糖化酶生产菌次要水解酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖化酶是目前重要的工业酶制剂之一,广泛应用于淀粉加工业和发酵工业中。然而,在目前的糖化酶制剂生产过程中常会伴随有一种水解酶副产物—α-葡萄糖苷酶的生成,它可以从低聚糖类底物的非还原末端切开α-1,4糖苷键,释放出葡萄糖或将游离出的葡萄糖残基转移到另一糖类底物形成α-1,6糖苷键,得到非发酵性寡聚糖。α-葡萄糖苷酶的存在影响了糖化酶制剂的质量和纯度,给工业生产带来不便,因此它越来越受到研究者的重视。
     CICIM F0410是生产糖化酶的工业菌株,本文考察了该菌株产α-葡萄糖苷酶的变化进程与酶学性质,发现该菌株在发酵周期96 h时的α-葡萄糖苷酶产量最高;该酶的最适pH值5.0,最适反应温度55℃,0.5 mM的Mg2+对该酶活有较显著的激活作用,并对其热稳定性有一定的保护作用。
     对菌株的培养基和发酵条件进行了优化,在保证糖化酶产量的前提下,最大限度的降低α-葡萄糖苷酶的活力。最佳发酵培养基组成(g/L):葡萄糖109,豆饼粉25(添加终浓度0.01 M的NH4Cl),玉米浆31。摇瓶发酵最佳培养条件:培养基初始pH值5.5,种子培养96 h,接种量9%,旋转式摇床34℃培养,摇床转速220 r/min,发酵周期为144 h。通过发酵条件的优化,每1000U糖化酶中α-葡萄糖苷酶的含量降低了53.16%。
     利用PCR方法扩增到大小为3124 bp的α-葡萄糖苷酶基因,其中编码序列长度为2973 bp,含有三段内含子,推衍得到该段序列编码990个氨基酸残基,其中包括一条含有57个氨基酸残基的信号肽,与GenBank上公布的黑曲霉CBS513.88的α-葡萄糖苷酶基因相似性达到99.94%。构建了用于敲除该基因片段的重组质粒pMD19-aglU::G418,为下一步在基因水平上改造菌株奠定了基础。
Glucoamylase is one of the important industrial enzymes. It has been widely applied in fermentation industry that need glycosylated starch as a raw material. However, when microorganism produces glucoamylase, a kind of hydrolase—α-glucosidase is produced as a by-product, which would decrease glucoamylase efficiency in fermentation process. Theα-glucosidase can catalyze gulcose from the non-reducing ends of oligosaccharides or transfer the glucose residue to another carbohydrate substrate to formα-1, 6 glycosidic bonds which belongs to the oligosaccharides of non-fermentation. Therefore, theα-glucosidase is paid more attention by many researchers.
     CICIM F0410 is an industrial producer of glucoamylase. The time course of the enzyme production and the properties were investigated in this study. The maximum glucosidase activity was obtained in 96 h of the fermentation, at 55℃and pH 5.0. Furthermore, 0.5 mM Mg2+ promoted the enzyme activity and increased the heat stability of glucosidase.
     The optimization of medium and fermentation conditions for F0410 was conducted. We tried to decrease the relativeα-glucosidase activity per 1000 U glucoamylase as much as possible Get the optimal fermentation medium (g/L): glucose 109, soybean powder 25 (add a final concentration of 0.01 M of NH4Cl), corn steep liquor 31; The optimal fermentation conditions were 50 mL broth with initial pH 5.5 in 250 mL flask, inoculated 96 h at 34℃on rotary shaker, the rotational speed was 220 r/min, inoculum concentration was 9%, fermentation period was 144 h. Under the optimized condition, the content ofα-glucosidase per 1000U glucoamylase decreased to 51.36%.
     A 3124 bp nucleic acid fragment containingα-glucosidase gene was amplified by PCR. The coding sequences were 2973 bp, containing three introns. The deduced protein was 990 amino acids containing a signal peptide consisting of 57 amino acid residues. Sequence alignment with theα-glucosidase sequence of another A. niger.(GenBank accession number XP_001402053) showed that the two nucleotide sequences' similarity reached to 99.94%. Meanwhile, a recombinant plasmid pMD19-aglU::G418 was constructed which would be used to knockout theα-glucosidase gene in the further study.
引文
1. Cardona F, Goti A, Brandi A, et al. Molecular dynamics simulation of the complexes of glucoamylaseII from Aspergillus awamori var. X100 with deoxynojiromycin and lentiginosine[J]. J Mol Model, 1997, 3(1): 249.
    2.张树政.酶制剂工业[M].北京:科学出版社, 1984.
    3.彭燕.活性干酵母辅以糖化酶在混蒸混烧工艺中的试用[J].酿酒, 2006, 33(3): 78-79.
    4. Eva H, Adrinana S, Juraj G. Cloning and expression of a gene for an alpha-glucosidase from Saccharomycopsis fibuligera homologous to family GH31 of yeast glucoamylases[J]. Appl Microbiol Biotechnol, 2005, 69: 51-56.
    5.覃雪珍,向宗府,张学英. TT-AADY和糖化酶在湘泉浓香型白酒工艺中的应用[J].酿酒科技, 2006, 144(6): 177.
    6.谷海先,张定玲,曹钰.高活力糖化酶菌种选育及发酵研究[J].食品与发酵工业, 1998, 24(5): 31-36.
    7. Biesebeke R, Biezen N, Vos M, et al. Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solidate-state and submerged fermentation[J]. Appl Microbiol Biotechnol, 2005, 67: 75-82.
    8. Odanir G, Ileana R, Claudionor F, et al. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes[J]. Journal of Microbiological Methods, 2006, 67: 437-445.
    9. Yao T-T, Wang Y-M, Wang Z-X, et al. Overproduction of glucoamylase by recombinant Aspergillus niger harboring multiple copies of glaA[J]. Chin J of Biotechnolog, 2006, 22(4): 116-120.
    10. Swift R, Wiebe M, Robson G, et al. Recombinant glucoamylase production by Aspergillus niger B1 in chemostat and pH auxostat cultures[J]. Fungal Genetics and Biolog, 1998, 25(2): 100-109.
    11. Ryszka L, Czakaj J, Sawicka-Zukowska R, et al. Glucoamylase production using transformants of Aspergillus constructed by genetic engineering methods in liquid and solid medium cultures[J]. Prace Instytutow i Laboratoriow Badawczych Przemyslu Spozywczego, 2002, 57: 7-26.
    12. Young-Min Kim, Masayuki Okuyama, et al. Enzymatic synthesis of alkylα-2 deoxyglucosides by alkylalcohol resistant a-glucosidase from Aspergillus niger[J]. Asymmetry, 2005, 16: 403-409.
    13. Ganghofner D, Kellermann J, Staudenbauer W, et al. Purification and properties of an amylopullulanase, a glucoamylase and an alpha-glucosidase in the amylolytic enzyme system[J]. Bioscience Biotechnology and Biochemistry, 1998, 62(2): 302-308.
    14. Vosi H, Yuji H, Saori G, et al.α-glucosidase from a strain of deep-sea Geobacillus: a potential enzyme for the biosynthesis of complex carbohydrates[J]. Applied Microbiology and Biotechnology, 2005, 68(6): 757-765.
    15. Lucjia F, Arrojo N, Dolores M, et al. Transformation of maltose into prebiotic isomalto oligosaccharides by a novelα-glucosidase from Xantophyllomyces endrorhous[J]. Process Biochemistry, 2007, 42: 1530-1536.
    16.中山亨,落合美佐,中尾正宏等.应用糖质科学, 1998, 45(2): 185-197.
    17. Kita A, Matsui H, Somoto A, et al. Substrate specificity and subsite affnities of crystallineα-glucosidase from Aspergillus niger[J]. Agric Biol Chem, 1991, 55(9): 2327-2335.
    18.藤野井聪,山本健一郎,富冈靖行等.精糖技术研究会志, 1996, 44: 51-57.
    19. Radivo J, Jello M, Prodano V, et al. Synthesis of hydroquinone-a-glucoside byα-glucosidase from baker’s yeast[J]. Biotechnology Letters, 2005, 27: 551-554.
    20. Piller K, Daniel M, Petach H. Properties and stabilization of an extracellular alpha-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: enzyme activity at 130 degrees C. Biochim Biophys Acta, 1996, 1292(1): 197-205.
    21. Giulia M, liano C, Schiraldi M. Expression of Sulfolobus solfataricusα-glucosidase in Lactococcus lactis[J]. Appl Microbiol Biotechnol, 2004, 64: 829-832.
    22.毕金峰,魏宝东.α-葡萄糖苷酶粗酶液的酶学性质[J].食品科学, 2005, 26(2): 75-78.
    23. Iwata H, Suzuki T. Purification and characterization of riceα-glucosidase, a key enzyme for alcohol fermentation of rice polish[J]. Journal of Bioscience and Bioengineering, 2003, 95(1): 106-108.
    24. Tanaka Y, Aki T, Ishihara K, et al. cDNA cloning and functional expression ofα-glucosidase from Mortierella alliacea[J]. Appl Microbiol Biotechnol, 2003, 62: 202-209.
    25. Zdzieblo A, Synowiecki J. New source of the thermostableα-glucosidase suitable for single step starch processing [J]. Food Chemistry, 2002, 79: 485-491.
    26. Krohn B, Lindsay J. Purification and characterization of a thermostableα-glucosidase from Bacillus subtilis high-temperature growth transformant[J]. Current Microbiololgy, 1991, 22: 273-278.
    27. Chanpen C, Rumpalai P, Polkit S. Expression and characterization ofα-glucosidaseIII in the dwarf honeybee, Apis florae[J]. Insect Science, 2007, 14(4): 283-293.
    28. Frandsen T, Svensson B. Plantα-glucosidase of the glycoside hydrolase family31 molecular propertities substrate specifity reaction mechanism and comparison with family members of different origin[J]. Plant Mol Biol, 1998, 37: 1-12.
    29. Heidi A, Ernst L. Structure of the Sulfolobus solfataricusα-glucosidase: Implications for Domain Conservation and Substrate Recogonition in GH31[J]. Mol Biol, 2006, 358: 1106-1124.
    30.岳振峰,彭志英,徐建祥,等.壳聚糖固定化α-葡萄糖苷酶的研究[J].食品与发酵工业, 2001, 27(4): 20-24.
    31. Masakazu M, Hiroko S, Natsuko I, et al. Characteristics ofα-Glucosidase Production from Recombinant Aspergillus oryzae by Membrane-Surface Liquid Culture in Comparison with Various Cultivation Methods[J]. Journal of Bioscience and Bioengineering, 2004, 98(3): 200-206.
    32.陈海敏,严小军,林伟.α-葡萄糖苷酶抑制剂的构效关系[J].中国生物化学与分子生物学报, 2003, 19(6): 780-784.
    33. Igaki S, Kimura A, Chiba S. Mechanistic and structural analysis of a Family 31-glycosidase and its glycosyl-enzyme intermediate. Oyo Toshitsu Kagaku, 1998, 45(3): 247-249.
    34.毕金峰,李春红,陈天金.α-葡萄糖苷酶的纯化及酶学特性研究[J].食品发酵与工业, 2004, 30(8): 60-61.
    35. Tomoko T, Yukiko T, Masachika I. Isolation of two inactive fragments of a Rhizopous sp. GA: relationship among three forms of the enzyme[J]. J Biochem, 1983, 92: 1623-1631.
    36. Dennis A, Christopher M, Peter J. The bovineα-glucosidase gene: coding region, genomic structure, and mutations that cause bovine generalized glycogenosis[J]. Mammalian Genome, 2000, 11: 206–212.
    37. Hugenholtz J, Del M, Rosa H, et al. Expression of Sulfolobus solfataricusα-glucosidase in Lactococcus lactic[J]. Appl Microbiol Biotechnol, 2004, 64(3): 829-832.
    38. Tanaka Y, Aki T, Ishihara K, et al. cDNA cloning and functional expression ofα-glucosidase from Mortierella alliacea[J]. Appl Microbiol Biotechnol, 2003, 62: 202-209.
    39. Dong L, lkuko M, Akira N, et al. Overproduction ofα-glucosidase in Aspergillus niger transformation with the cloned gene aglA[J]. J. Gen. Appl. Microbiol, 1998, 44, 177-181.
    40. Nakamura A, Nishimura I, Yokorama A, et al. Cloning and sequencing of anα-glucosidase gene from Aspergillus niger and its expression in A. nidulans. Journal of Biotechnology, 1997, 53(1): 75-84.
    41. Toshitaka M, Yataro N, Katsuya G, et al. Deletion analysis of promoter elements of the Aspergillus oryzae agdA gene codingα-glucosidase[J].Curr Genet, 1996, 30: 432-438.
    42.刘军,周成,马延和,等.嗜热栖热菌α-葡萄糖苷酶基因的表达及酶学性质研究[J].微生物学通报, 2007, 34(2): 232-235.
    43.于岚,张开云,苏艳,等.黑曲霉α-葡萄糖苷酶cDNA的克隆及表达[J].生物技术, 2006, 4(16): 5-7.
    44.姚婷婷,王正祥.黑曲霉原生质体的制备、再生及转化条件[J].食品与生物技术学报, 2006, 25(4): 116-120.
    45.中华人民共和国国家标准[S]. GB/T 8538-1995, 63.
    46.史建国,周风臻,杨明慧,等.用葡萄糖酶电极法测定葡萄糖淀粉酶活性的研究[J].生物工程学报, 1996, 2(增刊): 226-231.
    47.冯德荣,宋家华,等.食品中葡萄糖的测定方法-酶电极法[S].国家技术局发布.国家标准GB/T 16285-1996.
    48. Annadurai G, Sheeja RY. Use of Box-Behkendesign of experiments for the adsorption of vero fix-red using Biopolymer. Bioprocess Eng[J], 1998(18): 463-466.
    49. Ge X-Y, Qian H, Zhang W-G, et al. Enhancement of fructanohydrolase synthesis from Asperigllus niger by simultaneous in ritro induction and in vivo acid stress using sucrose ester[J]. World J Microbiol Biotechnol, 2008, 24: 133-138.
    50.张世敏,王慧娟,吕洋,等.糖化酶中葡萄糖苷转移酶的纯化及酶学性质研究[J].河南农业大学学报, 2006, 40(5): 521-522.
    51.易福生.葡萄糖苷酶在啤酒酿造中的应用[J].酿酒科技, 2006, 1: 82-83.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.