超高速光时分复用通信系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,多媒体交互式业务、因特网业务和宽带综合业务数字通信网络迅猛发展,对数据信号传输速率和传输带宽提出了更高的要求,通信容量几乎成指数增长。以超高速光时分复用(OTDM)技术和密集波分复用(DWDM)技术为核心的全光通信网络,已成为国际上通信领域研究的热点,特别是超高速OTDM技术是实现超大容量(Tbit/s)通信传输速率的首选方案。
    本论文的研究工作,主要是围绕超高速OTDM通信系统的关键技术来开展的,在理论方面:较为全面的分析和总结了超高速OTDM通信系统的关键技术;对锁模半导体激光器的基础理论进行研究,并对其瞬态特性和阈值电流特性进行了数值模拟,建立了合理的锁模半导体激光器模型,为后续的实验工作提供了必要的理论指导;对多量子阱外腔混合锁模半导体激光器的噪声特性和啁啾特性进行了理论研究,通过数值计算和仿真分析,对实验中10GHz混合锁模半导体激光器进行了优化设计;对达到变换极限、高重复频率、多量子阱、外腔型、混合锁模半导体激光器(10GHz)的基础理论,进行了相关研究。
    在实验方面,课题组制作并调试了一套多量子阱外腔混合锁模半导体激光器的实验装置,能够实现具有脉宽窄(2.9ps)、频率啁啾小(ΔtΔυ~0.43)、时间抖动性小(<0.6ps)、较小的饱和吸收能量(<1pJ)、超快的恢复时间(8ps)、高重复频率(10GHz)、可精确控制波长(1.55μm)、波长调谐范围大(35nm)、结构简单、集成度高、稳定性好、易于长期工作的超高速超短脉冲通信光源,取得了良好的实验效果;对10GHz超高速光时分复用系统通信光源的实验研究,主要包括10GHz通信光源的自发辐射光谱特性、荧光光谱的蓝移现象、连续激光功率与增益电流的关系、锁模脉冲光谱特性、高重复频率锁模脉冲波形、锁模脉冲宽度、锁模光脉冲的RF谱和锁模脉冲光功率的理论计算等方面;利用多量子阱混合锁模半导体激光器(10GHz)的实验装置,进行了超高速40GHz光时分复用OTDM通信技术的实验研究,实现了仅利用一个波长为1.55μm的超高速10Gb/s光脉冲信号源,就能够产生重复频率为40GHz、脉宽为3ps的超高速、超短脉冲光源,即40Gb/s超高速光时分复用信号产生系统,是超高速光纤时分复用OTDM通信系统中的理想光源。
    
    本论文的创新之处:
    
    1 在国内首次对多量子阱外腔混合锁模半导体激光器的噪声特性和啁啾特性进行了理论研究,通过数值模拟计算和仿真分析,对实验中混合锁模半导体激光器(10GHz)进行了优化设计;
    2 在国内首次制作并调试了一套多量子阱外腔混合锁模半导体激光器(10GHz)的实验装置,成功实现了接近带宽变换极限(~0.43)、高重复频率(10GHz)、窄脉宽(2.9ps)的超高速、超短脉冲通信光源,取得了良好的实验效果;
    3 在国内首次利用多量子阱混合锁模半导体激光器(10GHz)的实验装置,开展了超高速光时分复用OTDM技术(40GHz)的实验研究,获得了40Gbit/s的超高速、超短脉冲信号光源。
With the rapid advances of the commutative multi-media services, the internet services and the broad-band integrated-services-digital-networks (ISDN) in the last ten years, it becomes evident that the communication capability is being increased at exponential speed, so the higher demands are put forward for the transmission velocity and the transmission band-width now. It has become a hotspot in the field of telecommunication research throughout the world, which is the all-optical network communication associated the ultra-high-speed optical-time-division-multiplexing (OTDM) technology with the dense-wave-division-multiplexing (DWDM) technology, in particular, the ultra-high-speed OTDM technology is the first choice for the ultra-high-speed and ultra-large-capability communications system (Tbit/s).
    The paper is mainly involved in the ultra-high-speed OTDM key technologies, a series of theoretical researches have been done on the ultra-high-speed OTDM communications system in this dissertation. The main contents of the work are as follows: Firstly, the key technologies of the ultra-high-speed OTDM communications system is reviewed, summarized and described at length. Secondly, the basic principles of the mode-locked laser diodes (MLLDs) are described in detail. The momentary characteristics and the threshold-current characteristics of the multi- quantum-well (MQW) external-cavity hybrid MLLDs are given respectively, and the numerical calculations are performed inside country. Moreover, the experimental mode of the MLLDs is optimized at best, and the reasonable theories of MLLDs are provided for the last experimentation. Thirdly, the noise characteristics and the chirp characteristics of the MQW external-cavity hybrid MLLDs (10GHz) are firstly presented at home. By the numerical calculations, the 10GHz MQW hybrid MLLDs are optimized and discussed in test. Finally,the experimental theories of nearly transform-limited pulse, higher repeating rate (10GHz), multi-quantum wells, external -cavity modulation and hybrid mode-locked MLLDs are provided and discussed seriously in the round.
    In the experimental aspects, first of all, a set of experimental setup based on the MQW external-cavity hybrid MLLDs (10GHz) is firstly put up and tested at home, so we have had a better experimental result in the field at present. Our research team have achieved the ultra-short communication pulse with lesser pulse-width(2.9ps), lesser chirping (~0.43),lesser time jittery (<0.6ps),lesser saturated energy (<1pJ), ultra-high-speed recovery time (8ps), higher repeating rate (10GHz), accurately controlled wavelength (1.5μm), bigger wavelength tuning spectrum scope (35nm), simple structure, higher integration, better stability and long-time working characteristics so on. Secondly, with regard to the MQW external-cavity hybrid MLLDs combined the transform-limited pulse (0.43) with higher repeating rate (10GHz), we have succeeded in fulfilling it in use of our self-made experimental setup. The experimental results are mainly composed of the spontaneous radiation spectrum, wavelength blue-shifted phenomenon, the relations between continuous laser optical power and gain current, mode-locked laser pulse spectrum, higher
    
    
    repeating frequency mode-locked pulse shape, mode-locked pulse-width, RF spectrum of mode-locked pulse, and the calculation of the mode-locked pulse optical power so on. Thirdly, through the MQW hybrid MLLDs (10GHz), the ultra- high-speed OTDM communications system with higher repeating rate (40GHz) is firstly studied inside country. We have realized a set of 40Gb/s ultra-high-speed OTDM communications system only by one 10Gb/s ultra-high-speed MLLDs based on wavelength 1.55μm, which can provide the ultra-short pulse of higher repeating rate (40GHz) and lesser pulse-width (3ps). In our opinions, the experimental results are well in agreement with the anticipatively related principles. All in all, the 40Gb/s ultra-high-speed system is an ideal pulse-generator of the future ultra-high-speed OTDM communications system.
    
    The
引文
绪论
    叶青.贝尔实验室计算出光纤网络的理论极限.激光与光电子学进展,2002,39(4):58
    G.Steinle and F.Mederer. Data transmission up to 10Gbit/s with 1.3μm wavelength InGaAsN VCSELS. Electron.Lett.,2003,37(10):632~634
    S.M.K.Thiyagarajan and A.F.J.Levi. High-speed response of optically-pumped InGaAs/InGa -AsP micro-disk lasers. Electron.Lett.,2001,37(3):175~176
    J.B.Song and C.C.Button. 1.55μm multi-channel DWDM source using quaternary/quaternary MQW InGaAsP/InP QCSE tuning. Electron.Lett.,2001,37(7):426~428
    Morita and N.Edagawa. Study on optimum OTDM signals for long-distance 40Gbit/s trans -mission. OFC’2002,17-22:5~6
    M.Puleo. 40Gbit/s OTDM-WDM transmultiplexers. Lasers and Electro-Optics Europe,2000,1: 10~15
    H.Takara, K.Uchiyama, I.Shake, et al. Ultra-high speed OTDM transmission systems and sub- systems. Lasers and Electro-Optics,2001,Technical Digest:526~527
    H.Sotobayashi and W.Chujo. Inter-wavelength-band conversions and demultiplexings of 640 Gbit/s OTDM signals. OFC’2002,17-22:261~262
    E.Lach,M.Schmidt,K.Schuh,et al. Advanced 160Gbit/s OTDM system based on wavelength transparent 40Gbit/s ETDM transmitters and receivers. OFC’2002,7-22:2~4
    H.Tanaka,M.Hayashi,T.Otani,et al. 60Gbit/s WDM-OTDM transmultiplexing using an electro -absorption modulator. OFC’2001,1:1~3
    M.Nakazawa,T.Yamamoto and K.Tamura. Ultra-high-speed OTDM transmission using femto -second pulses. Lasers and Electro-Optics,2001,1:618~619
    U.Feiste,R.Ludwig,C.Schubert,et al. 160Gbit/s field transmission over 116km standard single mode fibre using 160Gbit/s OTDM and 40Gbit/s ETDM demultiplexer. IEEE Proceedings -Optoelectronics,2001,148(4):171~175
    L.Rau,S.Rangarajan,Wei Wang,et al. All-optical add-drop of an OTDM channel using an ultra -fast fiber based wavelength converter. OFC’2002,17-22: 259~261
    
    U.Feiste,R.Ludwig,C.Schubert, et al. 160Gbit/s transmission over 116km field installed fibre using 160Gbit/s OTDM and 40Gbit/s ETDM. Electron.Lett.,2001,37(7):443~445
    V.Mikhailov, P.Bayvel, R.Wyatt, et al. Fibre grating laser-based RZ pulse source for 40Gbit/s OTDM transmission systems. Electron.Lett.,2001,37(14):909~910
    K.Seppanen. Shared OTDM packet compressor and decompressor. Electron.Lett.,2000, 36 (25):2090~2092
    Hanxing Shi. Performance analysis on semiconductor laser amplifier loop mirrors. Journal of Lightwave Technology,2002,20(4):682~688
    C.Schubert,J.Berger,S.Diez,et al. Comparison of interferometric all-optical switches for demul -tiplexing applications in high-speed OTDM systems. Journal of Lightwave Tech., 2002, 20 (4):618~624
    M.Hayashi,H.Tanaka,K.Ohara,et al. OTDM transmitter using WDM-TDM conversion with an electro-absorption wavelength converter. Journal of Lightwave Tech.,2002,20(2):236~242
    B.S.Robinson and S.A.Hamilton. Demultiplexing of 80Gb/s pulse-position modulated data with an ultra-fast nonlinear interferometer. IEEE Photon.Tech.Lett.,2002,14(2):206~208
    M.L.Nielsen, B.E.Olsson and D.J.Blumenthal. Pulse extinction ratio improvement using SPM in an SOA for OTDM systems applications. IEEE Photon.Tech.Lett.,2002,14(2):245~247
    S.A.Hamilton and B.S.Robinson. 40Gb/s all-optical packet synchronization and address com -parison for OTDM networks. IEEE Photon.Tech.Lett.,2002,14(2):209~211
    M.C.Gross,M.Hanna,K.M.Patel,et al. Use of nonlinear amplifying loop mirror to reduce power fluctuations in ultra-fast optically time-division-multiplexed pulse trains. Lasers and Electro-Optics,2002,1:460~461
    H.G.Weber,R.Ludwig,U.Feiste, et al. High-speed all-optical signal processing in optical com -munication systems. Lasers and Electro-Optics,2002,1:610~615
    S.L.Jansen, M.Heid, S.Spalter,et al. Demultiplexing 160Gbit/s OTDM signal to 40Gbit/s by FWM in SOA. Electron.Lett.,2002,38(17):978~980
    J.Inoue, H.Sotobayashi, W.Chujo,et al. 80Gbit/s OTDM signal transmission over 208km standard fibre using mid-span optical phase conjugation based on four-wave mixing in semico -nductor optical amplifiers. Electron.Lett.,2002,38(15):819~821
    
    
    M.Kato,K.Kurokawa,K.Fujiura,et al. High bit rate and programmable multi-wavelength gener -ator based on Raman soliton effect in DSF. Electron.Lett.,2002,38(4):164~166
    
    第一章
    曹文华,刘颂豪. 单模光纤中皮秒啁啾脉冲压缩.光学学报,1995,15(2):180~185
    伍剑,娄采云.色散补偿法获得5GHz/6.8ps超短光脉冲.中国激光 ,1997,24(2):123~126
    左鹏,伍剑. 基于光纤交叉相位调制效应的全光位时钟提取技术.光学学报,2001,21(8):944~947
    贺郁馨,刘宁.超高速光纤通信系统.电信科学,1999,10:26~29
    娄采云,韩明. 10GHz WDM/OTDM通信多波长光脉冲源.光电子·激光,2000,11(2):123~125
    余建军,管克俭. 实现20Gbit/s的OTDM孤子信号56km色散位移光纤的传输.光子学报,1999,28(4):331~335
    K.Sato and A.Hirano. Chirp-compensated 40GHz semiconductor mode-locked lasers integrat -ed with chirped grating. Electron.Lett.,1998,34(20):1944~1946
    F.N.Timofeev and I.A.Kostko.10Gbit/s directly modulated high temperature stability external fibre grating laser for dense WDM networks. Electron.Lett.,1999,35(20):1737~1739
    D.J.Derickson,P.A.Morton and J.E.Bowers. Comparison of timing jitter in external and mono -lithic cavity mode-locked semiconductor lasers. Appl.Phys.Lett.,1991,59(26):3372~3374
    E.Jahn and N.Agrawal. 40Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifiers. Electron. Lett., 1995,31 (21):1857~1858
    J.P.Sokoloff, P.R.Prucnal, I.Glesk,et al. A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photon.Tech.Lett.,2000,5(7):787~790
    Morioka and H.Takara. Polarisation-independent all-optical demultiplexing up to 200Gbit/s using four-wave mixing in a simiconductor laser amplifier. Electron.Lett.,1996,32(9):840~841
    K.L.Hall and K.A.Rauschenbach. Picosecond-accuracy all-optical bit phase sensing using a nonlinear optical loop mirror. IEEE Photon.Tech.Lett.,1995,7(8):935~937
    T.R.Clark and T.F.Carruthers. Phase noise measurements of ultra-stable 10GHz harmonically
    
    
    mode-locked fibre laser. Electron Lett.,1999,35(9):720~721
    H.Bissessur and A.Vuong. External grating laser Mach-Zehnder emitter for 2.5 and 10Gbit/s WDM systems. Electron Lett.,2000,36(2):139~141
    M.Ibsen and E.Ronnekleiv. Multiple wavelength all-fibre DFB lasers. Electron Lett.,2000, 36(2):143~144
    S.Kawanishi and M.Saruwatari. 10GHz timing extraction from randomly modulated optical pulses using phase-locked loop with traveling-wave laser-diode optical amplifier using optical gain modulation. Electron.Lett.,1992,28(5):510~511
    C.Bornholdt and B.Sartorius. Self-pulsating DFB laser for all-optical clock recovery at 40 Gbit/s. Electron Lett.,2000,36(4):327~328
    U.Feiste, D.J.As and A.Ehrhardt.18GHz all-optical frequency locking and clock recovery using a self-pulsating two-section DFB Laser. IEEE Photon.Tech.Lett.,1994,6(1):10~15
    S.kawanishi,H.Takara,K.Uchiyana,et al.3Tbit/s(180Gbit/s×19ch.)OTDM/WDM transmission experiment.OFC’99
    C.Scheerer,C.Glingener and A.Farbert. 3.2Tbit/s(80×40Gbit/s)bi-directional WDM/ETDM transmission over 40km standard single mode fiber. Electron Lett.,2000,35(20):1752~1753
    G.P.Agrawal. Nonlinear fiber optics(second edition), San Diego: Academic Press,1995, Chap -ter.12
    J.K.Ranka,R.S.Windeler and A.J.Stentz. Visible continuum generation in air-silica micro -structure optical fibers with anomalous dispersion at 800nm. Opt.Lett.,2000,25:25~27
    V.Srikant. Broadband dispersion and dispersion slope compensation in high bit rate and ultra long haul system. OFC’2002.
    N.Kikuchi. Adaptive chromatic dispersion compensation using higher order polarization -mode dispersion. IEEE Photon.Tech.Lett.,2001,13(10):15~22
    
    第二章
    江剑平. 半导体激光器. 北京:电子工业出版社,2000
    D.J.Derickson, R.J.Helkey, A.Mar,et al. Short pulse generation using multi-segment mode- locked semiconductor lasers. IEEE J. Quantum Electron.,1992, 28:2186~2202
    周炳琨,高以智.激光原理.北京:国防工业出版社,2000,P240~241
    
    J.P.Vanderzifl,W.T.Tsang,R.A.Logan,et al. Sub-picosecond pulses from passively mode- locked GaAs buried optical guide semiconductor laser. Appl. Phys.Lett.,1981,39:525~527
    J.Yu,D.Hlihse,M.Schell,et al. Fourier-transform-limited 2.5ps light pulses with electrically tunable wavelength (1.5μm) by hybrid mode-locking a semiconductor laser in a chirped Bragg grating fiber external cavity. Electron.Lett.,1995,31:2008~2010
    D.J.Derickson,P.A.Morton,J.E.Bowers,et al. Comparison of timing jitter in external and mono -lithic cavity mode-locked semiconductor lasers. Appl.Phys.Lett.,1991,59:3372~3374
    Y.Katagiri,A.Takada,S.Nishi,et al. Repetition-rate tunable micro-mechanical passively mode- locked laser. Electron.Lett.,1996,32(25):2354~2355
    P.A.Morton,V.Mizrahi,P.A.Anderkson,et al. Mode-locked hybrid soliton pulse source with extremely wide operating frequency range. IEEE Photon.Technol.Lett.,1993,5:28~30
    P.P.Vasiuev and A.B.Sergeev. Generation of bandwidth-limited 2ps pulses with 100GHz repetition rate from multi-segmented injection laser. Electron.Lett.,1989,25:1049~1050
    S.Sanders,L.Eng, J.Paslaski,et al. 108GHz passive mode locking of a multiple quantum well semiconductor laser with an intra-cavity absorber. Appl.Phys.Lett.,1990, 56:310~312
    E.Camacho,E.A.Avrutin,P.Cusumano,et al. Improvements in mode-locked semiconductor diode lasers using monolithically integrated passive wave-guides made by quantum-well inter -mixing. IEEE Photon.Technol.Lett.,1997,9(9):1208~1210
    H.Yokoyama,T.Shimizu,T.Ono,et al. Synchronous injection locking operation of monolithic mode-locked diode lasers. Opt.Rev.,1995,2(2):85~88
    X.Wang, H.Yokoyama and T.Shimizu. Synchronised harmonic frequency mode-locking with laser diodes through optical pulse injection. IEEE Photon.Technol.Lett.,1996,8:617~619
    K.Sato,K.Wahita,I.Kotaka,et al. Monolithic strained-InGaAsP multiple-quantum-well lasers with integrated electro-absorption modulation for active mode locking. Appl.Phys.Lett.,1994, 65(1):1~4
    K.Sato,I.Kotaka,Y.Kondo,et al. Active mode locking at 50GHz repetition frequency by half frequency modulation of monolithic semiconductor lasers integrated with electro-absorption modulators. Appl.Phys.Lett,1996,69(18):2626~2628
    D.J.Jones, L.M.Zhang, J.E.Carroll, et al. Dynamics of monolithic passively mode-locked semi -conductor lasers. IEEE J . Quantum Electron.,1995,31:105l~1058
    
    M.C.Wu,Y.K.Chen,T.Tanbunek,et al. Transform-limited 1.4ps optical pulses from a mono -lithic colliding-pulse mode locked quantum-well laser. Appl.Phys.Lett.,1990, 57:759~761
    Y.K.Chen,M.C.Wu,T.Tanbunek,et al. Sub-picosecond monolithic colliding-pulse mode locked multiple quantum well lasers. Appl.Phys.Lett.,1991, 58:1253~1255
    Y.K.Chen and M.C.Wu. Monolithic colliding-pulse mode locked quantum-well lasers. IEEE J. Quantum Electron.,1992, 28:2176~2184
    Z.Wang,J.M.Nielsen,S.D.Brorson,et al. 15.8Gbit/s system transmission experiment using a 5.2 mm long monolithic colliding-pulse mode-locked quantum well laser diode. Electron. Lett., 1995,31:272~274
    S.D.Brorson,Z.Wang,T.Franck,et al. Characterization of wavelength chirping in mode-locked monolithic CPM lasers. IEEE Photon.Technol.Lett.,1995,7:1148~1150
    T.Franck,S.D.Brorson,A.Moller,et al. Synchronization phase diagrams of monolithic colliding -pulse mode-locked lasers. IEEE Photon.Technol.Lett.,1996, 8:40~42
    S.Bischoff,M.P.Sorensen,J.Mork,et al. Pulse-shaping mechanism in colliding-pulse mode- locked laser diodes. Appl.Phys.Lett.,1995, 67:3877~3879
    J.P. Hohimer and G.A.Vawter. Passive mode locking of monolithic semiconductor ring lasers at 86GHz. Appl.Phys.Lett.,1993,62:1598~1600
    P.B.Hansen,G.Raybon,U.Koren,et al. InGaAsP monolithic extended cavity lasers with integrat -ed saturable absorbers for active, passive and hybrid mode locking at 8.6GHz. Appl. Phys. Lett.,1993,62:1445~1447
    F.Camacho,E.Avrutin and A.Bryce. Passive mode-locking in semiconductor lasers with mono -lithically integrated passive wave-guides. IEEE Proc.J.Optoelectron.,1998,145 (1):43~46
    H.E.Liu, S.Arahira,T.Kunii, et al. Generation of wavelength-tunable transform-limited pulse from a monolithic passively mode-locked distributed Bragg reflector semiconductor laser. IEEE Photon.Technol.Lett.,1995,7:1139~1141
    D.Y.Kim,M.D.Pelusi,Z.Ahmei,et al. Millimeter-wave signal generation using hybrid mode locking of a monolithic DBR laser. Electron.Lett.,1995, 31:733~734
    S.Arahira and Y.Ogawa. Passive and hybrid mode-locking of a multi-electrode DBR laser with two gain sections. Electron.Lett.1995,3 l:808~809
    Z.Ahmed,H.E.Liu,D.Novak,et al. Locking characteristics of a passively mode-locked mono
    
    
    -lithic DBR stabilized by optical injection. IEEE Photon.Technol.Lett.,1996,8:37~40
    S.Arahira and Y.Ogawa. Synchronous mode-locking in passively mode-locked semiconductor laser diodes using optical short pulses repeated at sub-harmonics of the cavity round-trip frequency. IEEE Photon. Technol. Lett.,1996,8:191~193
    A.Nirmalathas,H.E.Liu,Z.Ahmed,et al. Sub-harmonic synchronous mode-locking of a mono -lithic DBR semiconductor laser operating at millimeter-wave frequencies. IEEE J. Sel. Top. Quantum Electron.,1997,3(2):261~269
    T.Hoshida,H.E.Liu,M.Tsuchiya,et al. Sub-harmonic hybrid mode-locking of a monolithic semi -conductor laser. IEEE J. Sel. Top. Quantum Electron.,1996,2(3):514~522
    K.Sato,H.Ishii,I.Kotaka,et al. Frequency range extension of actively mode-locked lasers inte -grated with electro-absorption modulators using chirped gratings. IEEE J. Sel. Top. Quantum Electron.,1997,3(2):250~255
    D.Y.Kim,D.S.Seo and H.E.Liu. Observation of very efficient hybrid mode locking in an InGa As/InGaAsP multiple quantum well distributed Bragg reflector laser diode. Appl. Phys. Lett., 1995, 67:3075~3077
    Z.Ahmed,H.E.Liu,D.Novak,et al. Low phase noise mm-wave signal generation using a passively mode-locked monolithic DBR laser injection locked by an optical DSBSC signal. Electron.Lett.,1995,31:1254~1255
    A.C.Bordonalli, B.Cai, A.J.Seeds,et al. Generation of microwave signals by active mode-lock -ing in a gain bandwidth restricted laser structure. IEEE Photon.Technol.Lett.,1996,8:151~153
    D.K.Serkland, G.D.Bartolini, W.L.Kath,et al. Rate multiplication of a 59GHz soliton source at 1559 nm. J. Lightwave Technol.,1998,16(4):670~677
    S.Arahira, S.Kutsuzawa, Y.Matsui,et al. Repetition-frequency multiplication of mode-locked pulses using fiber dispersion. J. Lightwave Technol.,1998,16(3):405~410
    S.Arahira,S.Kutsuzawa,Y.Matsui,et al. Generation of synchronized sub-terahertz optical pulse trains by repetition-frequency multiplication of a sub-harmonic synchronous mode-locked semicondutor laser diode using fiber dispersion. IEEE Photon.Technol.Lett.,1998,10(2): 209~211
    A.G.Deryagin,D.V.Kuksenkov,V.L.Kuchinakii,et al. Generation of 110ps trains of sub–pico
    
    
    -second pulses in 1.535μm spectral region by passively mode-locked InGaAsP/InP laser diodes. Electron.Lett.,1994,30:309~310
    J.E.Martins and C.N.Ironside. Multiple colliding pulse mode-locked operation of a semi -conductor laser. Appl.Phys.Lett.,1994,65:1894~1896
    J.E.Martins, E.A.Avrutin, C.N.Ironside,et al. Monolithic multiple colliding pulse mode-locked quantum well lasers: experiment and theory. IEEE. J. Sel. Top. Quantum Electron.,1995, 1: 539~542
    Y.Katagiri and A.Takada. Harmonic colliding-pulse mode-locked semiconductor laser for stable sub-terahertz pulse generation. IEEE Photon.Technol.Lett.,1997,9(11):1442~1444
    T.Shimizu, X.Wang and H.Yokoyama. Asymmetric colliding-pulse mode-locking in InGaAsP semiconductor laser. Opt.Rew.,1995,2:401~403
    T.Shimizu,I.Ogura and H.Yokoyama. 860GHz rate asymmetric colliding pulse mode-locked diode lasers. Electron.Lett.,1997,33(22):1868~1869
    S.Arahira,S.Oshinba,Y.Matsui,et al. 500 GHz optical short pulse generation from a monolithic passively mode-locked distributed Bragg reflector laser diode. Appl.Phys.Lett.,1994,64: 1917~1919
    S.Arahira,S.Oshiba,Y.Matsui,et al. Terahertz-rate optical pulse generation from a passively mode-locked semiconductor laser diode. Opt.Lett.,1994,19:834~836
    S.Arahira,Y.Matsui and Y.Ogawa. Mode-locking at very high repetition rates more than tera -hertz in passively mode-locked distributed-Bragg-reflector laser diodes. IEEE J. Quantum Electron.,1996,32:1782~1790
    S.R.Chinn and E.A.Swanson. Passive FM locking and pulse generation from 980nm strained -quantum-well Fabry-Perot lasers. IEEE Photon.Technol.Lett.,1993,5(9):969~971
    D.Vassilovski, J.B.Georges and K.Y.Lau. Carrier transport effects in active and passive mode locking of monolithic quantum-well lasers at millimeter-wave frequencies. IEEE Photon. Technol.Lett.,1996,8(12):1603~1605
    R.Koumans and R.Vanrouen. Theory for passive mode-locking in semiconductor laser strc -tures including the effects of self phase modulation, dispersion and pulse collisions. IEEE. J. Quantum Electron.,1996,31:1782~1790
    V.B.Khalfin,J.M.Arnold and J.H.Marsh. Theoretical model of synchronisation of a mode-lock
    
    
    -ed laser with an external pulse stream. IEEE .J. Sel. Top. Quantum Electron., 1995,1:523~527
    S.Arahira and Y.Ogawa. Repetition-frequency tuning of monolithic, passively mode-locking semiconductor lasers with integrated extended cavities. IEEE J. Quantum Electron.,1997,33: 255~265
    J.Dubbeldam,J.Leegwater and D.Lenstra. Theory of mode-locked semiconductor lasers with finite absorber relaxation time. Appl.Phys.Lett.,1997,70(15):1938~1940
    R.Salvatore, T.Shrans and A.Yariv. Pulse characteristics of passively mode-locked diode lasers. Opt.Lett.,1995,20(7):737~739
    A.Weber,M.Schell,G.Fischbeck,et al. Generation of single femto-second pulses by hybrid mode-locking of a semiconductor laser. IEEE. J. Quantum Electron.,1992,28:2220~2229
    W.Yang and A.Gopinaih. Study of passive mode-locking of semiconductor lasers using time- domain modeling. Appl.Phys.Lett.,1993,63:2717~2719
    L.M.Zhang and J.E.Carroll. Dynamics response of colliding-pulse mode-locked quantum-well lasers. IEEE J. Quantum Electron.,1995,31:240~242
    L.Zhai,A.J.Loery and Z.Ahmed. Locking bandwidth of actively mode-locked semiconductor lasers using fiber-grating external cavities. IEEE J. Quantum Electron.,1995, 31:1998~2005
    M.Schell,J.Yu,M.Tsuchiya,et al. Chirp of passively and actively mode-locked semiconductor lasers. Appl.Phys.Lett.,1995,67:1797~1799
    M.Schell,M.Tsuchiya and T.Kamiya. Chirp and stability of mode-locked semiconductor lasers. IEEE J. Quantum Electron.,1996,32:1180~1190
    J.Yu and D.Bimberg. Suppression of self-pulsation for tens of giga-hertz optical pulses from passively mode-locked semiconductor lasers. Appl.Phys.Lett.,1995,67:3245~3247
    E.A.Avrutin, J.M.Arnold and J.H.Marsh. Analysis of dynamics of monolithic passively mode-locked laser diodes under external periodic excitation. IEEE Proc. J.Optoelectron.,1996, 143:81~88
    J.B.Georges,D.M.Cutrer,O.Solgaard,et al. Theory of resonant modulation at millimetre-wave frequencies of in-homogeneously biased monolithic quantum-well lasers. IEEE Photon. Technol.Lett.,1995,7:264~265
    O.Solgard,M.H.Kiang and K.Y. Lau. Pulse build-up in passively mode-locked monolithic
    
    
    quantum-well semiconductor lasers. Appl.Phys.Lett.,1993,65:2021~2023
    R.Salvature,S.Sanders,T.Schrans,et al. Super-modes of high-repetition-rate passively mode- locked semiconductor lasers. IEEE J. Quantum Electron.,1996,32:941~952
    R.Salvatore and A.Yariv. Demonstration of down-chirped and chirp-free pulses from high -repetition-rate passively mode-locked lasers. IEEE Photon.Technol.Lett.,1995,7:1151~1153
    Y.Katagiri and A.Takada. Synchronised pulse-train generation from passively mode-locked semiconductor lasers by a phase-locked loop using optical modulation sidebands. Electron. Lett.,1996,32(120):1892~1893
    H.Kurita,T.Shimizu and H.Yokoyama. Experimental investigations of harmonic synchroniza -tion conditions and mechanisms of mode-locked laser diodes induced by optical pulse injec -tion. IEEE J. Sel. Top. Quantum Electron.,1996,2(3):508~513
    H.Liu,S.Arahira,T.Kunii,et al. Frequency-tunable millimeter-wave signal generation using a monolithic passively mode-locked semiconductor-laser. Electron.Lett.,1996,32(8):740~741
    H.Liu,S.Arahira,T.Kunii,et al. Tuning characteristics of monolithic passively mode-locked distributed-Bragg-reflector semiconductor-lasers. IEEE J. Quantum Electron.,1996,32(11): 1965~1975
    Z.Ahmed,D.Novak,R.Wateriouse,et al. Optically fed millimeter-wave (37GHz) transmission system incorporating a hybrid mode-locked semiconductor laser. Electron.Lett.,1996,32 (19) :1790~1791
    D.M.Cutrer,J.B.Georges,T.C.Wu,et al. Resonant modulation of single contact monolithic semi -conductor-lasers at millimeter-wave frequencies. Appl.Phys.Lett.,1995,66(17):2153~2155
    D.T.Tong and M.C.Wu. Continuously tunable opto-electronic millimeter-wave transmitter using monolithic mode-locked semiconductor laser. Electron.Lett.,1996,32(21):2006~2007
    J.Park,L.A.Buckman and K.Y.Lau. A broad-band millimeter-wave optical modulator using a passively mode-locked semiconductor laser with phase noise compensation. IEEE Photon. Technol.Lett.,1997,9:619~621
    A.Sano,T.Kataoka,H.Tsuda,et al. Field experiments on 40Gbit/s repeatedless transmission over 198 km dispersion-shifted submarine cable using a monolithic mode-locked laser diode. Electron.Lett.,1996,32(13):1218~1219
    P.Hansen,G.Raybon,U.Koren,et al. Monolithic semiconductor soliton transmitter. J. Light
    
    
    -wave Technol.,1995,13:297~301
    K.Sato,I.Kotaka,Y.Kondo,et al. Actively mode-locked strained-InGaAsP multi-quantum-well lasers integrated with electro-absorption modulators and distributed Bragg reflectors. IEEE J. Sel. Top. Quantum Electron.,1996,2(3):557~565
    M.Schell,D.Bimberg and T.Kamiya. On the locking range of hybridly mode-locked semicon -ductor lasers. IEEE Photon.Technol.Lett.,1996,8:1004~1006
    R.Ludwig,A.Ehrhardt,W.Pieper,et al. 40Gbit/s demultiplexing experiment with 10GHz all- optical clock recovery using a mode-locked semiconductor laser.Electron.Lett.,1996,32 (4): 327~329
    I.Ogura,Y.Hashimoto,H.Kurita,et al. Pico-second all-optical gate using a saturable absorber in mode-locked laser diodes. IEEE Photon.Technol.Lett.,1998,10(4):603~605
    M.D.Pelusi,H.E.Liu,D.Novak,et al. THz optical beat frequency generation from a single mode -locked semiconductor laser. Appl.Phys.Lett.,1997,71(4):449~451
    H.Sanjoh,H.Yasaka,Y.Sakai,et al. Multi-wavelength light source with precise frequency spacing using a mode-locked semiconductor laser and an arrayed wave-guide grating filter. IEEE Photon.Technol.Lett.,1997,9(6):818~820
    M.Teshima,M.Koga and K.Sato. Accurate frequency control of a mode-locked laser diode by reference-light injection. Opt.Lett.,1997,22(2):126~128
    M.Teshima,K.Sato and M.Koga. Experimental investigation of injection locking of fundamen -tal and sub-harmonic frequency-modulated actively mode-locked laser diodes. IEEE J. Quantum Electron.,1998,34(9):1588~1596
    H.Shi,J.Finlay,G.Alphonse,et al. Multi-wavelength 10GHz pico-second pulse generation from a single-stripe semiconductor diode laser. IEEE Photon.Technol.Lett.,1997,9(11):1439~1441
    H.Shi,G.A.Alphonse,J.C.Connolly,et al. 20×5Gbit/s optical WDM transmitter using single- stripe multi-wavelength mode-locked semiconductor laser. Electron.Lett.,1998,34(2):179~181
    P.Delfyett,H.Shi,S.Gee,et al. Intra-cavity spectral shaping in external cavity mode-locked semi -conductor diode lasers. IEEE J. Sel Top. Quantum Electron.,1998,4(2):216~223
    I.Ogura,H.Kurita,T.Sasaki,et al. Precise operation-frequency control of monolithic mode- locked laser diodes for high-speed optical communication and all-optical signal processing.
    
    
    Optical and Quantum Electron.,2001,33:709~725
    T.Yoshida,T.Hoshida,Y.Nasu,et al. Experimental investigation on carrier dynamics in SCH- MQW wave-guide saturable absorber of passively mode-locked monolithic laser diode. Optical and Quantum Electron.,2001,33:735~743
    W.Xinglong,H.Yokoyama and T.Shimizu. Synchronized harmonic frequency mode-locking with laser diodes through optical pulse train injection. IEEE Photon.Tech.Lett.,1996,8(5): 617~619
    
    第三章
    G.Steinle and F.Mederer. Data transmission up to 10Gbit/s with 1.3μm wavelength InGaAsN VCSELS. Electron.Lett.,2001,37(10):632~634
    S.M.K.Thiyagarajan and A.F.J.Levi. High-speed response of optically-pumped InGaAs/ InGaAsP microdisk lasers. Electron.Lett.,2001,37(3):175~176
    J.B.Song,C.C.Button and A.J.Seeds. 1.55μm multi-channel DWDM source using quaternary/ quaternary MQW InGaAsP/InP QCSE tuning. Electron.Lett.,2001,37(7):426~428
    谢黄海.产生皮秒光脉冲的1.55μm InGaAsP锁模激光器.中国激光,1993,20(2):81~84
    娄采云.10GHz可调谐主动锁模光纤激光器.光子学报,1999,28(4):346~350
    C.M.Depriest,T.Yilmaz and P.J.Delfyett. Ultra-low noise and super-mode suppression in an actively mode-locked external-cavity semiconductor diode ring laser. Optics Lett.,2002,27(9): 719~721
    A.Locquet,C.Masoller,P.Megret,et al. Comparison of two types of synchronization of external -cavity semiconductor lasers. Optics Lett.,2002,27(1):31~33
    H.A.Haus and A.Mecozzi. Noise of mode-locked laser. IEEE J. Quantum Electron.,1993, 29 (3):983~996
    H.A.Haus,J.G.Fujimoto and E.P.Ippen. Structures for additive pulse mode-locking. J. Opt. Soc. Am. B,1991,8(10):2068~2076
    J.D.Moores,W.S.Wong and H.A.Haus. Stability and timing maintenance in soliton transmis -sion and storage rings. Opt. Commun.,1994,113:153~175
    J.B.Song,C.C.Button and A.J.Seeds. 1.55μm multi-channel DWDM source using quaternary /quaternary MQW InGaAsP/InP QCSE tuning. Electron.Lett.,2001,37(7):426~428
    
    M.Ogusu,K.Inagaki and T.Ohira. Wavelength-division multiplexing of two-mode injection -locked Fabry-Perot lasers using optically harmonic mode-locked master laser. Electron. Lett.,2001,37(14):889~890
    Chi-Luen Wang,Jahn-Chung Kuo and C.S.Chang. Pulse buildup dynamics of an actively mode-locked laser diode array in the external cavity. IEEE J. Quantum Electron.,1995,31 (3):439~446
    X.L.Wang,H.Yokoyama and T.Shimizu. Sychronized harmonic frequency mode-locking with laser diodes through optical pulse train injection. IEEE.Photon.Technol.Lett.,1996,8:617~621
    D.Linde. Characterization of noise in continuously operating mode-locked lasers. Appl. Phys. B.,1986,39:201~205
    H.A.Haus,M.Margalit and C.X.Yu. Quantum noise of mode-locked laser. J. Opt. Soc. Amer. B., 2000,17(7):1240~1256
    PEI Xin,Xiang Wang-hua,Du Rong-jian,et al. High efficiency and small power fluctuation Yb:Er co-doped fiber lasers. Journal of Optoelectronics·Laser,2003,14(1):5~8
    GE Wen-ping,Guo Xiao-jin,Yin Zong-min. Experimental research on polystyrene optical fiber under irradiation. Journal of Optoelectronics·Laser,2003,14(1):26~28
    H.Kawaguchi and A.K.Sarwar. Coherent photon seeding of actively mode-locked laser diodes. Appl.Phys.Lett.,1993,62(18):2164~2166
    T.Schrans,R.A.Salvatore,S.Sanders,et al. Sub-picosecond(320fs) pulses from CW passively mode-locked external cavity two-section multi-quantum wells lasers. Electron.Lett.,1992,28 (16):1480~1482
    J.Yu,M.Schell,M.Sculze,et al. Fourier-limited 1.6ps pulses with variable repetition rate from 1 to 26GHz by passive mode-locking of a semiconductor laser in an external cavity. IEEE Photon.Technol.Lett.,1995,7:467~469
    R.Ludwig and A.Ehrhardt. Turn-key-ready wavelength-, repetition rate- and pulse-width- tunable femto-second hybrid mode-locked semiconductor laser. Electron.lett.,1995,31(14): 1165~1166
    D.J.Jones,L.M.Zhang,J.E.Carrol,et al. Dynamics of monolithic passively mode-locked semi -conductor lasers. IEEE J. Quantum Electron.,1995,31:1051~1058
    E.Scholl. Dynamic theory of pico-second optical pulse shaping by gain-switched semiconduc
    
    
    -tor laser amplifiers. IEEE J. Quantum Electron.,1988,24(2):435~442
    R.H.Yan,S.W.Corzine,L.A.Coldren,et al. Corrections to the expression for gain in GaAs. IEEE J. Quantum Electron.,1990,26(2):213~216
    J.E.Bowers,P.A.Morton,A.Mar,et al. Actively mode-locked semiconductor lasers. IEEE J. Quantum Electron.,1989,25:1426~1439
    A.S.Hou,R.S.Tucker and G.Eisenstein. Pulse compression of an actively mode-locked diode laser using linear dispersion in fiber. IEEE Photon.Technol.Lett.,1990,2:322~324
    J.M.Wiesenfeld,M.Kuznetsov and A.S.Hou. Pico-second pulse generation using a compressed, mode-locked laser diode source. IEEE Photon.Technol.Lett.,1990,2:319~321
    A.J.Lowery,N.Onodem and R.S.Tucker. Stability and spectral behavior of grating controlled actively mode-locked lasers. IEEE J. Quantum Electron.,1991,27:2422~2429
    H.Kawaguchi and A.K.Sarwar. Coherent photon seeding of actively mode-locked laser diodes. Appl. Phys.Lett.,1993,62 (18):2164~2166
    Y.Silberberg and P.W.Smith. Sub-pico-second pulses from a mode-locked semiconductor laser. IEEE J. Quantum Electron.,1986,22:759~761
    P.J.Deifyeu,L.Fiorenz,N.Stoffel,et al. 200fs optical pulses generation and intra-cavity pulse evolution in a hybrid mode-locking semiconductor diode-laser/amplifier system. Opt. Lett., 1992,17(9):670~672
    Y.K.Chen and M.C.Wu. Monolithic colliding pulse mode-locked quantum-well lasers. IEEE J. Quantum Electron., 1992,28(10):2176~2185
    D.J.Derickson,R.J.Helkey,A.Mar,et al. Short pulse generation using multi-segement mode- locked semiconductor lasers. IEEE J. Quantum Electron.,1992,28:2186~2201
    A.G.Weber,M.Schell,G.Fischbeck,et al. Generation of single femto-second pulses by hybrid mode-locking of a semiconductor laser. IEEE J. Quantum Electron.,1992,28:2220~2229
    N.Stelmakh and J.M.Lourtioz. 230fs,25W pulses from conventional mode-locked laser diodes with saturable absorbability created by ion implantation. Electron.Lett.,1993,29(2):160~162
    S.Arahira,S.Oshiba,Y.Matsui,et al. Tera-hertz-rate optical pulse generation from a passively mode-locked semiconductor laser diode. Opt.Lett.,1994,19(11):834~836
    J.Yu,M.Schell,M.Schulze,et al. Generation of 290fs pulses at 1.3μm by hybrid mode-locking of a semiconductor laser and optimization of the time-bandwidth product. Appl. Phys. Lett.,
    
    
    1994,65(19):2395~2397
    A.Azouz,N.Stelmakh,P.Langlois,et al. Nonlinear chirp compensation in high-power broad- spectrum pulses from single-stripe mode-locked laser diodes. IEEE J. Select. Topics Quantum Electron.,1995,1:577~582
    M.Schell,A.G.Weber,E.Schoii,et al. Fundamental limits of sub-ps pulse generation by active mode-locking of semiconductor lasers: the spectral gain width and the facet reflectivities. IEEE J. Quantum Electron.,1991,27:1661~1668
    W.Yang and A.Gopinath. Study of passive mode-locking of semiconductor lasers using time- domain modeling. Appl.Phys.Lett.,1993,63(20):2717~2719
    D.J.Jones,L.M.Zhang,J.E.Carroll,et al. Dynamics of monolithic passively mode-locked semi -conductor lasers. IEEE J. Quantum Electron.,1995,31:1051~1058
    M.Schell,J.Yu,M.Tsuchiya,et al. Chirp of passively and actively mode-locked semiconductor lasers. Appl.Phys.Lett.,1995,67(13):1797~1799
    C.T.Hultgren and E.P.Ippen. Ultra-fast refractive index dynamics in AIGaAs diode laser amplifiers. Appl. Phys. Lett., 1991,59(6):635~637
    E.Scholl. Dynamic theory of pico-second optical pulse shaping by gain-switched semiconduc -tor laser amplifiers. IEEE J. Quantum Electron.,1988,24:435~442
    R.H.Yan,S.W.Corzine,L.A.Coldren,et al. Corrections to the expression for Gain in GaAs. IEEE J. Quantum Electron.,1990,26:213~230
    A.Uskov,J.Mork,J.Mark,et al. Terahertz four-wave mixing in semiconductor optical amplifiers: experiment and theory. Appl.Phys.Lett.,1994,65(8):944~946
    M.Willatzen,A.Uskov,J.Mork,et al. Nonlinear gain suppression in semiconductor lasers due to carrier heating. IEEE Photon.Technol.Lett.,1991,3:606~609
    K.Naganuma and H.Yasaka. Group delay and a parameter measurement of 1.3μm semicon -ductor traveling-wave optical amplifier using the interferometric method. IEEE J. Quantum Electron.,1991,27:1280~1287
    N.Storkfelt,B.Mikkelsen,D.Olesen,et al. Measurement of carrier lifetime and line-width enhancement factor for 1.5μm ridge wave-guide laser amplifier. IEEE Photon. Technol. Lett., 1991,3:632~634
    J.Mork and A.Mecozzi. Response function for gain and refractive-index dynamics in active
    
    
    semiconductor wave-guides. Appl.Phys.Lett.,1994,65(14):1736~1738
    
     第四章
    F.Pedro,L.William and M.Lee. Optical networks and the future of broadband services. Technological Forecasting and Social Change,2002,69(7): 741~758
    Y.Shiqenobu and S.Katsuhito. High speed optical components for light-wave systems. Proceedings of SPIE -The International Society for Optical Engineering, 2002, 4870: 1~7
    S.Arahira and Y.Ogawa. Transform-limited 480GHz colliding-pulse mode-locked laser diode. Electron.Lett.,2001,37(16):1026~1027
    D.Rodislav,M.Boris,G.Michael,et al. Implementation of non-linearity management for Gauss -ian pulses in a fiber-optic link by means of second-harmonic-generating modules. Optics Communications,2003,218(1-3): 93~104
    P.J.Delfyett,B.Mathason,I.Nitta,et al. Novel multi-wavelength mode-locked semiconductor. International Journal of High Speed Electronics and Systems.2000,10(1): 567~578
    P.Michael and W.Stuart. An isomorphic Fourier transform approach to light propagation in AWGs, FBGs, and photonic crystals. Information Sciences,2003,149(1-3): 41~51
    D.Nuran and S.Ozyazici. Relative intensity noise of mode-locked fiber grating external cavity semiconductor lasers. Optics and Laser Technology,2003,35(3): 163~168
    M.Attygalle,A.Nirmalathas and Liu H.F. All-optical coding of mode-locked semiconductor laser pulse trains for high bit rate optical communications. Optics Communications, 2003, 217(1-6): 161~167
    K.Miliotis,G.I.Papadimitriou and A.S.Pomportsis. Design alternatives for wavelength rout -ing networks. Optics and Laser Technology,2003,35(2): 137~154
    Wang Ti-Shiang. Architectural evolution and principles of optical terabit packet switches (OTPS). Computer Communications,2002,25(6): 557~576
    Jiang Chun,Hu Weisheng,Zeng Qingji,et al. Novel split-band erbium-doped fiber amplifier. Optics and Laser Technology,2003,35(4): 251~256
    Yuan Hai and Zhong Wen-De. Partially re-configurable optical add-drop multiplexers for dense WDM networks. Optics Communications,2003,219(1-6): 165~170
    
    Aqqerstam,Thomas,V.Wurtemberq,et al. Large aperture 850nm oxide-confined VCSELs for 10Gb/s data communication. Proceedings of SPIE-The International Society for Optical Engi -neering,2002,4649:19~24
    H.Yokoyama,T.Shimizu,T.Ono,et al. Synchronous injection locking operation of monolithic mode-locked diode lasers. Optics Review,1995,2: 85~88
    H.Kurita,T.Shimize and H.Yokoyama. Experimental investigations of harmonic synchroniza -tion conditions and mechanisms of mode-locked laser diodes induced by optical-pulse injec -tion. IEEE J. Select. Topics Quantum Electron.,1996,2: 508~513
    S.Arahira,Y.Katoh and Y.Ogawa. Generation and stabilization of ultra-fast optical pulse trains with monolithic mode-locked laser diodes. Optical and Quantum Electron., 2001, 33: 691~707
    K.Smith and J.K.Lucek. All-optical clock recovery using a mode-locked laser. Electron. Lett.,1992,28:1814~1816
    Jhon Young Min,Ki Ho Jin and Kim Sun Ho. Clock recovery from 40Gbps optical signal with optical phase-locked loop based on a tera-hertz optical asymmetric demultiplexer. Optics Communications,2003,220(4-6): 315~319
    R.Ludwig,A.Ehrhardt,W.Pieper,et al. 40Gbit/s demultiplexing experiment with 10GHz all- optical clock recovery using a mode-locked semiconductor laser. Electron.Lett.,1996,32 (4): 327~329
    E.Jahn.N.Agrawal,M.Arbert.et al. 40Gb/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder interferometer with semiconductor laser amplifier. Electron. Lett.,1995,31:1857~1858
    H.Kurita,I.Ogura and H.Yokoyama. Ultra-fast all-optical signal processing with mode-locked semiconductor lasers. IEICE Trans.Electron.,1998,E81(2):129~138
    J.M.Roth,K.Dreyer,B.C.Collings,et al. Actively mode-locked 1.5μm 10GHz pico-second fiber laser using a monolithic semiconductor optical amplifier/electro-absorption modulator. IEEE Photon. Tech. Lett.,2002,14(7):917~919
    S.Irmscher,R.Lewen and U.Erikssion. InP-InGaAsP high-speed traveling-wave electro -absorption modulators with integrated termination resistors. IEEE Photon. Tech. Lett., 2002, 14 (7):923~925
    
    A.B.Santos,M.R.Jimenez,J.P.Weid,et al. Statistical measurements of BER fluctuations due to PMD in 10Gb/s optical transmissions. IEEE Photon. Tech. Lett., 2002, 14 (7):926~928
    X.Zhao and F.S.Choa. Demonstration of 10Gb/s transmissions over a 1.5km-long multimode fiber using equalization techniques. IEEE Photon. Tech. Lett., 2002, 14 (8):1187~1189
    C.Rigo,C.Coriasso,D.Campi,et al. Interferometric wavelength converter operating at 10Gb/s based on a monolithic-integrated photonic circuit. Journal of Crystal Growth,2000,209(2-3): 471~475
    F.Mederer,R.Michalzik,J.Guttmann,et al. 10Gb/s data transmission with two-packaged multi -mode GaAs VCSELs over 1m long polymer wave-guides for optical back-plane applications. Optics Communications,2002,206(4-6): 309~312
    邱昆.锁模半导体激光器产生带宽极限的超短光脉冲.电子科技大学学报,1992,21(2):213~216
    
    第五章
    Li Pei,Li-Tangjun,Ning-Tigang,et al. 4×10Gb/s 400km WDM system with negative power penalty. Proceedings of SPIE -The International Society for Optical Engineering,2002, 4904: 253~256
    Song Lei-lei and Yu Meng-lin. A 10Gb/s and 40Gb/s forward-error-correction device for optical communications. Digest of Technical Papers -IEEE International Solid-State Circuits Conference, 2002, p 128~129
    K.Andrey. Advantages of alternate modulation formats in 40Gb/s transmission. Proceedings of SPIE -The International Society for Optical Engineering, 2002, 4870: 640~647
    S.Andrew,P.Isaac,C.Nehal,et al. Equivalent circuit modelling of p-i-n photodiodes for 40Gb/s receivers. Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS, 2002,2: 486~487
    K.Andrey,L.Greqory and K.Vassilios. Nonlinear dynamics of modulation formats for 40Gb/s transmission on standard single-mode fiber and dispersion-managed fiber. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS,2002, 1: 315~316
    I.T.Lima,J.G.Biondini,B.S.Marks,et al. Analysis of PMD compensators with fixed DGD using
    
    
    importance sampling. IEEE Photon. Tech. Lett., 2002, 14 (5): 627~629
    M.Wegmuller,S.Dernma,C.Vinegoni,et al. Emulator of first- and second-order polarization -mode dispersion. IEEE Photon. Tech. Lett., 2002, 14 (5): 630~632
    K.Xu,D.Yitang,J.Mao,et al. A novel method of automatic polarization measurement and its application to the higher-order PMD measurement. Optics Communications,2003,215(4-6): 309~314
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.