不结球白菜小分子量热激蛋白基因克隆及表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遇到高温胁迫时植物体内会产生应激蛋白——热激蛋白,其中植物小分子量热激蛋白含量最为丰富、种类繁多。小分子量热激蛋白的分子量在17-30 kDa之间。高等植物中含有至少6种小分子量热激蛋白,分别定位于细胞质、叶绿体、线粒体、内质网。在常温下植物体内小分子量热激蛋白基因不表达,高温时小分子量热激蛋白则快速积累。
     近年来,关于高温诱导热激蛋白以及热激蛋白提高植物耐热性的研究取得了重要进展。然而,关于高温诱导热激蛋白基因及其在低温防御中作用的研究相对较少。本研究从不结球白菜中分离到小分子量热激蛋白基因BcHSP,表达模式和功能分析表明,这个基因的表达受高温逆境诱导,高温、低温条件下过量表达对大肠杆菌均有保护作用,构建了过量表达载体进行了转基因初步鉴定,为进一步BcHSP基因研究打下基础。
     1.利用同源序列设计兼并引物,通过RT-PCR和RACE方法从不结球白菜叶片中克隆到小分子量热激蛋白基因的中间片段,通过5’-RACE和3'-RACE分别克隆到5’片段和3’片段,拼接后设计特异引物扩增到全长722bp cDNA,命名为BcHSP(DDBJ登录号:AB367955),ORF为473 bp,编码157个氨基酸的多肽,理论等电点(pI)为5.31,分子量约为15.98 kDa。核苷酸序列同源性比较发现,BcHSP与芥蓝相似性最高达98%。氨基酸序列进行比对发现,相似性均在65%以上,说明HSP具有高度保守性。HSP的高度保守性说明他们在生物生命活动中具有重要的作用。聚类分析结果显示,BcHSP基因与芥蓝(CAB93512)最先聚为一类,亲缘关系最近,芜菁(AAB72190)单个聚一类、然后与拟南芥(NP-175759)、豌豆(P19243)、大豆(P02519)等聚为一类,最后与水稻(EAY89381)聚类,亲缘关系相对较远。实时定量检测表明,不结球白菜BcHSP转录表达受热激诱导,以叶片中表达量最高,BcHSP在不结球白菜叶片中表达特征说明它可能与植物叶片的耐热性关系更为密切。
     2.不结球白菜幼苗经42℃热激后,其幼苗的耐冷性明显增强,膜伤害程度降低。热激处理组的冷害指数仍低于对照组,差异显著(P<0.05),并且经热激的幼苗鲜重比对照增加了51%,苗高增加了40%。热激使不结球白菜幼苗在冷胁迫和恢复生长过程中电解质的渗透和丙二醛(MDA)含量均比对照大为下降,差异显著(P<0.05),显示热激降低了不结球白菜幼苗的脂质过氧化水平,并且使幼苗的抗氧化系统中的关键酶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的活性在冷胁迫及恢复生长2d时仍保持比对照组高,差异显著(P<0.05)。热激处理后与对照组的幼苗SOD同工酶的电泳图谱显示,热激诱导使幼苗在低温胁迫前后SOD同工酶谱带均比对照组强,以上与冷害相关的生理生化指标测定结果显示,热激处理增强了不结球白菜幼苗的耐冷能力。荧光实时定量分析表明BcHSP的表达量与耐冷性相一致。低温(4℃)胁迫下,在大肠杆菌中异源表达BcHSP可维持大肠杆菌较高的细胞活力,这些结果表明BcHSP合成与不结球白菜幼苗耐冷性的提高有关。
     3.本实验从不结球白菜中克隆BcHSP基因的cDNA完整编码区序列,用来构建植物过量表达载体,并将表达载体转化到农杆菌菌株LBA4404中,以根癌农杆菌介导法转化不结球白菜‘苏州青’,GUS组织化学染色,发现大多数材料均出现了蓝色斑点,呈阳性,说明农杆菌的侵染效率较高,初步验证植物表达载体已经整合到植物组织中。PCR检测结果表明:目的基因已经整合到苏州青基因组中,为深入研究BcHSP基因功能创造了条件。
All organisms respond to elevated temperatures with production of a defined set of proteins called heat shock protein. The small heat shock proteins (sHSP) are ubiquitous in nature.The sHSPs range in size from 17 to 30 kDa. In higher plants six nuclear gene families encoding sHSPs have been defined. Each gene family encodes proteins founding a distinct cellular compartment, including the cytoplasm,chloroplast, mitochondrion and ER. In general, the sHSPs are not found in normal vegetative tissues, but accumulate to high levels in response to heat stress.
     Recently, a salient process involved in the production of sHSP induced by heat shock and the relationship between sHSP and thermotolerance was proposed.However,little is known about the production of sHSP induced by heat shock and the relationship between sHSP and chilling tolerance.In this study, we cloned the characterization of BcHSP genes from non-heading Chinese cabbage.The expression pattern and functional analysis showed that expression of the genes was induced by heat stress, and sHSP play a role in protection of the proteins in bacteria,under low temperature and high temperature.In this experiment, a plant over-expression vector was constructed, which provided an effective tool for the further study of BcHSP gene function.
     1. Degenerate primers were designed to amplify specific DNA fragment using cDNA prepared from non-heading Chinese cabbage on the homologous sequences from other plants.The middle fragment of interested cDNA was obtained by RT-PCR.The full length cDNA of small heat shock protein (sHSP) was isolated by 5'-RACE and 3'-RACE. The gene was designated as BcHSP (DDBJ accession number AB367955),which contained 722bp nucleotide and encoded 157 amino acids, PI was 5.31,molecular weight was about 15.98kDa.Further comparison showed its similary was above 98% with Brassica oleracea. amino acid comparison showed its similary was above 65%,which indicated HSP was high conservation,which indicated HSP play a important role in life activity.The phylogenetic analysis revealed genetic relationship of BcHSP and Brassica rapa was nearest,then was A-rabidopsis thaliana,Pisum sativum,Glycine max, the fartest was oryza sativa.Real-time qu-antitative PCR analysis revealed the BcHSP gene was obviously expressed with heat-shock ,which was accumulated most abundantly in non-heading Chinese cabbage leaves. Expression characterization of BcHSP in non-heading Chinese cabbage leaves indicated that it might be more correlative with increase heat tolerance of leaves than other tissues.
     2. Heat shock(42℃) applied to non-heading Chinese cabbage seedling increased the chilling tolerance of seedling and decreased the permeability of cellular membranes.Chilli-ng injury index was higher than control,difference was significant(P<0.05).Fresh weight and seeding height was higher than control 51%,40% respectively. The leakage of electrol-yte and malondialdehyde content were depressed,in the period of Chilling stress and recovery,difference was significant(P<0.05),indicated heat shock decreased lipid peroxide-ation level.In contrast, The activities of superoxide dismutase, catalase, and peroxidase were increased,difference wassignificant(P<0.05).The map of SOD isozyme showed the band of SOD isozyme is stronger than control,these results indicated heat shock increased the chilling tolerance of seedling.Real-time quantitative PCR analysis revealed that the BcHSP gene expression was coincide with chilling tolerance of seedling. The heterologous expression of BcHSP could maintain higher cell viability of E.coli under low temperature stress(4℃). These results indicated that the BcHSP synthesis was correlated with the increased chilling tolerance of non-heading Chinese cabbage seedling.
     3. In this experiment, a plant over-expression vector was constructed, which consists of the sence of BcHSP cDNA sequence from non-heading Chinese cabbage. Vecotor transfo-rmed into agrobacterium LBA4404,transformation "Suzhouqing" by a grobacerium tumefaciens.GUS chemical stain showed many materials expression blue band,which indicated colonization rate was high and preliminary identification vector had transformed into plant tissue.PCR analysis revealed that BcHSP gene had integrated to non-heading Chinese cabbage (Suzhouqing) genome, which provided an effective foundation for the further study of BcHSPgene function.
引文
Agashe V R, Hartl F U. Role of molecular chaperones in cytoplasmic protein folding [J]. Cell Dev Biol, 2000,11:15-25
    Alamillo J, Almoguera C, Bartels D, et al. Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum [J]. Plant Mol Biol,1995,29: 1093-1099
    Almoguera C, Jordano J. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock-protein and Lea mRNAs [J]. Plant Mol Biol,1992,19: 781-792
    Arrigo A P. sHSP as novel regulators of programmed cell death and tumorigenicity [J]. Pathol Biol,2000, 48:280-288
    Baler R, Zou J, Voellmy R. Evidence for a role of HSP70 in the regulation of the heat shock response in mammalian cells [J]. Cell Stress Chap,1996,1:33-39
    Baneyx F, Bertsch U, Kalbach C E, et al. Spinach chlorplast together in toroidal struchure and exhibits nucleotide-dependent binding to plastid chaperonin 60 [J]. J Biol Chem,1995,270:10695-10702
    Banzet N, Richaud C, Deveaux Y, et al. Accumulation of small heat shock proteins including mitochon-drial hsp22, induced by oxidative stress and adaptive response in tomato cells[J]. Plant J,1998,13: 519-527
    Barnett T, Alschuler M, Mcdaniel C N. Heat shock induced proteins in plant cells [J]. Dev Gen,1980,1: 331-340
    Basha E, Lee G J, Breci L A, et al. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions [J]. J Biol Chem,2004a,279:7566-7575
    Basha E, Lee G J, Demeler B, et al. Chaperone activity of cytosolic small heat shock proteins from wheat [J]. Eur J Biochem,2004b,271:1426-1436
    Baumann G, Raschke E, Bevan M, et al. Functional analysis of sequence of a soybean heat shock gene in transgenic tobacco plants [J]. EMBO J,1987,6:1161-1166
    Beator J, Potter E, Kloppstech K. The effect of heat shock on morphogenesis in barley [J]. Plant Physiol, 1992,100:1780-1786
    Berkel van J, Salamini F, Gebhardt C. Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequemce related to stress-responsive genes [J]. Plant Physiol,1994,104: 445-452
    Bol J E, Linthorst H. Plant pathogenesis related proteins induced by virus infection [J]. Annu Rev Phytopathol,1990,28:133-138
    Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plants [J]. Plant Mol.Biol,1996,32:191-222
    Bouchard R A. Characterization of expressed meiotic prophase repeat transcript clones of Liluim:meio-sis specific expression, relatedness, and affinities to small heat shock protein genes [J]. Genome, 1990,33:68-79
    Buchner J. Supervising the fold:functional principles of molecular chaperones [J]. FASEB J,1996,10: 10-19
    Burke J J, o'Mahony P J, Olive M J. Isolation of arabidopsis mutants lacking components of acquired thermotolerance [J]. Plant physiol,2000,123:575-587
    Carranco R, Almoguera C, Jordano J. A plant snall heat shock protein gene expressed during zygotic embryogenesis but noninducable by heat stress [J]. J Biol chem,1997,272:27470-27475
    Chowdary T K, Raman B, Ramakrishna T, et al. Mammalian Hsp22 is a heat-inducible small haet-shock protein with chaperone-like activity [J]. J Biochem,2004,381:379-387
    Coca M, Almoguera C, Jordano J. Expression of sunflower low-molecular-weight heat shock proteins during embryogenesis and prersistence after germination:localization and possible functional implications [J]. Plant Mol Biol,1994,25:479-492
    Coca M A, AlomoguerA C, Thomas T L, et al. Differential regulation of small heat-shock genes in plants:analysis of a water-stress-inducible and developmentally activated sunflower promoter [J]. Plant Molecule Biology,1996,31(4):863-876
    Collins G G, Nie X L, Salveit M E. Heat shock increases chilling tolerance of mung bean hypocotyls tissue [J]. Phisiologia Plantarum,1993,89:117-124
    Collins G G, Nie X L, Saltveit M E. Heat shock protein and chilling sensitivity of mung bean Hypcotyls [J]. J Exp Bot,1995,46:795-802
    Cooper P, Ho T D. Heat shock proteins in maize [J]. Plant Physiol,1983,71:215-222
    Cooper P, Ho T D. Intracellular localization of heat shock proteins in maize [J]. Plant Physiol,1987,84: 1197-1203
    Craig E A, Gambill B D, Nelson R J. Heat shock proteins:molecular chaperones of protein Biogenesis [J]. Mictobiol Rev,1993,57:402-414
    DeRocher A E, Vierling E. Developmental control of small heat shock protein expression during pea seed maturation [J]. Plant J,1994,5:93-102
    Diachenko L B, Ledesm A J, Chenchik A. Combing the techniques of RNA finger printing and different-tial display to obtain differentially expressed mRNA [J]. Biochem Biophys Res,1996,219: 824-828
    Ferullo J M, Nespoulous L, Triantaphylides C. Gamma-ray-induced changes in the synthesis of tomato prticarp protein [J]. Plant Cell Environ,1994,17:901-911
    Friedrich K L, Giese K C, Buan N R, et al. Interactions between small heat shock protein subunits and substrate in small heat shock protein-substrate complexes [J]. J Biol Chem,2004,279:1080-1089
    Galili G, Sh imoni Y, Gio rini-Silfen S, et al. Wheat storage proteins:Assembly, transport and deposition in protein bodies [J]. Plant Physiol Biochem,1996,34:245-252
    Gio rini S, Galili G. Characterization of HSP270 cognate proteins from wheat [J]. Theor Appl Genet, 1991,82:615-620
    Glover J R, Lindquist S.Hsp104, Hsp70 and Hsp40:A novel chaperone system that rescues previously aggregated proteins [J]. Cell,1998,94:73-82
    Godwin I, Todd G, Ford-Lloyd B, et al. The effects of acetosyringone and PH on Agrobacterium-mediated transformation vary according to plant species [J]. Plant Cell Reports,1991,9:671-675
    Hamdahl U, Sundby C. Does the chloroplast small heat shock protein protect photosystem Ⅱ during heat stress in vitro [J]. Physiologia Plantarum,2001,111(3):273-275
    Hamilton Ⅲ E W, Coleman J S. Heat-shock proteins are induced in unstressed leaves of Nicotiana attenuate(Solanaceae) when distant leaves are stressed [J]. Am J Bot,2001,88:950-955
    Hartl F U.Molecular chaprones in celluar protein folding [J]. Nature,1996,381:571-579
    Haslbeck M. sHsps and their role in the chaperone network [J]. Cell Mol Life Sci,2002,59:1649-1657
    Helm K W, Abernathy R H. Heat shock protein and their mRNAs in dry and early imbibing embryo of wheat [J]. Plant Physiol,1990,93:1626-1633
    Helm K W, LaFayette P R, Nagao R T, et al. Localization of small heat shock proteins to the higher plant endomembrane system [J]. Mol Cell Biol,1993,13:238-247
    Hendrick J P, Hartl F U. Molecular chaperone functions of heat-shock proteins [J]. Annu Rev Biochem, 1993,62:349-384
    Horton R M, Cai Z L, Ho S N, et al. Gene splicing by overlap extension:tailor-made genes using the polymerase chain reaction [J]. BioTechniques,1990,8(5):528-535
    Ho S N, HuntH D, Horton R M, et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction [J]. Gene,1989,77(1):51-59
    Ijichi N T, sujimoto N, Iwaki T, et al. Distal Sox binding elements of the alpha B-crystallin gene show lens enhancer activity in transgenic mouse embryos [J]. J Biochem,2004,135:413-420
    Ito H, Inaguma Y, Kato K. Small heat shock proteins participate in the regulation of cellular aggregates of misfolded protein [J]. Nippon Yakurigaku Zasshi,2003,121:27-32
    Jakob U, Gaestel M, Engel K, et al. Small heat shock proteins are molecular chaperones [J]. J Biol Chem,1993,268:1515-1520
    Jinn T L, Yeh Y C, Chen C H, et al. Stabilization of soluble proteins in vitro by heat shock proteins-enriched ammonium sulfate fraction from soybean seedlings. Plant Cell Physiol,1989,30:463-469
    Jobin M P, Melmas F, Garmyn D, et al. Molecular chracterazition of the gene encoding an 18-kDa small heat shock protein associated with the memberane of Leuconostoc oenos [J]. Appl Enviro Microbiol, 1997,63:609-614
    Jofre A, Molinas M, Pla M. A 10~kDa class~CI sHsp protects E. coli from oxidative and high-tempe-rature stress [J]. Planta,2003,217:813-819
    Johal G S,Briggs S P. Reductase activity encoded by the HM1,disease resistance gene in maize [J]. Sci, 1992,258:985-987
    Jones D A,Thomas C M, Hammondkosack K E. Isolation of the tomato CF-9 gene for resistance to cladosporium-fulvum by transposon tagging [J]. Sci,1994,266:789-793
    Jorge N S, Luz M, Gerorgian P. Maize HSP101 Plays Important Roles in Both Induced and Basal Ther-motolerance and Primary Root Growth [J]. Plant Cell,2002,14(7):1621-1633
    Kalinsk I A, Row ley D L, Loer D S, et al. Binding-protein expression is subject to tempo ral, develop-mental and stress induced regulation in terminally differentiated soybean organs [J]. Planta,1995, 195:611-621
    Karlin S, Brocchieri L. Heat shock protein 70 family:multi sequence comparisons,function,and evoluti-on [J]. J.Mol.Evol,1998,47:565-577
    Key J L, Lin C Y, Chen Y M. Heat shock protein of higher plants [J]. Proc Natl Acad Sci,1981,78: 3526-3530
    Kimpel J A, N agao R T, Goek jian V, et al. Regulation of the heat shock response in soybean seedlings [J]. Plant Physiol,1990,94:988-995
    Ko K, Bomem isza O, Kourtz L, et al. Isolation and characterization of a cDNA clone encoding a cogn-ate 70 kDa heat shock protein of the chlorop last envelope [J]. J Biol Chem,1992,267:2986-2993
    Kuvshinov V, Koivu K, Kanerva A, et al. Agrobacterium tumefaciens-mediated transformation of green house-grown Brassica rapa ssp.oleifera [J]. Plant Cell Reports,1999,18:773-777
    LafuenteM T, Belver A, GuyeM G, et al. Effect of temperature conditioning on chilling injury of cucumber cotyledons[J]. Plant physiol,1991,95:443-449
    Landary S J, Gierasch L M. Polypeptide interactions with molecular chaperones and their relationship to in vivo ptrotein folding [J]. Annu Rev Biophysics and Biomol structure,1994,23:645-669
    Lee G J, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea [J]. J Bio Chem,1995,270:10432-10438
    Lee Y R J, Nagao R T, Lin C Y,et al. Induction and regulation of heat-shock gene expression by an amino acid analog in soybeen seedlings [J]. Plant Physiol,1996,110(1):241-248
    Lee G J, Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reacti-vate a heat-denatured protein [J]. Plant Physiol,2000b,122:189-198
    Lee Y J, N agao R T, Key J L. A soybean 101 kDa heat shock p ro tein comp lements a yeast HSP104 deletion mutant in acquiring thermo to lerance [J]. Plant Cell,1994,6:1889-1897
    Lim H T, You Y S, Park E J, et al. High plant regeneration, genetic stability of regeneration, and genetic transformation of herbicide resistant gene(bar) in Chinese cabbage (Brassica campestris ssp. pekinensis) [J]. Proceeding of the International Symposium on Brassica,1997,191-208
    Lindquist S, Craig E A. Theat shock proteins [J]. Annu Rev of Genet,1988,22:631-677
    Liu J, Shono M. Characterization of mitochondria-located small heat shock protein from tomato (Lyco-persicon esculentum) [J]. Plant Cell Physiology,1999,40 (12):1297-1304
    Liu J, Shono M. Characterization of mitochondria-located small heat shock protein from tomato(Lycop-ersicon esculentum) [J]. Plant Cell Physiol,1999,40:1297-1304
    Liversly M A, Bray C M. Heat shock and recovery in aged wheat aleurone layers [J]. Seed Sci Res,1993, 3:179-186
    Lopez-Matas M A, Nunez P, Soto A, et al. Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures [J]. Plant Physiol,2004,134:1708-1717
    Masaharu. Isolation of cDNA and a genomic clone encoding cinnamate-4-4hydroxylase frome Arabid-opsis and its expression Manner in planta [J]. Plant Physiol,1997,113:755-763
    Mckersie B D, Bowley S R, Jones K S. Winter survival of transgenic alfakfa overexpressing superoxide dimutase [J]. Plant Physiol,1999,119(3):839-847
    Min-H siun H sieh. A class of soybean low molecular with heat shock proteins [J]. Plant Physiol,1992, 99:1279-1284
    Mukhopadhyay A, Arumugam N, Nandakumar P B A, et al. Agrobacterium-mediated genetic transform-ation of oilseed brassica campestris:Transformation frequency is strongly influenced by the mode of shoot regeneration [J]. Plant Cell Rep,1992,11:506-513
    Murayuma I N, Rakow T L and Muruyama H I. cRACE:A simple method for identification of the 5' ends of mRNAs [J]. Nucleic Acids Res,1995,23:3796-3797
    Neito-Sotelo J, Martinez L M, Ponce G, et al. Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth [J]. The Plant Cell,2002,14:1621-1633
    Osteryoung K, Sundberg H, Vierling E. Poly(A) tail length of a heat shock protein RNE is increased by severe heat stress,but intron splicing is unaffected [J]. Mol Gen Genet,1993,239:323-333
    Park S Y, Shivaji R, Krans J V, et al. Heat shock response in heat tolerant and nontolerant ariants of Agrostis palustris Huds [J]. Plant Physiol,1996,111:515-524
    Parsell D A, Lindquist S. The function of heat-shock proteins in stress tolerance:degradation and reacti-vation of damaged protein [J]. A nnu Rev Genet,1993,27:437-496
    Peng R H, Xiong A S, Li X. A delta-endotoxin encoded in Pseudomonas fluorescens displays a high degree of insecticidal activity [J]. Appl Microbiol Biotechnol,2003,63:300-306
    Pelham H R B. Speculatons on the fumctions of themajor heat shock and gluco se regulated proteins [J]. Cell,1986,46:959
    Peng R H, Yao Q H, Xiong A S. A direct and efficient PAGE-mediated overlap extension PCR(POEP) methodfor gene multiple-site mutagenesis [J]. Appl Microbio Biotech,2006b,73:234-240
    Pon R T and Yu S.Linker. Phosphoramidite reagents for the attachment of the first nucleoside to underivatize solid-phase supports [J]. Nucleic Acids Res,2004,32:623-631
    Pon R T and Yu S.Tandem. Oligonucleotide synthesis using linker phosphoramidites [J]. Nucleic Acids Res,2005,33:1940-1948
    Queitsch C, Hong S W, Vierling E. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis [J]. The Plant Cell,2000,12:479-492
    Raschke E, Baumann G, Schoffl F. Nucleotide sequence analysis of soybean small heat genes belonging to two different multigene families [J]. J Mol Biol,1988,199:549-557
    Ritossa F. Anewpuffing pattern induced by temperature shock and DNP in Drosophila [J]. Experientia, 1962,18:571-573
    Sabehat A,W eiss D. Expression of heat shock proteins in heated to tmato fruit and the persistence to chilling injury of the fruit [J]. A cta Hort,1995,398:11-17
    Sabehat A, Lurie S, Weiss D. Isolation and characterization of a coincides with heat-induced tolerance to chilling stress [J]. Plant Mol.Biol,1998,36(6):935-939
    Sabehat A, Lurie S, Weiss D. Expression of small heat-shock proteins at low temperature [J]. Plant Physiol,1998,117(36):651-658
    Sanmiya K, Suzuki K, Egawa Y, et al. Mitochondrial small heat-shock protein enhances thermoto-lerance in tobacco plants [J]. PEBS Lett,2004,557 (1-3):265-268
    Sch irmer E C, Lindquist S, Vierling E. An a rabidopsis heat shock protein complements a thermo to- lerance defect in yeast [J]. Plant Cell,1994,6:1899-1909
    Sharon J, Keeler. A cquired Thermo tolerance and Expression of the HSP10/ClpB Genes of L ima Bean Plant physiology [J].2000,123(3):1121-1132
    Shravan K M, Joanna T. In the complete family of heat stress transcrip tion factors, HsfA 1 has a unique role as master regulator of thermoto lerance in tomato [J]. Genes&Development,2002,16 (2):1555-1567
    Soto A, Albna I, Collada C, et al. Heterologous expression of a plant small heat shock protein enhances Escherichia coli viability under heat and cold stress [J]. Plant Physiology,1999,120 (2):521-528
    Stein O D, Thies W G, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes [J]. Nucleic Acids Res,1997,25:2598-2602
    Stromer T, Ehrnsperger M, Gaestel M, et al. Analysis of the interaction of small heat shock proteins with unfolding proteins [J]. J Biol Chem,2003,278:18015-18021
    Sun W,Van Montagu M,Verbruggen N. Small heat shock proteins and stress tolerance in plants [J]. Bioc-him Biophys Acta,2002,1577:1-9
    Takasaki T, Hatakeyama K, Olima K, et al. Factors influencing Agrobacterium-mediated transformation of brassica rapa L [J]. Breeding Science,1997,47:127-134
    Tissieres A. Some new protein induced by temperature shock in Drosophila [J]. J Mol Biol,1974,84: 389-398
    Tsvetkova N M, Horvath 1, Wolkers W F, et al. Small heat-shock proteins regulate membrane lipid polymorphism [J]. Proc Natl Acad Sci,2002,99:13504-13509
    Wehmeyer N, Vierling E. The expression of small heat shock protein in seeds responds to discrete devel-opmental signals and suggest a general protective role in desiccation tolerance [J]. Plant Physiology,2000,122 (4):1099-1108
    Veinger L, Diamant S, Buchner J, et al. The heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network [J]. J Biol Chem, 1998,273:11032-11037
    Vierling E. The roles of heat shock proteins in plants [J]. Annual Review of Plant Physiology and Plant Mol Biol,1991,42:579-620
    Volkov R A, Panchuk Ⅱ, Schoffl F. Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco [J]. Plant Mol Biol,2005,57:487-502
    Wang S. Characterization of a maize Amylose cDNA clone and its expression duringseed Germination [J]. Plant Physiol,1997,113:403-409
    Wehmeyer N, Hernandez L D, Finkelstein R R, et al. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation [J]. Plant Physiol,1996,112:747-757
    Whitham S, Dineshkumar S P, Chio D. The product of the tobacco mosaic-virus resistance gene-N-similarity to toll and the interleukin-1 receptor [J]. Cell,1994,78(6):1101-1115
    Woolf A B,Watkins C B, Bowen J H. Reducing external chilling injury in stored 'Hass' avocados with dry heat treatments [J]. J Amer Soc Hort Sci,1995,120 (6):1050-1056
    Xiong A S,Yao Q H, Peng R H. A simple,rapid,high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences [J]. Nucleic Acids Res,2004a,32:e98
    Xiong A S,Yao Q H, Peng R H. Isolation characterization,molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris [J]. J Biochem Mol Biol,2004b,37:282-291
    Xiong A S, Yao Q H, Peng R H. High level expression of a recombinant acid phytase gene in Pichia pastoris [J]. J Appl Microbiol,2005,98:418-428
    Yabe, N, Takahash i T, Komeda Y. A nalysis of tissue specific expression of A rabidop sis thaliana HSP90 family gene HSP81 [J]. Plant Cell Physiol,1994,35:1207-1219
    Yarwood C E. Acquired tolerance of leaves to heat [J]. Science,1961,134:941-941
    Young L and Dong Q. Two-step total gene synthesis method [J]. Nucleic Acids Res,2004,32:e59
    Yuk i. Sogiysarna Muscle Develops a Specific Form of Small Heat Shock Protein Complex Composed of M KBP/HSPB2 and HSPB3 during Myogenic Differentiation [J]. J Biol Chem,2000,275(2): 1095-1140
    Zhang X P, Glaster E. Interaction of plant mitochondrial and chloroplast signal peptides with the HSP70 molecular chaperone [J]. Trends in Plant Sci,2002,7:14-21
    Zhang F L, Takahata Y, Xu J B. Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis) [J]. Plant Cell Rep,1998,17:780-786
    Zhang F L, Takahata Y, Watanabe M, et al. Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L ssp pekinensis) [J]. Plant Cell Rep,2000,19: 569-575
    陈晓峰,侯喜林,刘琳.不结球白菜PR4蛋白基因的克隆与诱导表达分析[J].西北植物学报,2008,28(1):0001-0006
    陈发河,张维一,吴光斌.变温处理后甜椒果实对低温胁迫的生理反应[J].园艺学报,1994,23(4):119-124
    陈建南,傅鸿仪,路子显,等.HSP70反义RNA对高粱花粉的正常形成的影响[J].科学通报,1997,42:1993-1997
    陈忠,苏维埃.豌豆中可与GroEL抗体发生免疫学反应的热激诱导蛋白[J].植物学报,1998,40(10):933-938
    樊治成,贾洪玉,郭洪芸,等.西葫芦耐冷性生理指标研究[J].园艺学报,1999,26(5):309-313
    郭鹏,隋娜,于超,等.转入甜椒热激蛋白基因CaHSP18提高番茄的耐冷性[J].2008,44(3):409-412
    黄上志.人工老化处理的卷心菜种子的热激蛋白合成[J].植物生理学报,2000,26(1):7-10.
    黄祥富,黄上志,傅家瑞.热激蛋白的功能及其基因表达的调控[J].植物学通报,1999,16:530-536
    刘鸿先,曾韶西,王以柔,等.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中超氧化物歧化酶的影响[J].植物生理学报,1985,11(1):48-57
    雷娟丽,徐志豪.转座子在植物功能基因组学中的应用[J].浙江农业学报,2002,14(5):291-296
    李斌.家蚕分子连锁图谱的构建和低分子量热激蛋白基因的克隆与特异表达[D].西南农业大学博十学位论文,2001,5:110-112
    李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:123-258
    李德谋,罗小英,侯磊,等.利用交错延伸剪接PCR技术扩增油菜花粉育性基因MS2Bnap全长cDNA序列[J].遗传,2001,23(6):553-555
    刘箭,庄野真理.高温下线粒体小分子热激蛋白对柠檬酸合成酶、线粒体和花粉粒的保护作用[J].植物生理学报,2001,27(5):375-380
    孙旻旻,胡英考,旻月明.定位克隆分离植物基因的研究进展[J].生物学报,2000,37(1):16-17
    桑春果,张开春,张军科.重叠区扩增法合成抗菌肽B基因[J].西北农林科技大学学报(白然科学版),2002,30(1):65-67
    吴厚雄,肖辉海,李必湖.植物热激蛋白的研究进展[J].生物技术通报,2003,(4):6-11
    邵玲,陈向荣.热激蛋白与植物的抗热性[J].北方园艺,2005,3:73-74
    王凌健,倪迪安,王光远,等.青菜组织培养和转化系统的初步建立[J].实验生物学报,1999,32(1):93-95
    王彦华,侯喜林,中书兴.不结球白菜β-1,3-葡聚糖酶基因cDNA全长的克隆与序列分析[J].农业生物技术学报,2006,14(6):917-921
    徐芳,姚泉洪,熊爱立,等.重叠延伸PCR技术及其在基因工程上的应用[J].分子植物育种,2006,4(5):747-750
    徐郎莱,叶茂炳.过氧化物酶活力连续记录测定法[J].南京农业大学学报,1989,12(3):82-83
    杨宇,吴元华,郑雅楠.利用重叠延伸PCR技术进行DNA的人工合成[J].土壤与环境,2002,11(3)255-257
    杨景峰,乔治·斯尔特.植物对热刺激的反应[J].植物学报,1991,33(4):292-296
    叶凡,侯喜林,袁建玉.高温胁迫对不结球白菜幼苗抗氧化酶活性和膜脂过氧化作用的影响[J].江苏农业学报,2007,23(2):154-156
    于玲,王莱,牛吉山,等.植物抗病相关基因分离策略[J].西北植物学报,2002,22(6):1494-1503
    朱世江,季作梁.热激蛋白与植物的耐冷性[J].园艺学报,2002,29(增刊):607-612
    曾韶西,王以柔.水稻幼苗低温伤害与膜脂过氧化[J].植物学报,1987,29(5):506-512
    朱玉贤,李毅.现代分子生物学,北京:高等教育出版社,2002,7:281-283
    周鹏,董克家.利用重叠PCR技术进行基因突变和拼接[J].生命科学研究,2001,5(1):52-55
    朱正歌,孙宗修.转座子标签法克隆水稻基因前景[J].中国水稻科学,2001,15(1):146-15
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.