氨硼烷类化合物结构和储氢热力学性质的理论研究
摘要
氨硼烷(NH3BH3, AB)具有氢含量高(19.6wt.%)和良好的热稳定性的优点而成为新型的储氢材料,在实验和理论上,人们研究了氨硼烷及其衍生物的结构和性质。本论文采用密度泛函理论(DFT),研究了两类氨硼烷类化合物的结构和储氢性质:一是灯笼状氨硼烷类化合物;另外一个是BN单元取代环烷烃的杂环化合物与LiH/NaH的脱氢反应。主要的研究内容包括如下三个方面:
     1.在氨硼烷的基础上,我们设计了19种灯笼状氨硼烷类衍生物,采用B3LYP/6-311++G**和MP2/6-311++G**方法研究化合物B2N2H6(XH2)3(X=C、Si和Ge)及其异构体的结构和振动频率,发现在这两种方法下三类化合物最稳定的构型分别为H3NB(CH2)3BNH3、H3BN(SiH2)3BNH3、H3NB(GeH2)3BNH3,表明采用B3LYP/6-311++G**方法研究笼状氨硼烷类化合物是可行的。因此,在该方法下研究了其它16种灯笼状化合物(B2N2H6(C2H2)3. B2N2H6(C2H4)3、B2N2H6(C6H6)、B2N2H6(NH)3、B2N2H6(B3N3H6)、B2N2H6(BH)n(n=3-5、8和10)、B2N2H6(B)n (n=4、6)、B2N2H6(B)5及B2N2H6(X)3(X=O、S和Se))的结构和稳定性,进一步我们计算了这19种化合物的芳香性、电子光谱和热力学性质。计算结果表明,除离子化合物H3NB(B)5BNH3的能隙值为1.53eV外,其它18种化合物的能隙值在2.81和5.88eV之间,计算的NICS(0)表明化合物H3NB(C2H2)3BNH3、H3NB(C2H4)3BNH3、H3NB(C6H6)BNH3和H3NB(B3N3H6)NBH3的芳香性较弱,其它化合物的芳香性较强,其中化合物H3NB(B)4BNH3芳香性最强,它的NICS(0)值为-78.62。电子光谱计算表明除化合物H3NB(B)4BNH3和H3NB(B)5BNH3-的第一激发波长值大于700.00nm外,其它17种化合物的波长在220.00和422.00nm之间,同时,计算得到了0K和298K时19种化合物的生成焓。
     2.在B3LYP/6-311++G**和B3LYP/aug-cc-pVTZ水平下,我们研究了环烷烃CnH2n(n=3-6)的稳定构型与LiH/NaH的脱氢反应焓变,研究发现虽然在这两种水平下计算的反应焓变值非常接近,然而在B3LYP/aug-cc-pVTZ水平下计算的298K时H2、LiH、NaHH及CnH2n(n=3-6)的生成焓值(ΔHft)与实验值较接近,其值分别为-1.2、32.6、33.1、11.9、7.7、-14.4及-23.5kcal·mol-1。因此采用该方法研究了BN取代的杂环化合物Cx(BN)yH2x+4y (x=1-4, y=1; x=1-2, y=2; x=0;y=2-3)与LiH/NaH脱氢反应的热力学性质。计算表明,环烷烃CnH2n (n=3-6)与Li/NaH的脱氢反应焓变皆大于10.0kcal-mol-1,而BN取代的杂环化合物与一个或多个LiH/NaH脱氢反应焓变皆小于16.0kcal·mol-1,说明BN取代的环烷烃降低了脱氢焓变,使脱氢反应更容易进行,因此该类化合物可作为潜在的储氢材料,并且LiH与杂环化合物的脱氢反应比NaH与化合物的反应在热力学上更易发生。
     3.在B3YP/aug-cc-pVTZ水平下,我们采用自然布居分析和AIM方法研究了杂环化合物Cx(BN)yH2x+4y (x=1-4, y=1; x=1-2, y=2; x=0; y=2-3)的化学成键性质,Wiberg键级数(WBI)表明B、N原子皆采用sps杂化且符合八隅规则,AIM分析得到BN)2H8、C3(BN)H10、椅式(BN)3H12
     和C4(BN)H12中的C-N和C-B为共价键,而B-N为配位键。
Ammonia borane (NH3BH3, AB) has attracted much interest because of its extremely high gravimetric hydrogen storage and relatively favorable thermal stability. The structures and thermodynamic properties of ammonia borane and its derivatives have been studied both experimentally and theoretically. In this thesis, the structures and properties of a kind of lantern-like compounds derived from ammonia borane have been investigated by the density functional theory (DFT). In addition, thermochemistry of the dehydrogenation of the cycloalkanes CnH2n(n=3-6) and boron-nitrogen-containing heterocycles Cx(BN)yH2x+4y with LiH/NaH, as well as the chemical bond of Cx(BN)yH2x+4y were carried out using DFT The main contents of this thesis contain three parts as follows:
     1. On the basis of ammonia borane, we designed nineteen lantern-like compounds derived from ammonia borane, three isomers of three compounds B2N2H6(XH2)3 (X=C, Si and Ge) were calculated by B3LYP/6-311++G** and MP2/6-311++G**, and the most stable isomers are H3NB(CH2)3BNH3, H3BN(SiH2)3BNH3 and H3NB(GeH2)3BNH3, indicating that B3LYP method is realiable to study this system. Additionally, other sixteen kinds of lantern-like compounds derived from ammonia borane, B2N2H6(C2H2)3, B2N2H6(C2H4)3, B2N2H6(C6H6), B2N2H6(NH)3, B2N2H6(B3N3H6), B2N2H6(BH)n (n=3-5,8 and 10), B2N2H6(B)n (n=4,6), B2N2H6(B)5- and B2N2H6(X)3 (X=O, S and Se) were designed. Moreover, the most stable structures, energy gaps, aromaticities, electronic spectra and enthalpies of formation of nineteen lantern-like compounds have been obtained at B3LYP/6-311++G** level. The energy gap of H3NB(B)5BNH3- is 1.53eV, which is the smallest, and the energy gaps of other compounds are between 2.81 and 5.88eV. The centers of the cages of these compounds have strong aromaticity except for H3NB(C2H2)3BNH3, H3NB(C2H4)3BNH3, H3NB(C6H6)BNH3 and H3NB(B3N3H6)NBH3. Specially, the NICS(0) value of H3NB(B)4BNH3 is-78.62, showing the center of the cage has very strong aromaticity. The wavelengths of the origin band of the electronic transition of these complexes H3NB(B)4BNH3 and H3NB(B)5BNH3- are greater than 700.00nm, while the wavelengths of the other complexes are between 220.00 and 422.00nm. The enthalpies of formation of the nineteen compounds at 0 and 298K are given.
     2. The reaction enthalpies at OK and 298K of the dehydrogenation reactions of CnH2n with LiH (and NaH) calculated at both B3LYP/6-311++G** and B3LYP/aug-cc-pVTZ levels are greater than 10.0kcal·mol-1, thus CnH2n are unfavorable to storage hydrogen. However, calculated reaction enthalpies at OK and 298K of the dehydrogenation reactions of Cx(BN)yH2X+4y with one, two and three LiH (and NaH) at the same level of theory and the values are negative, which reaction enthalpies are lower than -16.0kcal·mol-1, then, LiH or NaH together with boron-nitrogen-containing heterocycles Cx(BN)yH2x+4y are a kind of good storage medium for hydrogen.
     3. The natural bond orbital and AIM analysis of Cx(BN)yH2x+4y (x=1-4, y=1; x=1-2, y=2; x=0; y=2-3) show that the B and N atoms are close to sp3 hybrid, the WBIs of B-N are closes to ammonia borane. Furthermore, the C-N and C-B bonds of (BN)2H8, C3(BN)H10, (BN)3H12 and C4(BN)H,2 are covalent bond, which the B-N bond is a characteristics of coordinate bond.
引文
[1]Shore S.G., Parry R. W.. The crystalline compound ammonia borane, H3NBH3[J]. J. Am. Chem. Soc.,1955,77(22):6084-6085.
    [2]Shore S. G., Parry R. W.. Chemical evidence for the structure of the "Diammoniate of Diborane." Ⅱ. The preparation of ammonia-Borane[J]. J. Am. Chem. Soc.,1958, 80:8-12.
    [3]Liu Z. Q., Marder T. B.. B-N versus C-C:How similar are they?[J]. Angew. Chem. Int. Ed.,2008,47:242-244.
    [4]Kim D. Y., Singh N. J., Lee H. M., Kim K. S.. Hydrogen-release mechanisms in lithium amidoboranes[J]. Chem. Eur. J.,2009,15:5598-5604.
    [5]Binkley J. S., Thorne L. R.. A theoretical study of the properties of BH3NH3[J]. J. Chem. Phys.1983,79(6):2932-2940.
    [6]Klooster W. T., Koetzle T. F., Siegbahn P. E. M., T. B. Richardson, R. H. Carbtree. Study of the N-H...H-B dihydrogen bond including the crystal structure of BH3NH3 by neutron diffraction[J]. J. Am. Chem. Soc.,1999,121:6337-6343.
    [7]Wolf G., Baumann J., Baitalow F., Hoffmann F. P.. Calorimetric process monitoring of thermal decomposition of B-N-H compounds[J]. Thermochim. Acta,2000,343: 19-25.
    [8]Merino G, Bakhmutov V. I., Vela A.. Do cooerative proton-hydride interactions explain the gas-solid structural difference of BH3NH3?[J]. J. Phys. Chem. A,2002, 106:8491-8494.
    [9]Baitalow F., Baumann J., Wolf G., Jaenicke-Raβler K., Leitner G.. Thermal decomposition of B-N-H compounds investigated by using combined thermoanalytical methods[J]. Thermochim. Acta,2002,391:159-168.
    [10]Baumann J., Baitalow F., Wolf G.. Thermal decomposition of polymeric aminoborane (H2BNH2)x under hydrogen release[J]. Thermochim. Acta,2005,430: 9-14.
    [11]Meng Y., Zhou Z. Y., Duan C. S., Wang B., Zong Q.. Non-convertional hydrogen bonding interaction of BH3NH3 complexes:a comparative theoretical study[J]. J. Mol. Struct.(THEOCHEM),2005,713:135-144.
    [12]Dixon D. A., Gutowski M.. Thermodynamic properties of molecular borane amines and the [BH4-][NH4+] salt for chemical hydrogen storage systems from ab initio electronic structure theory[J]. J. Phys. Chem. A,2005,109:5129-5135.
    [13]Baitalow F., Wolf G, Grolier J.-P.E., Dan F., Randzio S. L.. Thermal decomposition of ammonia-borane under pressures up to 600 bar[J]. Thermochim. Acta.,2006,445:121-125.
    [14]Nguyen M. T., Nguyen V. S., Matus M. H., Gopakumar G., Dixon D. A.. Molecular mechanism for H2 release from BH3NH3, including the catalytic role of the lewis acid BH3[J]. J. Phys. Chem. A,2007,111:679-690.
    [15]Marder T. B.. Will we sooon be fueling our automobiles with ammonia-borane? [J]. Angew. Chem. Int. Ed.,2007,46:8116-8118.
    [16]Miranda C. R., Ceder G. Ab initio investigation of ammonia-borane complexes for hydrogen storage[J]. J. Chem. Phys.,2007,126(184703):1-11.
    [17]Nguyen V. S., Matus M. H., Grant D. J., Nguyen M. T., D. A. Dixon. Computational study of the release of H2 from ammonia borane dimmer (BH3NH3)2 and its ion pair isomers[J]. J. Phys. Chem. A,2007,111:8844-8856.
    [18]Gunaydin-Sen O., Achey R., Dala1 N. S., Stowe A., Autrey T.. High resolution 15N NMR of the 225K phase transition of ammonia borane(NH3BH3):mixed order-disorder and displacive behavior[J]. J. Phys. Chem. B,2007,111:677-681.
    [19]Heldebrant D. J., Karkanker A., Hess N. J., Bowden M., Rassat S., Zheng F., Rappe D., Autrey T.. The effects of chemical additives on the induction phase in solid-state thermal decomposition of ammonia borane[J]. Chem. Mater.,2008,20:5332-5336.
    [20]Cho H., Shaw W. J., Parvanov V., Schenter G. K., Karkamkar A., Hess N. J., Mundy C., Kathmann S., Sears J., Lipton A. S., Ellis P. D., Autrey S. T.. Molecular structure and dynamics in the low temperature(orthorhombic) phase of NH3BH3[J]. J. Phys. Chem. A,2008,112:4277-4283.
    [21]陶占良,彭博,梁静,程方益,陈军.高密度储氢材料研究进展[J].中国材料进展,2009,28:26-41.
    [22]Matus M. H., Grant D. J., Nguyen M. T., Dixon D. A.. Fundamental thermochemical properties of ammonia borane and dehydrogenated derivatives(BNHn, n=0-6) [J]. J. Phys. Chem. C,2009,113:16553-16560.
    [23]Umegaki T., Yan J., Zhang X., Shioyama H., Kuriyama N.. Boron- and nitrogen-based chemical hydrogen storage materials[J]. Int. J. Hydrogen Energy, 2009,34:2303-2311.
    [24]Diwan M., Hanna D., Varma A.. Method to release hydrogen from ammonia borane for portable fuel cell applications[J]. Int. J. Hydrogen Energy,2010,35:577-584.
    [25]Li J., Kathmann S. M., Hu H., Schenter G. K., Autrey T., Gutowski M.. Theoretical investigations on the formation and dehydrogenation reaction pathways of H(NH2BH2)nH(n=1-4) oligomers:inportance of dihydrogen interactions[J]. Inorg. Chem.,2010,119(17):7710-7720.
    [26]Anane H., Boutalib A.. Comparative G2(MP2) study of H3NBX3 and H3PBX3(X=H, F, and Cl) donor-aceptor complexes[J]. J. Phys. Chem. A,1998,102:7070-7073.
    [27]Guerraze A. E., Anane H., Serrar C., Es-sofi A., Lamsabhi A. M., Jarid A.. Is the lewis-acid behavior of GaH3 comparable to that of BH3 and AIH3? A DFT comparison study of H3AXH3(A=B, Al, Ga and X= N, P, As) donor-acceptor complexes[J]. J. Mol. Struct.(THEOCHEM),2004,709:117-122.
    [28]Timoshkin A. Y.. The road to 13-15 nano structures:structures and energetics of (MYH2)4 tetramers (M=B, Al, Ga; Y=N, P, As) [J]. J. Phys. Chem. A,2010,114: 516-525.
    [29]Venter G. A., Dilen J.. A computational study of the effect of an external electric field on the geometry of selected donor-acceptor complexes[J]. J. Mol. Struct.(THEOCHEM),2009,915:112-121.
    [30]Kodama G., Parry R. W., Carter J. C. The Preparation and properties of Ammonia-Triborane, H3NB3H7[J]. J. Am. Chem. Soc.,1959,81:3534-3538.
    [31]Mckee M.L.. Theoretical study of the interaction of NH3 with the boron hydrides BH3, B3H7, B4H8, and B5H9 and the carboranes C2B3H5 and C2B3H7[J]. Inorg. Chem.1988,27:4241-4245.
    [32]Yoon C. W., Carroll P. J., Sneddon L. G. Ammonia triborane:a new synthesis, structural determinations, and hydrolytic hydrogen-release properties [J]. J. Am. Chem. Soc.,2009,131:855-864.
    [33]Jonas V., Frenking G, Reetz M. T.. Cmoparative theoretical study of lewis acid-base complexes of BH3, BF3, BCl3, AlCl3, and SO2[J]. J. Am. Chem. Soc., 1994,116:8741-8753.
    [34]Skancke A., Skancke P. N.. Density functional theory and perturbation calculations on some lewis acid-base complexes. A systematic study of substitution effects[J]. J. Phys. Chem.,1996,100:15079-15082.
    [35]Fiorillo A. A., Galbraith J. M.. A valence bond description of coordinate covalent bonding[J]. J. Phys. Chem. A,2004,108:5126-5130.
    [36]Jalbout A. F., Boutalib A.. Ab initio molecular orbital investigation of the amine-alanes (CH3)nH3_nAlNX3 and phosphane-alanes (CH3)nH3-nAlPX3 (X=H, F, and Cl; n=0-3) complexes[J]. J. Phys. Chem. A,2006,110(45):12524-12527.
    [37]Plumley J. A., Acidity B. L.. Periodic trends and index of boron lewis acidity[J]. J. Phys. Chem. A,2009,113:5985-5992.
    [38]Xiong Z. T., Yong C. K., Wu G. T., Chen P., Shaw W., Karkamkar A., Autrey T., Jones M. O., Johnson S. R., Edwards P. P., David W. I. F.. High-capacity hydrogen storage in lithium and sodium amidoboranes[J]. Nat. Mater,2008,7:138-141.
    [39]Einer D. N., Karkamkar A., Linehan J. C., Arey B., Autrey T., Kauzlarich S. M.. Promotion of hydrogen release from ammonia borane with mechanically activated hexagonal boron nitride [J]. J. Phys. Chem. C,2009,113:1098-1103.
    [40]Swinnen S., Nguyen V. S., Nguyen M. T.. Potential hydrogen storage of lithium amidoboranes and derivatives [J]. Chem. Phys. Lett.,2010,489:148-153.
    [41]Anane H., Boutalib A., I. Cebot-Gil, F. Tomas. G2(MP2) study of the substituent effects in the H3BXHnMe(X=N, P; n=0-3) donor-acceptor complexes[J]. Chem. Phys. Lett.,1998,287:575-578.
    [42]Anane H., Jarid A., Boutalib A., I. Nebor-Gil, F. Tomas. Substituent effect on ammonia-borane donor-acceptor complexes:a G2(MP2) molecular orbital study[J]. J. Mol. Struct.:THEOCHEM,1998,455:51-57.
    [43]Jaska C. A., Manners I.. Heterogeneous of homogeneous catalysis? Mechanistic studies of the rhodium-catalyzed dehydrocoupling of amine-borane and phosphine-borane adducts[J]. J. Am. Chem. Soc.,2004,126:9776-9785.
    [44]Gilbert T. M.. Tests of the MP2 model and various DFT models in predicting the structures and B-N bond dissociation energies of amine-boranes (X3C)mH3-mB-N(CH3)nH3-n (X=H, F; m=0-3; n=0-3):poor performance of the B3LYP approach for dative B-N bonds[J]. J. Phys. Chem. A,2004,108:2550-2554.
    [45]Jaska C. A., Manners I.. Ambient temperature, tandem catalytic dehydrocoupling-hydrogenation reactions using Rh colloids and Me2NH-BH3 as a stoichiometric H2 source[J]. J. Am. Chem. Soc.,2004,126:2698-2699.
    [46]Stephens F. H., Pons V., Baker R. T.. Ammonia-borane:the hydrogen source par excellence?[J]. Dalton Trans.,2007,2613-2626.
    [47]Sun C. H., Yao X. D., Du A. J., Li L., Smith S., Lu G. Q.. Computational study of methyl derivatives of ammonia borane for hydrogen storage[J]. Phys. Chem. Chem. Phys.,2008,10:6104-6106.
    [48]Bowden M. E., Brown I. W. M., Gainsford G. J., Wong H.. Structure and thermal decomposition of methylamine borane[J]. Inorg. Chim. Acta,2008,361: 2147-2153.
    [49]Grant D. J., Matus M. H., Anderson K. D., Camaioni D. M., Neufeldt S. R., Lane C. F., Dixon D. A.. Thermochemistry for the dehydrogenation of methyl-substituted ammonia borane compouds[J]. A. Phys. Chem. A,2009,113:6121-6132.
    [50]Aldridge S., Downs A. J., Tang C. Y, Parsons S., Clarke M. C., Johnstone R. D. L., Robertson H. E., Rankin D. W. H., Wann D. A.. Structure and aggregation of the methylamine-borane molecules, MenH3-nN·BH3(n=1-3), studied by X-ray diffraction, gas-phase electron diffraction, and quantum chemical calculations[J]. J. Am. Chem. Soc.,2009,131:2231-2243.
    [51]Schlesinger H. I., Burg A. B.. Hydrides of Boron. Ⅷ. The Structure of the Diammoniate of diborane and its Relation to the Structure of Diborane[J]. J. Am. Chem. Soc.,1938,60:290-299.
    [52]Myers A. G., Yang B. H., Kopecky D. J.. Lithium Amidotrihydroborate, a Powerful New Reductant. Transformation of Tertiary Amides to Primary Alcohols[J]. Tetrahedron Lett.1996,37:3623-3626.
    [53]Wu H., Zhou W., Yildirim T.. Alkali and Alkaline-Earth Metal Amidoboranes: Structure, Crystal Chemistry, and Hydrogen Storage Properties[J]. J. Am. Chem. Soc.,2008,130:14834-14839.
    [54]Kang X. D., Fang Z. Z., Kong L. Y, Cheng H. M., Yao X. D., Lu G. Q., Wang P.. Ammonia Borane Destabilized by Lithium Hydride:An Aduanced On-Board Hydrogen Storage Mateial[J]. Adv. Mater,2008,20:2756-2759.
    [55]Xiong Z. T., Wu G. T., Chua Y S., Hu J. J., He T., Xu W. L., Chen P.. Synthesis of sodium amidoborane (NaNH2BH3) for hydrogen production[J]. Energy Environ. Sci.,2008,1:360-363.
    [56]Fijaikowski K. J., Grochala W.. Sustantial emission of NH3 during thermal decomposition of sodium amidoborane, NaNH2BH3[J]. J. Mater. Chem.,2009,19: 2043-2050.
    [57]Lee S. M., Kang X. D., Wang P., Cheng H. M., Lee Y H.. A Comparative Study of the Structural, Electronic, and Vibrational Properties of NH3BH3 and LiNH2BH3: Theory and Experiment[J]. Chem. Phys. Chem.,2009,10:1825-1833.
    [58]Lee T. B., Mckee M. L.. Mechanistic Study of LiNH2BH3 Formation from (LiH)4+ NH3BH3 and Stubsequent Dehydrogenation[J]. Inorg, Chem.,2009,48:7564-7575.
    [59]Ramzan M., Silvearv F., Blomqvist A., Scheicher R. H., Lebegue S., Ahuja R. Structural and energetic analysis of the hydrogen storage materials LiNH2BH3 and NaNH2BH3 from ab initio calculations[J]. Phys. Rev. B,2009,79:132102-1-4.
    [60]Luedtke A. T., Autrey T.. Hydrogen Release Studies of Alkali Metal Amidoboranes[J]. Inorg. Chem.,2010,49:3905-3910.
    [61]Wu C. Z., Wu G. T., Xiong Z. T., David W. I. F., Ryan K. R., Jones M. O., Edwards P. P., Chu H., Chen P.. Stepwise Phase Transition in the Formation of Lithium amidoborane[J]. Inorg. Chem.,2010,49:4319-4323.
    [62]Genova R. V., K. Fijalkowski J., Budzianowski A., Grochala W.. Towards Y(NH2BH3)3:Probing hydrogen atorage properties of YX3/MNH2BH3 (X=F, Cl; M=Li, Na) and YHX~3/NH3BH3 composites[J]. J. Alloys Compd.,2010,499: 144-148.
    [63]Zhang Y., Shimoda K., Ichikawa T., Kojima Y.. Activation of Ammonia Borane Hybridized with Alkaline-Metal Hydrides:A Low-Temperature and High-Purity Hydrogen Generation Material[J]. J. Phys. Chem. C,2010,114:14662-14664.
    [64]Wu H., Zhou W., Udovic T. J., Rush J. J., Yildirim T.. Structures and Crystal Chemistry of Li2BNH6 and Li4BN3H10[J]. Chem. Mater.,2008,20:1245-1247.
    [65]Wu C. Z., Wu G. T., Xiong Z. T., Han X. W., Chu H. L., He T., Chen P.. LiNH2BH3·NH3BH3:Structure and Hydrogen Storage Properties[J]. Chem. Mater., 2010,22(1):3-5.
    [66]Li W., Scheicher R. H., Araujo C. M., Wu G. T., Blomqvist A., Wu C. Z., Ahuja R., Feng Y. P., Chen P.. Understanding from First-Principles Why LiNH2BH3·NH3BH3 Shows Improved Dehydrogenation over LiNH2BH3 and NH3BH3[J]. J. Phys. Chem. C,2010,114(44):19089-19095.
    [67]Zhong B., Huang X. X., Wen G., Zhang X. D., Bai H. W., Zhang T., Yu H. M.. Electronic structure and decomposition pathways of monoammoniate of lithium borohydride Li(NH3)BH4:A first-principles investiagtion[J]. Solid State Commum., 2010,150:1552-1555.
    [68]Xia G. L., Yu X. B., Guo Y. H., Wu Z., Yang C. Z., Liu H. K., Dou S. X.. Amminelithium Amidoborane Li(NH3)NH2BH3:A New Coordination Compound with Favorable Dehydrogenation Characteristics[J]. Chem. Eur. J.2010,16: 3763-3769.
    [69]Daly S. R., Bellott B. J., Kim D. Y., Girolami G. S.. Synthesis of the Long-Sought Unsubstituted Aminodiboranate Na(H3B-NH2-BH3) and Its N-Alkyl Analogs[J]. J. Am. Chem. Soc.,2010,132(21):7254-7255.
    [70]Diyabalanage H. V. K., Shrestha R. P., Semelsberger T. A., Scott B. L., Bowden M. E., Davis B. L., Burrell A. K.. Calcium Amidotrihydroborate:A Hydrogen Storage Material[J]. Angew. Chem. Int. Ed.,2007,46:8995-8997.
    [71]Spielmann J., Jansen G., Bandmann H., Harder S.. Calcium Amidoborane Hydrogen Storage Materials:Crystal Structures of Decomposition Products [J]. Angew. Chem.,2008,120:6386-6391.
    [72]Chua Y. S., Wu G. T., Xiong Z. T., He T., Chen P.. Calcium Amidoborane Ammoniate-Synthesis, Structure, and Hydrogen Storage Properties [J]. Chem. Mater.,2009,21:4899-4904.
    [73]Soloveinchik G., Her J., Stephens P. W., Gao Y., Rijssenbeek J., Andrus A., Zhao J.-C.. Ammine Magnesium Borohydride Complex as a New Material for Hydrogen Storage:Structure and Properties of Mg(BH4)2·2NH3[J]. Inorg. Chem.2008,47: 4290-4298.
    [74]Zhang Q. G., Tang C. X., Fang C. H., Fang F., Sun D. L., Ouyang L. Z., Zhu M.. Synthesis, Crystal Structure, and thermal Decomposition of Strontium Amidoborane[J]. J. Phys. Chem. C,2010,114:1709-1714.
    [75]Kang X. D., Ma L. P., Tang Z. Z., Gao L. L., Luo J. H., Wang S. C., Wang P.. Promoted hydrogen release from ammonia borane by mechanically milling with magnesium hydride:a new destablilizing approach[J]. Phys. Chem. Chem. Phys., 2009,11:2507-2513.
    [76]Jaska C. A., Temple D., A, Lough J., Manners I.. Rhodium-catalyzed formation of boron-nitrogen bonds:a mild route to cyclic aminoboranes and borazines[J]. Chem. Commun.,2001,962-963.
    [77]Jaska C. A., Temple K., Lough A. J., Manners L.. Transition Metal-Catalyzed Formation of Boron-Nitrogen Bonds:Catalytic Dehydrocoupling of Amine-Borane Adducts to Form Aminoboranes and Borazines[J]. J. Am. Chem. Soc,2003,125, 9424-9434.
    [78]Chen Y. S., Fulton J. L., Linehan J. C., Autrery T.. In Situ CAFS and NMR study of Rhodium-catalyzed dehydrogenation of dimethylamine borane, J.Am.Chem. Soc[J]. 2005,127:3254-3255.
    [79]Denney M. C., Pons B., Hebden T. J., Heinekey D. N., Goldberg K. I.. Efficient Catalysis of Ammonia Borane Dehydrogenation[J]. J. Am. Chem. Soc.,2006,128: 12048-12049.
    [80]Keaton R. J., Blacquiere J. M., Baker R. T.. Base metal catalyzed dehydrogenation of ammonia-borane for chemical hydrogen storage[J]. J. Am. Chem. Soc.,2007, 129:1844-1845.
    [81]Paul A., Musgrave C. B.. Catalyzed dehydrogenation of ammonia-borane by iridium dihydrogen pincer complex differs from ethane dehydrogenation[J]. Angew. Chem. Int. Ed.,2007,46:8153-8156.
    [82]Cheng F. Y., Ma H., Li Y. M., Chen J.. Ni1-xPtx(x=0-0.12) hollow spheres ans catalysts for hydrogen generation from ammonia borane[J]. Inorg. Chem.,2007,46: 788-794.
    [83]Yan J. M., Zhang X. B., Han S., Shioyama,H. Xu Q.. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Angew. Chem. Int. Ed.,2008,47:2287-2289.
    [84]Staubitz A., Besora M., Harvey J. N., Manners I.. Computational Analysis of Amine-Borane Adducts as Potential Hydrogen Storage Materials with Reversible Hydrogen Uptake[J]. Inorg. Chem.,2008,47:5910-5918.
    [85]Blaquiere N., Diallo-Garcia S., Gorelsky S. I., Black D. A., Fagnou K. Ruthenium-catalyzed dehydrogenation of ammonia boranes[J]. J. Am. Chem. Soc., 2008,130:14034-14035.
    [86]KaβM., Friedrich A., Drees M., Schneider S.. Rughernium complexes with cooperative PNP ligands:bifunctional catalysts for the dehydrogenation of ammonia-borane[J]. Angew. Chem. Int. Ed.,2009,48:905-907.
    [87]Zahamkiran M., Ozkar S.. Dimethylammonium Hexanoate Stabilized Rhodium(0) Nanoclusters Identified as Trus Heterogeneous Catalysts with the Highest Observed Activity in the Dehydrogenation of Dimethylamine-Borane, Inorg. Chem[J].2009, 48:8955-8964.
    [88]He T., Xiong Z. T., Wu G. T., Chu H. L., Wu C. Z., Zhang Chen T. P.. Nanosized Co- and Ni-Catalyzed Ammonia Borane for Hydrogen sorage, Chem. Mater[J]. 2009,21:2315-2318.
    [89]Kim S. K., Han W. S., Kim T. J., Kim T. Y, Nam S. W., Mitoraj M., Piekos L., Michalak A., Hwang S. J., Kang S.O.. Palladium Catalysts for Dehydrogenation of Ammonia Borane with Preferential B-H Activation[J]. J. Am. Chem. Soc,2010,132: 9954-9955.
    [90]Stephens F. H., Baker R. T., Matus M. H., Grant D. J., Dixon D. A.. Acid Initiatin of Ammonia-Borane Dehydrogenation for Hydrogen storage[J]. Angew. Chem. Int. Ed. 2007,46:746-749.
    [91]Himmelberger D. W., Yoon C. W., Bluhm M. E., Carroll P. J., Sneddon L. G.. Base-promoted Ammonia Borane Hydrogen-Release[J]. J. Am. Chem. Soc.,2009, 131:14101-14110.
    [92]Sepehri S., Feaver A., Shaw W. J., Howard C. J., Zhang Q. F., Autrey T., Cao G. Z.. Spectroscopic Studies of Dehydrogenation of Ammonia Borane in Carbon Cryogel[J]. J. Pyhs. Chem. B,2007,111:14285-14289.
    [93]Feaver A., Sepehri S., Shamberger P., Stowe A., Autrey T., Cao G. Z.. Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage[J]. J. Pyhs. Chem. B,2007,111:7469-7472.
    [94]Gutowska A., Li L., Shin Y., Wang C. M., Li X. S., Linehan J. C., Smith R. S., Kay B. D., Schmid B., Shaw W., Gutowski M., Autrey T.. Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane[J]. Angew. Chem. Int. Ed.2005,44:3578-3582.
    [95]Paolone A., Palumbo O., Rispoli P., Cantelli R., Autrey T., Karkamkar A.. Absence of the Structural Phase Transition in Ammonia Borane Dispersed in Mesoporous[J]. J. Phys. Chem. C 2009,113:10319-10321.
    [96]Bluhm M. E., Bradley M. g., Butterick T., Kusari U., Sneddon L. G. Amineborane-Based Chemical Hydrogen Storage:Enhanced Ammonia Borane Dehydrogenation in Ionic Liquids[J]. J. Am. Chem. Soc.2006,128:7748-7749.
    [97]Himmelberger D. W., Alden L. R., Bluhm M. E., Sneddon L. G. Ammonia borane hydrogen release in ionic liquids[J]. Inorg. Chem.2009,48:9883-9889.
    [98]Hansdorf S., Baitalow F., Wolf G., Mertens F. O. R. L.. A procedure for the regeneration of ammonia borane from BNH-waste products[J]. Int. J. Hydrogen Energy,2008,33:608-614.
    [99]Davis B. L., Dixon D. A., Garner W. B., Gordon J. C., Matus M. H., Scott B., Stephens F. H.. Efficient regeneration of partially spent ammonia borane fuel[J]. Angew. Chem.,2009,121:6944-6948.
    [100]Smythe N. C., Gordon J. C.. Ammonia borane sa a hydrogen carrier: dehydrogenation and regeneration[J]. Eur. J. Inorg. Chem.,2010,509-521.
    [101]Campbell P. G., Zakharov L. N., Grant D. J., Dixon D. A., Liu S.. Hydrogen storage by boron-nitrogen heterocycles:a simple route for spent fuel regeneration[J]. J. Am. Chem. Soc.,2010,132:3289-3291.
    [102]M(?)ller C., Plesset M. S.. Note on an approximation treatment for many-electron systems[J]. Phys. Rev.,1934,46:618-622.
    [103]Krishnan R., Binkley J. S., Seeger R., Pople J. A.. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions[J]. J. Chem. Phys.,1980,72: 650-654.
    [104]Mclean A. D., Chandler G. S.. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18[J]. J. Chem. Phys.,1980,72(10): 5639-5648.
    [105]Becke A. D.. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys.,1993,98(7):5648-5652.
    [106]Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J. Phys. Chem.,1994,98:11623-11627.
    [107]Lee C., Yang W. T., Parr R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B,1998,37: 785-789.
    [108]Reed A. E., Curtiss L. A., Weinhold F.. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint[J]. Chem. Rev.,1988,88:899-926.
    [109]Hertler W. R., Raasch M. S.. Chemistry of boranes. ⅩⅣ. Amination of B10H10-2 and B12H12-2 with hydrocylamine-O-sulfonic Acid[J]. J. Am. Chem. Soc.,1964,86: 3661-3668.
    [110]Peymann T., Lork E., Schmidt M., Noth H., Gabel D.. N-alkylation of ammine undecahydro-closo-dodecaborate(1-)[J]. Chem. Ber. Recl.,1997,130:795-799.
    [111]Sivaev I. B., Votinova N. A., Bragin V. I., Starikova Z. A., Goeva L. V., Bregadze V. I., Sjoberg S.. Synthesis and derivatization of the 2-amino-closo-decaborate anion [2-B10H9NH3]- [J]. J. Organomet. Chem.,2002,657:163-170.
    [112]Schleyer P. V. R., Maerker C., Dransfeld A., Jiao H. J., Hommes N. J. R. V. E., Nucleus-independent chemical shifts:A simple and efficient aromaticity probe[J]. J. Am. Chem. Soc.,1996,118:6317-6318.
    [113]Stange A.. Nucleus-independent chemical shifts (NICS):distance dependence and revised criteria for aromaticity and antiaromaticity[J]. J. Org. Chem.,2006,71: 883-893.
    [114]Curtiss L. A., Raghavachari K., Redfern P. C., Pople J. A.. Assessment of Gaussina-2 and density functional theories for the computation of enthalpies of formation[J]. J. Chem. Phys.,1997,106:1063-1079.
    [115]Shim I., Baba M. S., Gingerich K. A.. Electronic structure and thermodynamic properties of the molecule GeC from all-electron ab initio calculation and knudsen effusion mass spectrometric measurements[J]. J. Phys. Chem. A,1998,102: 10763-10767
    [116]Wang L. M.. The gas-phase thermochemistry of SeFn, SeFn+, and SeFn- (n=1-6) from Gaussian-3 calculations[J]. Int. J. Mass Spectrom.,2007,264:84-91.
    [117]Frisch M. J., Trucks G. A., Schlegel H. B., Scuseria G. E., Robb M. A., Cheseman J. R., J. A., Montgomery Jr., Vreeven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennuci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochtersky J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi L., Martin R. L., Fox D. J., Keith T., M. Al-Laham A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian 03, Revision C.02; Gaussian, Inc., Wallingford CT,2004.
    [118]Lisovenko A. S., Timoshkin A. Y.. Donor-acceptor complexes of borazines[J]. Inorg. Chem.,2010,49:10357-10369.
    [119]Matus M. H., Liu S. Y., Dixon D. A.. Dehydrogenation reactions of cyclic C2B2N2H12 and C4BNH12 isomers[J]. J. Phys. Chem. A,2010,114:2644-2654.
    [120]Matus M. H., Anderson K. D., Camaioni D. M., Autrey S. T., Dixon D. A.. Reliable predictions of the thermochemistry of boron-nitrogen hydrogen storage compounds: BxNxHy, x=2,3[J]. J. Phys. Chem. A,2007,111:4411-4421.
    [121]Engler E. M., Andose J. D., Schleyer P. W. R.. Critical evaluation of molecular mechanics[J]. J. Am. Chem. Soc.,1973,95(24):8005-8025.
    [122]Hehre W. J., Pople J. A.. Molecular orbital theory of the electronic structure of organic compounds. XXVI. Geometries, energies, and polarities of C4 hydrocarbons[J]. J. Am. Chem. Soc.,1975,97(24):6941-6955.
    [123]Pople J. A., Luke B. T., Frisch M. J., Binkley J. S.. Theoretical thermochemistry.1. Heats of formation of neutral AHn molecules (A=Li to Cl)[J]. J. Phys. Chem.,1985, 89:2198-2203.
    [124]Ruzsinszky A., Alsenoy C. V., Csonka G. I.. Implicit zero-point vibration energy and thermal corrections in rapid estimation of enthalpies of formation from hartree-fock total energy and partial charges[J]. J. Phys. Chem. A,2003,107: 736-744.
    [125]Largo A., Redondo P., Barrientos C.. On the competition between linear and cyclic isomers in second-row dicarbides[J]. J. Am. Chem. Soc.,2004,126:14611-14619.
    [126]Mo Y., Song L. C., Wu W., Zhang Q.. Charge transfer in the electron donor-acceptor complex BH3NH3[J]. J. Am. Chem. Soc.,2004,126:3974-3982.
    [127]Wu W., Gu J. J., Song J. S., Shaik S., Hiberty P. C.. The inberted bond in [1.1.1] propellane is a charge-shift bond[J]. Angew. Chem. Int. Ed.,2009,48:1407-1410.
    [128]Zhang L. X., Ying F. M., Wu W., Hiberty P. C., Shaik S.. Topology of electron charge density for chemical bonds from valence bond theory:a probe of bonding types[J]. Chem. Eur. J.,2009,15:2979-2989.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.