促癌小分子microRNA:miR-31和miR-1322在食管鳞癌中的功能与潜在诊断价值的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食管癌是世界上常见的恶性肿瘤,其发病率居恶性肿瘤的第7位,死亡率居世界癌症死因的第6位。食管癌的分布有明显的地域聚集性,有50%的食管癌发生在中国,其中食管鳞状细胞癌(esophageal squamous cell carcinoma, ESCC)是主要的组织学类型。ESCC具有较强的侵袭转移能力,在早期就可以转移至周围淋巴结和邻近的组织器官,通常大多数食管鳞癌患者确诊时已为晚期,错过了手术的最佳时期,即使进行手术完全去除病灶,无复发生存期也仍然低于2年,再加上ESCC对放化疗一般不敏感,因此食管癌的预后较差。
     肿瘤的发生发展是一个多阶段、多基因参与的复杂过程,研究表明一些癌基因和抑癌基因的表达失调在肿瘤的发生发展、侵袭转移过程中发挥着重要的作用,对ESCC的分子病因学进行研究,尤其是对肿瘤发生发展和侵袭转移相关的分子机制的研究和寻找新的肿瘤分子标志物将有助于提高食管癌的诊治水平。
     MicroRNA是一类内源性的平均长度约为18~24个核苷酸的非编码小分子RNA,在表观遗传学和翻译后修饰调控过程中发挥着重要的作用。1nicroRNA能够识别并结合到靶基因的3'-UTR区的结合位点,通过诱导mRNA的降解降低靶基因的表达,在肿瘤中发挥着癌基因或者抑癌基因的功能,参与肿瘤的发生发展和侵袭转移等各个生命步骤。尤其是在外周血中能检测到稳定表达的microRNA,提示检测血清/血浆中的microRNA是发展非损伤性诊断和预后分子标志物的有效方法,也是本论文第一部分的研究重点。另外在一些mciroRNA靶基因的3’-UTR区结合位点存在等位基因多态性例如短小重复多态(short tandem repeat, STR)序列,microRNA能够对这些等位基因进行选择性调控,影响靶基因的表达从而产生疾病的易感性,在本论文第二部分中我们将对这一机制进行探讨。
     本文的第一部分是对ESCC中的microRNA-31进行研究。microRNA-31(miR-31)在多种肿瘤中发现异常表达,在多种鳞癌组织中被报道存在普遍的高表达,但在食管鳞癌中研究未见报道。本研究通过检测45对食管鳞癌癌与癌旁配对样本以及523例血清样本中miR-31的表达,发现miR-31在77.8%的肿瘤组织中呈现异常的高表达(P<0.001), ESCC血清中miR-31的表达明显高于健康对照(P<0.001)。随访结果显示,术后血清miR-31高表达的患者无复发生存率(P=0.001)和整体生存率(P=0.005)显著低于miR-31低表达的患者,ROC诊断曲线也表明血清miR-31的表达水平可以作为食管鳞癌的诊断、预后的标志物。体外实验证实,miR-31可以促进食管鳞癌细胞系的增殖、侵袭和转移能力,通过生物信息学预测、报告基因和western blot验证,发现miR-31可以显著调控三种抑癌基因EMP1, KSR2, RGS4。提示miR-31在食管鳞癌中的促癌作用可能是通过下调相关抑癌基因实现。其中对EMPl(上皮膜蛋白)的表达抑制,很可能是miR-31促进鳞癌发生发展的共同作用机制。
     本论文的第二部分是研究miR-1322对ECRG2基因的选择性调控。食管癌相关基因2(esophageal cancer-related gene2, ECRG2,又名serine peptidase inhibitor, Kazal type7, SPINK7)是本实验室在1998年从林县食管癌高发现场的食管鳞癌患者中克隆报告的新基因(Genebank Accession Number:AF268198),该基因在食管鳞癌组织中低表达外,被认为是ESCC的抑癌基因。在ECRG2基因的3’-UTR区发现了短串联重复(short tandem repeat, STR)序列,即3核苷酸TCA的重复。ECRG2基因中存在两种STR等位基因型:TCA3(TCATCATCA)和TCA4(TCATCATCA TCA),其中TCA3/TCA3基因型被国内外报道是ESCC的风险基因型,并且预后也较差。本研究旨在探讨microRNA对ECRG2基因短小重复序列多态的表达调控。首先生物信息学分析发现ECRG2基因STR序列附近存在1miR-580、miR-1182、 miR-1272、miR-1322的结合位点,通过报告基因的验证发现ECRG2基因TCA4基因型表达水平显著高于TCA3型,其3'-UTR区域的TCA多态序列主要受到miR-1322的调控。通过组织和血清表达水平的检测发现miR-1322在食管癌组织和血清中存在着异常高表达。提示miR-1322可能是的ESCC的潜在诊断标志物。
     综上所述,我们发现了miR-31和miR-1322在ESCC中的癌基因功能以及做为潜在诊断和预后标志物的价值,为肿瘤的早期诊断和治疗提供了新的理论思路。
     [摘要]目的microRNA-31(miR-31)在多种肿瘤中被报道异常表达,本论文旨在研究miR-31在食管鳞状细胞癌(oesophageal squamous cell carcinoma, ESCC)的功能。方法通过Real-time RT-PCR的方法检测45对配对的ESCC组织和523例血清样本中的miR-31的表达,523例血清标本包括120例ESCC和121例健康对照的发现阶段、81例ESCC和81例健康对照的验证阶段和120例直肠癌、肝癌、子宫癌、乳腺癌、胃癌和肺癌的其他肿瘤患者。Wilcoxon配对检验用于ESCC配对组织样本miR-31的表达差异检验,曼-惠特尼U检验用于血清样本miR-31的表达差异检验。结果miR-31在77.8%的ESCC组织中表达上调。ESCC血清中miR-31的表达明显高于健康对照(P<0.001)。发现组和验证组ESCC血清miR-31的ROC曲线下面积(AUC)分别为0.902(95%置信区间:0.857-0.936)和0.888(95%置信区间:0.819-0.939)。无复发生存分析(P=0.001)和肿瘤特异性生存分析(P=0.005)的结果都显示血清中高表达miR-31的ESCC患者预后较差。细胞系的实验表明miR-31能够增强细胞的克隆形成能力和侵袭转移能力。报告基因实验和Western blot的结果证实miR-31可调控3个抑癌基因的功能,分别是上皮膜蛋白1(epithelial membrane protein1, EMP1)、Ras2的激酶抑制蛋白(kinase suppressor of ras2, KSR2)和G蛋白信号调节蛋白4(regulator of G-protein signalling4, RGS4)。结论miR-31在ESCC中起到原癌基因的功能,是ESCC可能的诊断及预后标志物。
     [摘要]目的食管癌相关基因2(esophageal cancer-related gene2, ECRG2)的3’UTR区存在短串联重复序列多态性(short tandem repeat, STR),并且与食管鳞癌的发病和预后相关。本研究旨在探讨microRNA通过STR序列对ECRG2基因的调控。方法通过生物信息学预测ECRG2基因STR序列可能结合的microRNA,通过报告基因实验对候选microRNA与STR序列的结合进行验证。对证实与ECRG2基因STR有调控作用的microRNA进行标志物研究,在44对食管鳞癌的配对组织标本中通过Real-time PCR进行表达水平的检测,接着在120例ESCC(?)(?)120例健康对照的发现组、81例ESCC和81例健康对照的验证组进行血清中microRNA表达水平的检测。结果通过生物信息学预测到miR-580、miR-1182、miR-1272和miR-1322与ECRG2基因STR序列有结合,通过报告基因检测发现只有miR-1322能够显著下调TCA3基因型的表达(p<0.01),同时对TCA4基因型没有显著的下调功能(p>0.05)。通过Real-tine PCR发现miR-1322在ESCC组织和血清中都有高表达(p<0.01)。ROC曲线分析发现240例样本的发现组AUC值为0.847(95%置信区间:0.795-0.890),160例样本的验证组也得到类似的结果AUC值为0.845(95%置信区间:0.780-0.897),miR-1322能够用于ESCC的诊断。结论miR-1322通过3’UTR区的SRT序列调控ECRG2基因的表达,miR-1322是可能的ESCC诊断标志物。
Oesophageal cancer ranks seventh and sixth in cancer incidence and mortality rate worldwide, respectively. A total of50%of all oesophageal cancer worldwide occurs in China. Esophageal squamous cell carcinoma (ESCC) accounts for approx.90%of all oesophageal carcinomas diagnosed at an advanced stage. The difficulty in managing ESCC is due to its aggressive invasion and early metastasis to lymph nodes, adjacent tissue and organs. The majority of cases are diagnosed at a relatively late stage of the disease, when the chances of surgical intervention are lost. Even with surgery, the median survival rate of ESCC patients after RO resection (the complete removal of all tumour with microscopic examination of margins showing no tumour cells) is less than2years. Additionally, ESCC is relatively resistant to both chemotherapy and radiotherapy. Many studies have shown that the development and metastasis of ESCC relates to the dysregulation of several oncogenes and tumour suppressor genes in multiple pathways. Understanding the molecular pathogenesis of ESCC, and especially the mechanisms of tumorigenesis and metastasis, is extremely important for developing novel biomarkers and treatment strategies.
     microRNAs (miRNAs), which are endogenous small single-stranded non-coding RNAs ranging from19to25nt, play an important role in epigenetic and post-transcriptional regulation networks. Their roles in cancer development and metastasis lead to an extensive exploration of oncogenetic or tumour-suppressivemiRs inmultiple cancers, ofwhich some were potential diagnostic and prognostic markers for certain cancers. Since miRs have been shown to be stable in serum and an increasing number reports have revealed that circulating miRs could serve as a diagnostic marker for various cancers.
     The expression changes of miR-31are frequently reported in multiple cancers. Interesting, miR-31is widely up-regulated inmost SCCs. In the first part the expression of miR-31was detected in45paired ESCC tissues and523serum samples using real-time RT (reverse transcription)-PCR. The result showed that miR-31was up-regulated in77.8%of the ESCC tissues. Serum miR-31levels in ESCC patients were significantly higher than in normal controls (P<0.001). Patients with high-levels of serum miR-31also had a poorer prognosis in relapse-free survival (P=0.001) and tumour-specific survival (P=0.005). ROC analysis suggested that miR-31can serve as a potential diagnostic and prognostic biomarker for ESCC. In vitro studies showed that miR-31promoted ESCC colony formation, migration and invasion. Luciferase reporter and Western blot assays confirmed that three tumour suppressor genes, namely EMP1(epithelial membrane protein1), KSR2(kinase suppressor of ras2) and RGS4(regulator of G-protein signalling4), were targeted by miR-31. The oncogene role of miR-31in ESCC mainly is dued to the down-regulation of several tumor suppresion genes especially EMP1.
     Esophageal cancer-related gene2(ECRG2), also known as SPINK7) is regarded as a tumor suppressor gene in esophageal cancer. It was first cloned and identified by our laboratory (Genbank Accession Number AF268198). There is a triplet TCA short tandem repeat (STR) polymorphism located in the3'-UTR of ECRG2with two specific alleles, TCA3(TCATCATCA) and TCA4(TCATCATCATCA). The TCA3allele is proved to be a risk factor for ESCC by that subjects who carried the TCA3/TCA3genotype were at an increased risk of ESCC and a significantly poorer prognosis. In the second part we investigated all the microRNAs predicted to bind at the ECRG2STR region and regulation the function of ECRG2. miR-580、miR-1182、miR-1272、miR-1322were predicted to bind at the STR region. The expression of TCA4is higher than TCA3because that miR-1322could significantly down-regulate the with TCA3allele (<0.01), but it could not down-regulate the with TCA4allele significantly (>0.05). MiR-1322was also expressed significantly higher in ESCC tissue and serum samples than in controls (both<0.01). ROC analysis suggested that miR-1322can serve as a potential diagnostic biomarker for ESCC. MiR-1322can regulate in an allele-specific manner and that serum levels of miR-1322can serve as a potential diagnostic biomarker for patients with ESCC.
     In conlusion, we verified the oncogene function and potential diagnosis biomarker of miR-31and miR-1322in ESCC, which shed light on the early detection and target therapy for ESCC.
     [Abstract] MicroRNA-31(miR-31) is frequently altered in numerous cancers. The aim of the present study was is to investigate the role of miR-31in oesophageal squamous cell carcinoma (ESCC). Method We measured miR-31in45paired ESCC tissues and523serum samples using real-time RT (reverse transcription)-PCR. The serum samples were divided into a discovery group (120ESCCs and121normal controls), a validation group (81ESCCs and81controls), and a final group comprising six other common tumours (colorectal, liver, cervical, breast, gastric and lung cancers; total n=120). A Mann-Whitney U test and Wilcoxon matched-pairs test were used for the statistics. Result miR-31was up-regulated in77.8%of the ESCC tissues. Serum miR-31levels in ESCC patients were significantly higher than in normal controls (P<0.001). It yielded an ROC (receiver operating characteristic) AUC (area under the curve) of0.902[95%CI (confidence interval),0.857-0.936] in the discovery group and a similar result in the validation group [ROC AUC,0.888(95%CI,0.819-0.939)]. Patients with high-levels of serum miR-31also had a poorer prognosis in relapse-free survival (P=0.001) and tumour-specific survival (P=0.005). In vitro studies showed that miR-31promoted ESCC colony formation, migration and invasion. Luciferase reporter and Western blot assays confirmed that three tumour suppressor genes, namely EMP1(epithelial membrane protein1), KSR2(kinase suppressor of ras2) and RGS4(regulator of G-protein signalling4), were targeted by miR-31. Conclusion We conclude that miR-31plays oncogenetic functions and can serve as a potential diagnostic and prognostic biomarker for ESCC.
     [Abstract] Aims A short tandem repeat (STR) polymorphism in the3'UTR region of esophageal cancer-related gene2(ECRG2, also known as) has been widely reported to be associated with the incidence and the prognosis of esophageal squamous cell carcinoma (ESCC). This study explores how the microRNA binding to the STR. region affects expression in ESCC. Method Dual-luciferase reporter assays were used to verify the effects of the four microRNAs (miR-580, miR-1182, miR-1272, and miR-1322) predicted to bind the STR region of the3'untranslated region (UTR). The expression of identified effective microRNA was then analyzed in44paired ESCC and adjacent normal tissues and402case-controlled serum samples (divided into a discovery group and an independent validation group) by real-time RT-PCR assay. Result We found that only miR-1322could significantly down-regulate the with TCA3allele (<0.01), but it could not down-regulate the with TCA4allele significantly (>0.05). MiR-1322was also expressed significantly higher in ESCC tissue and serum samples than in controls (both<0.01). Additionally, serum levels of miR-1322yielded an under receiver operating characteristic (ROC) curve area of0.847(95%CI,0.795-0.890) for discriminating ESCCs from healthy controls in the discovery group and a similar result was obtained in the validation group (under ROC area is0.845;95%CI,0.780-0.897). Conclusion We conclude that miR-1322can regulate in an allele-specific manner and that serum levels of miR-1322can serve as a potential diagnostic biomarker for patients with ESCC.
引文
Aprelikova O, Yu X, Palla J et al (2010). The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle 9:4387-4398.
    Bonnetain F, Bouche O, Michel P et al (2006). A comparative longitudinal quality of life study using the Spitzer quality of life index in a randomized multicenter phase III trial (FFCD 9102): chemoradiation followed by surgery compared with chemoradiation alone in locally advanced squamous resectable thoracic esophageal cancer. Ann Oncol 17:827-834.
    Bredel M, Bredel C, Juric D et al (2005). Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 65:8679-8689.
    Calin GA, Liu CG, Sevignani C et al (2004). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 101:11755-11760.
    Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6:857-866.
    Chambers AF, Groom AC, MacDonald IC (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563-572.
    Chang TC, Wentzel EA, Kent OA et al (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745-752.
    Chen X, Ba Y, Ma L et al (2008). Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997-1006.
    Creighton CJ, Fountain MD, Yu Z et al (2010). Molecular profiling uncovers a p53-associated role for microRNA-31 in inhibiting the proliferation of serous ovarian carcinomas and other cancers. Cancer Res 70:1906-1915.
    Cullen BR (2005). Human immunodeficiency virus:nuclear RNA export unwound. Nature 433: 26-27.
    Denli AM, Tops BB, Plasterk RH et al (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432:231-235.
    Dougherty MK, Ritt DA, Zhou M et al (2009). KSR2 is a calcineurin substrate that promotes ERK cascade activation in response to calcium signals. Mol Cell 34:652-662.
    Eletr ZM, Wilkinson KD (2011). An emerging model for BAPl's role in regulating cell cycle progression. Cell Biochem Biophys 60:3-11.
    Fang Y, Fu D, Shen XZ (2010). The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta 1806:1-6.
    Feng H, Hu B, Jarzynka MJ et al (2012). Phosphorylation of dedicator of cytokinesis 1 (Dock180) at tyrosine residue Y722 by Src family kinases mediates EGFRvIII-driven glioblastoma tumorigenesis. Proc Natl Acad Sci U S A 109:3018-3023.
    Gilad S, Meiri E, Yogev Y et al (2008). Serum microRNAs are promising novel biomarkers. PLoS One 3:e3148.
    Gupta GP, Massague J (2006). Cancer metastasis:building a framework. Cell 127:679-695. Holmes RS, Vaughan TL (2007). Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol 17:2-9.
    Hu Z, Chen X, Zhao Y et al (2010). Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28: 1721-1726.
    Jemal A, Bray F, Center MM et al (2011). Global cancer statistics. CA Cancer J Clin 61:69-90. Jia M, Souchelnytskyi S (2010). Kinase suppressor of Ras 2 is involved in regulation of cell proliferation and is up-regulated in human invasive ductal carcinomas of breast. Exp Oncol 32: 209-212.
    John B, Enright AJ, Aravin A et al (2004). Human MicroRNA targets. PLoS Biol 2:e363.
    Kelsen DP, Ginsberg R, Pajak TF et al (1998). Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med 339:1979-1984.
    Ketting RF (2011). microRN A Biogenesis and Function:An overview. Adv Exp Med Biol 700:1-14. Kim VN (2005). MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol 6: 376-385.
    Kussel-Andermann P, El-Amraoui A, Safieddine S et al (2000). Vezatin, a novel transmembrane protein, bridges myosin VIIAto the cadherin-catenins complex. EMBO J 19:6020-6029.
    Lajer CB, Nielsen FC, Friis-Hansen L et al (2011). Different miRNA signatures of oral and pharyngeal squamous cell carcinomas:a prospective translational study. Br J Cancer 104:830-840.
    Liu X, Sempere LF, Ouyang H et al (2010). MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest 120: 1298-1309.
    Lu J, Getz G, Miska EA et al (2005). MicroRNA expression profiles classify human cancers. Nature 435:834-838.
    Ma L, Teruya-Feldstein J, Weinberg RA (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682-688.
    Mitchell PS, Parkin RK, Kroh EM et al (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513-10518.
    Mongiat M, Taylor K, Otto J et al (2000). The protein core of the proteoglycan perlecan binds specifically to fibroblast growth factor-7. J Biol Chem 275:7095-7100.
    Ng EK, Chong WW, Jin H et al (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer:a potential marker for colorectal cancer screening. Gut 58:1375-1381.
    Oh JS, Kim JJ, Byun JY et al (2010). Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras. Int J Radiat Oncol Biol Phys 76:5-8.
    Rajaraman P, Hutchinson A, Wichner S et al (2010). DNA repair gene polymorphisms and risk of adult meningioma, glioma, and acoustic neuroma. Neuro Oncol 12:37-48.
    Rajewsky N (2006). microRNA target predictions in animals. Nat Genet 38 Suppl:S8-13.
    Sanda M, Ohara N, Kamata A et al (2010). Vezatin, a potential target for ADP-ribosylation factor 6, regulates the dendritic formation of hippocampal neurons. Neurosci Res 67:126-136.
    Sassen S, Miska EA, Caldas C (2008). MicroRNA:implications for cancer. Virchows Arch 452:1-10.
    Schaefer A, Jung M, Mollenkopf HJ, et al (2010). Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126:1166-1176.
    Shi R, Chiang VL (2005). Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39:519-525.
    Slaby O, Svoboda M, Fabian P et al (2007). Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72:397-402.
    Smith JS, Tachibana I, Pohl U et al (2000). A transcript map of the chromosome 19q-arm glioma tumor suppressor region. Genomics 64:44-50.
    Tang F, Hajkova P, Barton SC et al (2006). MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34:e9.
    Tatenhorst L, Senner V, Puttmann S et al (2004). Regulators of G-protein signaling 3 and 4 (RGS3, RGS4) are associated with glioma cell motility. J Neuropathol Exp Neurol 63:210-222.
    Urba SG, Orringer MB, Turrisi A et al (2001). Randomized trial of preoperative chemoradiation
    versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 19:305-313.
    Ventura A, Jacks T (2009). MicroRNAs and cancer:short RNAs go a long way. Cell 136:586-591.
    Wang GQ, Abnet CC, Shen Q et al (2005). Histological precursors of oesophageal squamous cell carcinoma:results from a 13 year prospective follow up study in a high risk population. Gut 54: 187-192.
    Wang HT, Liu ZH, Wang XQ et al (2002). [Effect of EMP-1 gene on human esophageal cancer cell line].Ai Zheng 21:229-232.
    Wang HT, Kong JP, Ding F et al (2003). Analysis of gene expression profile induced by EMP-1 in esophageal cancer cells using cDNA Microarray. World J Gastroenterol 9:392-398.
    Wang N, Han Y, Tao J et al (2011). Overexpression of CREG attenuates atherosclerotic endothelium apoptosis via VEGF/PI3K/AKT pathway. Atherosclerosis 218:543-551.
    Wang P, Fu T, Wang X et al (2010). [Primary, study of miRNA expression patterns in laryngeal carcinoma by microarray]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 24:535-538.
    Wong TS, Liu XB, Wong BY et al (2008). Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 14:2588-2592.
    Xie Y, Wolff DW, Wei T et al (2009). Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4. Cancer Res 69:5743-5751.
    Xu L, Wang F, Liu H et al (2011). Increased expression of cellular repressor of ElA-stimulated gene (CREG) in gastric cancer patients:a mechanism of proliferation and metastasis in cancer. Dig Dis Sci 56:1645-1655.
    Yan LX, Huang XF, Shao Q et al (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14: 2348-2360.
    Yanaihara N, Caplen N, Bowman E et al (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189-198.
    Yi R, Qin Y, Macara IG et al (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011-3016.
    Zhang H, Han Y, Tao J et al (2011). Cellular repressor of ElA-stimulated genes regulates vascular endothelial cell migration by the ILK/AKT/mTOR/VEGF(165) signaling pathway. Exp Cell Res 317: 2904-2913.
    Zhang Y, Guo J, Li D et al (2010). Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Med Oncol 27:685-689.
    Zhao F, Siu MK, Jiang L et al (2011). Overexpression of dedicator of cytokinesis I (Dockl80) in ovarian cancer correlated with aggressive phenotype and poor patient survival. Histopathology 59: 1163-1172.
    Zinovyeva MV, Monastyrskaya GS, Kopantzev EP et al (2010). Identification of some human genes oppositely regulated during esophageal squamous cell carcinoma formation and human embryonic esophagus development. Dis Esophagus 23:260-270.
    Abelson JF, Kwan KY, O'Roak BJ et al (2005). Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310:317-320.
    Adams JM, Cory S (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324-1337.
    Bayley JP, Devilee P (2012). The Warburg effect in 2012. Curr Opin Oncol 24:62-67. Berdasco M, Esteller M (2010). Aberrant epigenetic landscape in cancer:how cellular identity goes awry. Dev Cell 19:698-711.
    Blessmann M, Kaifi JT, Schurr PG et al (2008). Short tandem repeat polymorphism in exon 4 of esophageal cancer related gene 2 predicts relapse of oral squamous cell carcinoma. Oral Oncol 44: 143-147.
    Burkhart DL, Sage J (2008). Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8:671-682.
    Chambers AF, Groom AC, MacDonald IC (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563-572.
    Cheng JC, Auersperg N, Leung PC (2011). Inhibition of p53 induces invasion of serous borderline ovarian tumor cells by accentuating PI3K/Akt-mediated suppression of E-cadherin. Oncogene 30: 1020-1031.
    Cheng X, Shen Z, Yang J et al (2008). ECRG2 disruption leads to centrosome amplification and spindle checkpoint defects contributing chromosome instability. J Biol Chem 283:5888-5898.
    Coffelt SB. Lewis CE, Naldini L et al (2010). Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176:1564-1576. Coghlin C, Murray GI (2010). Current and emerging concepts in tumour metastasis. J Pathol 222: 1-15.
    Cong Y, Shay JW (2008). Actions of human telomerase beyond telomeres. Cell Res 18:725-732. Cui Y, Wang J, Zhang X et al (2003). ECRG2, a novel candidate of tumor suppressor gene in the esophageal carcinoma, interacts directly with metallothionein 2A and links to apoptosis. Biochem Biophys Res Commun 302:904-915.
    Degterev A, Yuan J (2008). Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9:378-390.
    Dubrin RM AG, Altshuler DLL, Auton A (2010). A map of human genome variation from population-scale sequencing. Nature 467:1061-1073. Espina V, Liotta LA (2012). Molecular profiling:methods and protocols. Humana:New York, N.Y.
    Esteller M (2007). Cancer epigenomics:DNA methylomes and histone-modification maps. Nat Rev Genet 8:286-298.
    Eveno C, Broqueres-You D, Feron JG et al (2011). Netrin-4 delays colorectal cancer carcinomatosis by inhibiting tumor angiogenesis. Am J Pathol 178:1861-1869.
    Grivennikov SI, Greten FR, Karin M (2010). Immunity, inflammation, and cancer. Cell 140:883-899. Gupta GP, Massague J (2006). Cancer metastasis:building a framework. Cell 127:679-695.
    Han Y, Wei F, Xu X et al (2002). [Establishment and comparative genomic hybridization analysis of human esophageal carcinomas cell line EC9706]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 19: 455-457.
    Hanahan D, Weinberg RA(2000). The hallmarks of cancer. Cell 100:57-70. Hanahan D, Weinberg RA (2011). Hallmarks of cancer:the next generation. Cell 144:646-674.
    Huang G, Hu Z, Li M et al (2007). ECRG2 inhibits cancer cell migration, invasion and metastasis through the down-regulation of uPA/plasmin activity. Carcinogenesis 28:2274-2281.
    Jain M, Kumar S, Ghosh al UC et al (2008). Association of ECRG2 TCA short tandem repeat polymorphism with the risk of oesophageal cancer in a North Indian population. Clin Exp Med 8: 73-78.
    John B, Enright AJ, Aravin A et al (2004). Human MicroRNA targets. PLoS Biol 2:e363.
    Kaifi JT, Rawnaq T, Schurr PG et al (2007). Short tandem repeat polymorphism in exon 4 of esophageal cancer-related gene 2 detected in genomic DNA is a prognostic marker for esophageal cancer. Am J Surg 194:380-384.
    Ketting RF (2011). microRNA Biogenesis and Function:An overview. Adv Exp Med Biol 700:1-14. Kim VN (2005). MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol 6: 376-385.
    Klymkowsky MW, Savagner P (2009). Epithelial-mesenchymal transition:a cancer researcher's conceptual friend and foe. Am J Pathol 174:1588-1593.
    Ku CS, Loy EY, Salim A et al (2010). The discovery of human genetic variations and their use as disease markers:past, present and future. J Hum Genet 55:403-415.
    Kumar A, Rothman JH(2007). Cell death:hook, line and linker. Curr Biol 17:R286-289.
    Mailhos C, Modlich U, Lewis J et al (2001). Delta4, an endothelial specific notch ligand expressed at sites of physiological and tumor angiogenesis. Differentiation 69:135-144.
    Marchbank T, Chinery R, Hanby AM et al (1996). Distribution and expression of pancreatic secretory trypsin inhibitor and its possible role in epithelial restitution. Am J Pathol 148:715-722.
    Miao HQ, Lee P, Lin H et al (2000). Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J 14:2532-2539.
    O'Reilly KE, Rojo F, She QB et al (2006). mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500-1508.
    Pan QQ (1989). Studies on esophageal cancer cells in vitro. Proc Chin Acad Med Sci Peking Union Med Coll 4:52-57.
    Rajewsky N (2006). microRNA target predictions in animals. Nat Genet 38 Suppl:S8-13.
    Saab R (2011). Senescence and pre-malignancy:how do tumors progress? Semin Cancer Biol 21: 385-391.
    Sherr CJ (2004). Principles of tumor suppression. Cell 116:235-246.
    Su T, Liu H, Lu S (1998). [Cloning and identification of cDNA fragments related to human esophageal cancer]. Zhonghua Zhong Liu Za Zhi 20:254-257.
    Wang B, Xiao Y, Ding BB et al (2003). Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4:19-29.
    Wang GQ, Abnet CC, Shen Q et al (2005). Histological precursors of oesophageal squamous cell carcinoma:results from a 13 year prospective follow up study in a high risk population. Gut 54: 187-192.
    Wang Y, Nakayama M, Pitulescu ME et al (2010). Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465:183-486.
    Willis SN, Adams JM (2005). Life in the balance:how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617-625.
    Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology (Bethesda) 25:85-101.
    Yu H, Pardoll D, Jove R (2009). STATs in cancer inflammation and immunity:a leading role for STAT3. Nat Rev Cancer 9:798-809.
    Yuan TL, Cantley LC (2008). PI3K pathway alterations in cancer:variations on a theme. Oncogene 27: 5497-5510.
    Yue CM, Bi MX, Tan W et al (2004). Short tandem repeat polymorphism in a novel esophageal cancer-related gene (ECRG2) implicates susceptibility to esophageal cancer in Chinese population. Int J Cancer 108:232-236.
    Zong WX, Lindsten T, Ross AJ et al (2001). BH3-only proteins that bind pro-survival Bcl-2 family members fail toinduce apoptosis in the absence of Bax and Bak. Genes Dev 15:1481-1486.
    Ansems M, Hontelez S, Looman MW, Karthaus N, Bult P, Bonenkamp JJ et al DC-SCRIPT:nuclear receptor modulation and prognostic significance in primary breast cancer. J Natl Cancer Inst 102:54-68.
    Beige G, Dieckmann KP, Spiekermann M, Balks T, Bullerdiek J Serum Levels of MicroRNAs miR-371-3: A Novel Class of Serum Biomarkers for Testicular Germ Cell Tumors? Eur Ural 61:1068-9.
    Bihrer V, Friedrich-Rust M, Kronenberger B, Forestier N, Haupenthal J, Shi Y et al Serum miR-122 as a biomarker of necroinflammation in patients with chronic hepatitis C virus infection. Am J Gastroenterol 106:1663-9.
    Bihrer V, Waidmann O, Friedrich-Rust M, Forestier N, Susser S, Haupenthal J et al Serum microRNA-21 as marker for necroinflammation in hepatitis C patients with and without hepatocellular carcinoma. PLoS One 6:e26971.
    Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A et al (2009). MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice Science 324:1710-3.
    Brase JC, Johannes M, Schlomm T, Falth M, Haese A, Steuber T et al Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128:608-16.
    Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessel la RL, Rhees B et al Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer 106:768-74.
    Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 6:e23937.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K et al (2008). Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997-1006.
    Chen X, Hu Z, Wang W, Ba Y, Ma L, Zhang C et al Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int J Cancer 130:1620-8.
    Dennis C (2002). The brave new world of RNA. Nature 418:122-4.
    Fang C, Zhu DX, Dong HJ, Zhou ZJ, Wang YH, Liu L et al Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Ann Hematol 91:553-9.
    Floyd SK, Bowman JL(2004). Gene regulation:ancient microRNA target sequences in plants. Nature 428: 485-6.
    Geekiyanage H, Jicha GA, Nelson PT, Chan C Blood serum miRNA:Non-invasive biomarkers for Alzheimer's disease. Exp Neurol.
    Goren Y, Kushnir M, Zafrir B, Tabak S, Lewis BS, Amir O Serum levels of microRNAs in patients with heart failure. Eur J Heart Fail 14:147-54.
    Hennessey PT, Sanford T, Choudhaiy A, Mydlarz WW, Brown D, Adai AT et al Serum microRNA biomarkers for detection of non-small cell lung cancer. PLoS One 7:e32307.
    Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y et al Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28: 1721-6.
    Hu Z, Dong J, Wang LE, Ma H, Liu J, Zhao Y et al Serum microRNA profiling and breast cancer risk:the use of miR-484/191 as endogenous controls. Carcinogenesis.
    Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X (2009). Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer.
    Kanemaru H, Fukushima S, Yamashita J, Honda N, Oyama R, Kakimoto A et al The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. J Dermatol Sci 61: 187-93.
    Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Morimura R, Nagata H et al Circulating microRNAs in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer 105:104-11.
    Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y et al Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes:a clinical study. Acta Diaberol 48:61-9.
    Kurashige J, Kamohara H, Watanabe M, Tanaka Y, Kinoshita K, Saito S et al Serum microRNA-21 is a novel biomarker in patients with esophageal squamous cell carcinoma. J Surg Oncol.
    Lee RC, Ambros V (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862-4.
    Liu AM, Yao TJ, Wang W, Wong KF, Lee NP, Fan ST et al Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma:a retrospective cohort study. BMJ Open 2: e000825.
    Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211-5.
    Liu H, Zhu L, Liu B, Yang L, Meng X, Zhang W et al Genome-wide microRNA profiles identify miR-378 as a serum bio marker for early detection of gastric cancer. Cancer Lett 316:196-203.
    Liu R, Chen X, Du Y, Yao W, Shen L, Wang C et al Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem 58:610-8.
    Liu R, Zhang C, Hu Z, Li G, Wang C, Yang C et al A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 47:784-91.
    Liu XQ Zhu WY, Huang YY, Ma LN, Zhou SQ, Wang YK et al High expression of serum miR-21 and tumor miR-200c associated with poor prognosis in patients with lung cancer. Med Oncol.
    Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Muller SC, El linger J Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology 77:1265 e9-16.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105: 10513-8.
    Moore KJ, Rayner KJ, Suarez Y, Fernandez-Hemando C The role of microRNAs in cholesterol efflux and hepatic lipid metabolism. Annu Rev Nutr 31:49-63.
    Morimura R, Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Nagata Het al Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer 105:1733-40.
    Murray MJ, Halsall DJ, Hook CE, Williams DM, Nicholson JC, Coleman N Identification of microRNAs From the miR-371-373 and miR-302 clusters as potential serum biomarkers of malignant germ cell tumors. Am J Clin Pathol 135:119-25.
    Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J et al (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer:a potential marker for colorectal cancer screening. Gut 58: 1375-81.
    Patterson E, Webb R, Weisbrod A, Bian B, He M, Zhang L et al The microRNA expression changes associated with malignancy and SDHB mutation in pheochromocytoma. Endocr Relat Cancer.
    Peng DX, Luo M, Qiu LW, He YL, Wang XF Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep 27:1238-44.
    Qi P, Cheng SQ, Wang H, Li N, Chen YF, Gao CF Serum microRNAs as biomarkers for hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. PLoS One 6:e28486.
    Qu KZ, Zhang K_ Li H, Afdhal NH, Albitar M Circulating microRNAs as biomarkers for hepatocellular carcinoma. J Clin Gastroenterol 45:355-60.
    Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R et al Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med 10:55.
    Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al (2007). Requirement of bic/microRNA-155 for normal immune function. Science 316:608-11.
    Santarelli L, Strafella E, Staffolani S, Amati M, Emanuelli M, Sartini D et al Association of MiR-126 with soluble mesothelin-related peptides, a marker for malignant mesothelioma. PLoS One 6:e18232.
    Skog J. Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M et al (2008). Glioblastoma micro vesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470-6.
    Song MY, Pan KF, Su HJ, Zhang L, Ma JL, Li JY et al Identification of Serum MicroRNAs as Novel Non-Invasive Biomarkers for Early Detection of Gastric Cancer. PLoS One 7:e33608.
    Starkey Lewis PJ, Dear J, Platt V, Simpson KJ, Craig DG, Antoine DJ et al Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 54:1767-76.
    Tsai KW, Liao YL, Wu CW, Hu LY, Li SC, Chan WC et al Aberrant expression of miR-196a in gastric cancers and correlation with recurrence. Genes Chromosomes Cancer 51:394-401.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654-9.
    van Schooneveld E, Wouters MC, Van der Auwera I, Peeters DJ, Wildiers H, Van Dam PAet al Expression profiling of cancerous and normal breast tissues identifies microRNAs that are differentially expressed in serum from patients with (metastatic) breast cancer and healthy volunteers. Breast Cancer Res 14:R34.
    Ventura A, Jacks T (2009). MicroRNAs and cancer:short RNAs go a long way. Cell 136:586-91.
    Wang B, Li W, Guo K, Xiao Y, Wang Y, Fan J miR-181b Promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients. Biochem Biophys Res Commun.
    Wang JF, Yu ML, Yu G Bian JJ, Deng XM, Wan XJ et al Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun.
    Wang LG, Gu J Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol 36:e61-7.
    Wang M, Gu H, Wang S, Qian H, Zhu W, Zhang L et al Circulating miR-17-5p and miR-20a:Molecular markers for gastric cancer. Mol Med Report.
    Wu Q, Lu Z, Li H, Lu J, Guo L, Ge Q Next-generation sequencing of microRNAs for breast cancer detection. J Biomed Biotechnol 2011:597145.
    Wulfken LM, Moritz R, Ohlmann C, Holdenrieder S, Jung V, Becker F et al MicroRNAs in renal cell carcinoma:diagnostic implications of serum miR-1233 levels. PLoS One 6:e25787.
    Xu J, Wu C, Che X, Wang L, Yu D, Zhang T et al Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog 50:136-42.
    Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109-23.
    Yu S, Liu Y, Wang J, Guo Z, Zhang Q, Yu F et al Circulating MicroRNA Profiles as Potential Biomarkers for Diagnosis of Papillary Thyroid Carcinoma. J Clin Endocrinol Metab.
    Zhai Q, Zhou L, Zhao C, Wan J, Yu Z, Guo X et al Identification of miR-508-3p and miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma. Biochem Biophys Res Commun 419:621-6.
    Zhang T, Wang Q, Zhao D, Cui Y, Cao B, Guo L et al The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin Sci (Lond) 121:437-47.
    Zhang T, Zhao D, Wang Q, Yu X, Cui Y, Guo L et al MicroRNA-1322 regulates ECRG2 allele specifically and acts as a potential biomarker in patients with esophageal squamous cell carcinoma. Mol Carcinog.
    Zhang Y, Liao Y, Wang D, He Y, Cao D, Zhang F et al Altered expression levels of miRNAs in serum as sensitive biomarkers for early diagnosis of traumatic injury. J Cell Biochem 112:2435-42.
    Zhu H, Fan GC Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis 1:138-149.
    Zhu W, Liu X, He J, Chen D, Hunag Y, Zhang YK Overexpression of members of the microRNA-183 family is a risk factor for lung cancer:a case control study. BMC Cancer 11:393.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.