser.,2006,43:446-449.
    [148]Shi Y, Hari Babu N, Iida K, Cardwell D A. The influence of Nd-Ba-Cu-Mg-O generic seed crystal composition on Tc of seeded, bulk (RE)-Ba-Cu-O grains[J]. Physica C,2006,445-448:295-298.
    [149]Shi Y, Hari Babu N, Iida K, Yeoh W K, Pathak S K, Dennis A R, Cardwell D A. Batch-processed GdBCO-Ag bulk superconductors fabricated using generic seeds with high trapped fields[J]. Physica C,2010,470:685-688.
    [150]Tang C Y, Yao X, Hu J, Rao Q L, Li Y R, Tao B W. YBCO melt-textured growth seeded by superheating YBCO/MgO thin film[J]. Supercond. Sci. Technol.,2005,18: L31-L34.
    [151]孙立杰.高温超导块体材料的取向外延生长及微结构控制的研究[D].上海:上海交通大学,2010.
    [152]Hu J, Yao X, Rao Q L. Real-time observation of the melting process of YBCO thin film on MgO substrate[J]. J. Phys.:Condens. Matter,2003,15:7149-7154.
    [153]Yao X, Hu J, Izumi T, Shiohara Y. Direct evidence and the mechanism of superheating in YBCO thin film[J]. J. Phys.:Condens. Matter,2004,16:3819-3826.
    [154]Li T Y, Cheng L, Yan S B, Sun L J, Yao X, Yoshida Y, Ikuta H. Growth and superconductivity of REBCO bulk processed by a seed/buffer layer/precursor construction[J]. Supercond. Sci. Technol.,2010,23:125002 (4pp).
    [155]Cheng L, Li T Y, Yan S B, Sun L J, Yao X, Puzniak R. Large size and high performance of a Gd-Ba-Cu-O bulk superconductor grown using new approaches[J]. J. Am. Ceram. Soc.,2011,94:3139-3143.
    [156]Muralidhar M, Tomita M, Suzuki K, Jirsa M, Fukumoto Y, Ishihara A. A low-cost batch process for high-performance melt-textured GdBaCuO pellets[J]. Supercond. Sci. Technol.,2010,23:045033 (7pp).
    [157]Muralidhar M, Tomita M, Suzuki K, Fukumoto Y. Novel seed for batch cold seeding production of GdBaCuO bulks[J]. Physica C,2010,470:1158-1163.
    [158]Muralidhar M, Suzuki K, Fukumoto Y, Ishihara A, Tomita M. High performance batch production of LREBa2Cu3Oy using novel thin film Nd-123 seed[J]. Physica C, 2011,471:834-839.
    [159]Wu X D, Xu K X, Pan P J. Growth and investigation of SmBCO/Ag single grain bulk for batch production of Sm123 seed crystals[J]. Physica C,2009,469: 1906-1909.
    [160]Wu X D, Xu K X, Fang H, Jiao Y L, Xiao L, Zheng M H. A new seeding approach to the melt texture growth of a large YBCO single domain with diameter above 53 mm[J]. Supercond. Sci. Technol.,2009,22:125003 (6pp).
    [161]Devendra Kumar N, Rajasekharan T, Muraleedharan K, Banerjee A, Seshubai V. Unprecedented current density to high fields in YBa2Cu3O7-δ superconductor through nano-defects generated by preform optimization in infiltration growth process[J]. Supercond. Sci. Technol.,2010,23:105020 (8pp).
    [162]Devendra Kumar N, Rajasekharan T, Gundakaram R C, Seshubai V. Extensive nanotwinning:origin of high current density to high fields in preform-optimized infiltration-growth-processed YBa2Cu3O7-δ superconductor[J]. IEEE Trans. Appl. Supercond.,2011,21:3612-3620.
    [163]Devendra Kumar N, Rajasekharan T, Seshubai V. YBCO/Ag composites through a perform optimized infiltration and growth process yield high current densities[J]. Supercond. Sci. Technol.,2011,24:085005 (11pp).
    [164]Diko P, Chaud X, Antal V, Kanuchov M, Sefcikov M, Kovac J. Elimination of oxygenation cracks in top-seeded melt-growth YBCO superconductors by high pressure oxygenation[J]. Supercond. Sci. Technol.,2008,21:115008 (3pp).
    [165]Diko P, Antal V, Zmorayov K, Sefcikov M, Chaud X, Kovac J, Yao X, Chen I, Eisterer M, Weber H W. The influence of post-growth thermal treatments on the critical current density of TSMG YBCO bulk superconductors [J]. Supercond. Sci. Technol.,2010,23:124002 (7pp).
    [166]Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P. The effect of temperature gradient on the morphology of YBCO bulk superconductors by melt texture growth processing[J]. J.Alloy.Compd.,2006,415:276-279.
    [167]金建勋.高温超导体及其强电应用技术[M].北京:冶金工业出版社,2009,64.
    [168]Nariki S, Sakai N, Murakami M. Preparation and properties of OCMG-processed Gd-Ba-Cu-O bulk superconductors with very fine Gd211 particles[J]. Physica C, 2001,357-360:811-813.
    [169]Nariki S, Matsui M, Sakai N, Murakami M. Refinement of RE211 particles in melt-textured RE-Ba-Cu-O bulk superconductors [J]. Supercond. Sci. Technol.,2002, 15:679-682.
    [170]Nariki S, Sakai N, Murakami M, Hirabayashi I. High critical current density in Y-Ba-Cu-O bulk superconductors with very fine Y211 particles[J]. Supercond. Sci. Technol.,2004,17:S30-S35.
    [171]Chen S Y, Hseih P C, Chen I G. Effect of nano-sized Sm2BaCu05 particles addition on the pinning mechanism of Sm-Ba-Cu-O materials[J]. J. Mater. Res.,2004,19: 843-850.
    [172]Nariki S, Sakai N, Murakami M, Hirabayashi I. Design of micro structure in melt-textured bulk superconductors with the employment of granules containing ultra-fine Y2BaCuO5 particles[J]. Physica C,2005,426-431:532-536.
    [173]Li F,Vipulanandan C,Zhou Y X,Salama K.Nanoscale Y2BaCuO5 particles for producing melt-textured YBCO large grains[J].Supercond.Sci.Technol.,2006,19: 589-595.
    [174]Iida K,Nenkov K,Fuchs G,Krabbes G,Holzapfel B,Buchner B,Schultz L.Effect of addition of planetary milled Gd-211 on the microstructures and superconducting properties of air-processed single grain Gd-Ba-Cu.O/A bulk superconductors[J]. Physica C,2010,470:1153-1157.
    [175]Kim C J,Kim K B,Kuk I H,Hong G W.Role of PtO2 on the refinement of Y2BaCuO5 second phase particles in melt-textured Y-Ba-Cu-O oxides[J].Physica C, 1997,281:244-252.
    [176]Delamare M P,Monot I,Wang J,Provost J,Desgardin G.Influence of CeO2, BaCeO3 or PtO2 additions on the microstructure and the critical current density of melt processed YBCO samples[J].Supercond.Sci.Technol.,1996,9:534-542.
    [177]Chow J C L,Leung H T,Lo W,Cardwell D A.Effects of Pt doping on the size distribution and uniformity of Y2BaCuO5 particles in large-grain YBCO[J]. Supercond.Sci.Technol.,1998,11:369-374.
    [178]Riches J D,Alarco J A,Barry J C.Effects of PtO2 and CeO2 additives on the microstructures of the quenched melts of Y-Ba-Cu-O materials[J].Physica C,2000, 336:43-56.
    [179]Shlyk L,Nenkov K,Krabbes G,Fuchs G.Melt-processed YBCO with Pt or Ce additions:comparison ofpinning behavior[J].Physica C,2005,423:22-28.
    [180]Mahmood A,Park S D,Jun B H,Kim K B,Sung T H,Lee S H,Kim C J.Effect of BaCeO3 addition on the microstructure and current density of melt-processed Y1.5Ba2Cu30x superconductors[J].Physica C,2008,468:1355-1358.
    [181]Chen S Y,Chen I G,Wu M K.Size effect of Y211 additions in Sm-Ba-Cu-O materials[J].Supercond.Sci.Technol.,2005,18:916-920.
    [182]Chen S Y,Liao Y C,Chen I G,Wu M K.Concentration effect on high field pinning and transport behaviors in nano-Y2BaCuO5 doped Sm-Ba-C-O superconductor[J].J. Appl.Phys.,2006,99:08M508(3pp).
    [183]Nariki S,Sakai N,Murakami M,Hirabayashi I.Processing of high-performance(Gd, Y)-Ba-Cu-O bulk superconductors with fine RE211 pinning centers[J].IEEE Trans. Appl.Supercond.,2005,15:3110-3113.
    [184]Nariki S,Seo S J,Sakai N,Murakami M.Superconducting properties of(Gd, Nd)-B-Cu-O bulk superconductor fabricated by melt processing in air[J]. Supercond. Sci. Technol.,2000,13:774-777.
    [185]Hu A, Sakai N, Murakami M. Growth of single-domain (Smo.5Euo.5)Ba2Cu307-δ with high Tc and Jc by employing a thermal gradient[J]. Appl. Phys. Lett.,2001,78: 2539-2541.
    [186]Hu A, Sakai N, Zhou H, Matsui M, Murakami M. Single-grain growth, microstructure and superconducting properties of (Sm, Eu)123 superconductors with BaCuO2-x addition[J]. Supercond. Sci. Technol.,2003,16:33-38.
    [187]Muralidhar M, Murakami M. Synthesis and characterization of LRE1+xBa2-xCu3Oy (LRE:Nd, Eu, Gd, NEG) superconductors:a low oxygen partial pressure (0.05% O2+Ar)[J]. Supercond. Sci. Technol.,2002,15:683-687.
    [188]Koblischka M R, Winter M, Das P, Koblischka-Veneva A, Muralidhar M, Wolf T, Hari Babu N, Turner S, van Tendeloo G, Hartmann U. Observation of nanostripes and-clusters in (Nd,Eu,Gd)Ba2Cu3Ox superconductors[J]. Physica C,2009,469: 168-176.
    [189]Dai J Q, Zhao Z X, Hu A. Melt processing and superconducting properties of single-domain GdBa2Cu3Oy, (Sm0.5Gd0.5)Ba2Cu30y and (Smo.33Euo.33Gdo.33)Ba2Cu30y superconductors fabricated in air[J]. Physica C,2004, 406:63-71.
    [190]Moussa M A A, Muralidhar M, Izumi M, Murakami M. Synthesis, characterization and melt processing of Y1-x(Yb0.9Nd0.1)xBa2Cu30z superconductors [J]. Physica C, 2009,469:1211-1214.
    [191]Dai J Q, Zhao Z X, Xiong J W. The influence of BaCuO2-δ addition in Gd-Ba-Cu-O single-grain superconductors fabricated in air[J]. Supercond. Sci. Technol.,2003,16: 815-819.
    [192]Hu A, Sakai N, Murakami M. Large grain growth and superconducting properties of GdBa2Cu307-δ fabricated in air with BaCuO2-x addition[J]. Physica C,2003,386: 275-278.
    [193]Xu C, Hu A, Sakai N, Hirabayashi I, Izumi M. Enhanced superconducting properties of air-processed GdBa2Cu3O7-δ single domains with BaCO3/BaCuO2-x addition[J]. J. Supercond. Nov. Magn.,2007,20:309-314.
    [194]Shi Y, Hari Babu N, Iida K, Cardwell D A. The effect of very high barium content in the precursor on the properties of GdBCO single grain bulk superconductors [J]. J. Mater. Res.,2009,24:10-18.
    [195]Cardwell D A, Shi Y, Hari Babu N, Iida K. Fabrication of high performance Gd-Ba-Cu-O single grains in air using a practical melt processing technique[J]. Physica C,2009,469:1146-1152.
    [196]Sun L J, Li W, Liu S F, Mertelj T, Yao X. Growth of a high performance SmBCO bulk superconductor with the addition of a Sm2Ba4Cu2O9 phase[J]. Supercond. Sci. Technol.,2009,22:125008 (6pp).
    [197]Iida K, Babu N H, Reddy E S, Shi Y H, Cardwell D A. The effect of nano-size ZrO2 powder addition on the microstructure and superconducting properties of single-domain Y-Ba-Cu-O bulk superconductors[J]. Supercond. Sci. Technol.,2005, 18:249-254.
    [198]Hu A, Xu C, Izumi M, Hirabayashi I, Ichihara M. Enhanced flux pinning of air-processed GdBa2Cu3O7-δ superconductors with addition of ZrO2 nanoparticles[J]. Appl. Phys. Lett.,2006,89:192508 (3pp).
    [199]Xu Y, Hu A, Xu C, Sakai N, Hirabayashi I, Izumi M. Effect of ZrO2 and ZnO nanoparticles inclusions on superconductive properties of the melt-processed GdBa2Cu307-δ bulk superconductor [J]. Physica C,2008,468:1363-1365.
    [200]Xu C, Hu A, Sakai N, Izumi M, Hirabayashi I. Flux pinning properties and superconductivity of Gd-123 superconductor with addition of nanosized SnO2/ZrO2 particles[J]. Physica C,2006,445-448:357-360.
    [201]Zhang Y F, Izumi M,Li Y J, Murakami M, Gao T, Liu Y S, Li P L. Enhanced Jc in air-processed GdBa2Cu3O7-δ superconductor bulk grown by the additions of nano-particles[J]. Physica C,2011,471:840-842.
    [202]Zhao Y, Cheng C H, Wang J S. Flux pinning by NiO-induced nano-pinning centres in melt-textured YBCO superconductor[J]. Supercond. Sci. Technol.,2005,18: S43-S46.
    [203]Moutalibi N, M'chirgui A, Noudem J G. Alumina nano-inclusions as effective flux pinning centers in Y-Ba-Cu-O superconductor fabricated by seeded infiltration and growth[J]. Physica C,2010,470:568-574.
    [204]Moutalibi N, M'chirgui A, Noudem J G. Size effect of insulating nano-inclusions in Y-Ba-Cu-O bulk superconductors fabricated by seeded infiltration growth[J]. J. Supercond. Nov. Magn.,2011,24:365-369.
    [205]Muralidhar M, Sakai N, Jirsa M, Murakami M, Hirabayashi I. Record flux pinning in melt-textured NEG-123 doped by Mo and Nb nanoparticles[J]. Appl. Phys. Lett., 2008,92:162512 (3pp).
    [206]Muralidhar M, Tomita M, Jirsa M, Sakai N, Murakami M, Hirabayashi I. Observation of record flux pinning in melt-textured NEG-123 superconductor doped by Nb, Mo, and Ti nanoparticles[J]. Physica C,2009,469:1196-1199.
    [207]Hari Babu N, Iida K, Cardwell D A. Enhanced magnetic flux pinning in nano-composite Y-Ba-Cu-O superconductors[J]. Physica C,2006,445-448:353-356.
    [208]梁伟,杨万民,程晓芳,李国政,高平,万凤,宋芳Gd2Ba4CuNbOy掺杂对单畴GdBCO超导块材性能的影响[J].中国科学:物理学力学天文学,2011,41:201-206.
    [209]Hari Babu N, Iida K, Shi Y, Withnell T D, Cardwell D A. YBa2Cu3O7-ε/Y2Ba4CuMOy single grain nanocomposite superconductors with high critical current densities[J]. Supercond. Sci. Technol.,2006,19:S461-S465.
    [210]Hari Babu N, Iida K, Briffa A, Shi Y, Matthews L S, Cardwell D A. Bulk superconducting nano-composites with high critical currents[J]. IEEE Trans. Appl. Supercond.,2007,17:2953-2956.
    [211]Hari Babu N, Iida K, Cardwell D A. Flux pinning in melt-processed nanocomposite single-grain superconductors [J]. Supercond. Sci. Technol.,2007,20:S141-S146.
    [212]Koblischka-Veneva A, Koblischka M R, Hari Babu N, Cardwell D A, Mucklich F. Embedded Y2Ba4CuNbOx nanoparticles in melt-textured YBCO studied by means of EBSD[J]. Physica C,2006,445-448:379-381.
    [213]Koblischka-Veneva A, Mucklich F, Koblischka M R, Hari Babu N, Cardwell D A. Crystallographic orientation of Y2Ba4CuMOx (M=Nb, Zr, Ag) nanoparticles embedded in bulk, melt-textured YBCO studied by EBSD[J]. J. Am. Ceram. Soc., 2007,90:2582-2588.
    [214]Hari Babu N, Iida K, Matthews L S, Shi Y, Cardwell D A. Influence of Sm2Ba4CuBiOy phase content on Jc of SmBa2Cu3O7/Sm2Ba4CuBiOy nano-composites[J]. Mater. Sci. Eng. B,2008,151:21-24.
    [215]Hari Babu N, Iida K, Shi Y, Cardwell D A. Processing of bulk Sm-Ba-Cu-O nano-composite superconductors [J]. Physica C,2008,468:1340-1344.
    [216]Hari Babu N, Shi Y, Dennis A R, Pathak S K, Cardwell D A. Seeded infiltration and growth of bulk YBCO nano-composites[J]. IEEE Trans. Appl. Supercond.,2011,21: 2698-2701.
    [217]Xu Y, Izumi M, Zhang Y F, Kimura Y. Enhancement of critical current density in Gd123 bulk superconductor doped with magnetic powder[J]. Physica C,2009,469: 1215-1217.
    [218]Xu Y, Izumi M, Tsuzuki K, Zhang Y F, Xu C, Murakami M, Sakai N, Hirabayashi I. Flux pinning properties in a GdBa2Cu3O7_5 bulk superconductor with the addition of magnetic alloy particles[J]. Supercond. Sci. Technol.,2009,22:095009 (6pp).
    [219]Xu Y, Tsuzuki K, Hara S, Zhang Y, Kimura Y, Izumi M. Spatial variation of superconducting properties of Gd123 bulk superconductors with magnetic particles addition[J]. Physica C,2010,470:1219-1223.
    [220]Zhang Y F, Izumi M, Xu Y, Gao T, Kimura Y. Enhanced performance in bulk superconductor GdBa2Cu3O7-δ with additions of a-Fe2O3 particles[J]. J. Phys.:Conf. Ser.,2010,234:012052 (7pp).
    [221]Xu K, Tsuzuki K, Hara S, Zhou D, Zhang Y F, Murakami M, Nishio-Hamane D, Izumi M. Microstructural and superconducting properties in single-domain Gd-Ba-Cu-O bulk superconductors with in situ formed Fe3O4 ferrimagnetic particles[J]. Supercond. Sci. Technol.,2011,24:085001 (7pp).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.