纳米二氧化钛及其复合物在生物电化学领域中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2是一种n型半导体,具有很强的光催化效率。其发生光催化氧化作用的原理是:在紫外光(λ<390nm)照射下,TiO_2受到光激发形成光生空穴-电子对。在空间电场的作用下,空穴可以与电子发生分离,并分别与水和溶解氧作用生成OH·、H_2O_2和HO_2·等活性氧类。这些活性氧类与有机物、细菌、病毒和细胞等发生光催化氧化作用,从而分解有机物和杀灭生物体。纳米TiO_2因具有独特的光催化氧化能力以及无毒、化学性质稳定、成本低等优点而被广泛应用于涂料、生物医学、环境工程等很多方面。
     癌症是当今世界威胁人类健康的大敌,癌症发病率的不断提高要求研究人员不断地寻找新颖且有效的治疗方法,纳米TiO_2光催化杀伤癌细胞是一种新的探索中的治疗癌症的方法。已有的研究成果证明,纳米TiO_2有望成为能有效治疗癌症且对人体毒副反应小的光敏药物,所以探索纳米TiO_2对癌细胞的光催化杀伤作用具有理论意义和实用价值。但是目前纳米TiO_2用于光催化杀伤癌细胞的研究还较少,还有一些问题需要做进一步的研究和探索。其不足之处表现为:(1)纳米TiO_2表面光生电子—空穴对的复合几率较高,其光催化杀伤癌细胞的效率还较低,需要较大浓度的纳米TiO_2,但是过高浓度的光敏剂不适宜用于人体治疗;(2)正常细胞在紫外光照下也可以被纳米TiO_2杀死,所以需要通过提高纳米TiO_2对肿瘤细胞的“靶向性”吸附能力来增强其对肿瘤细胞的杀伤效果,减少其对正常细胞的副作用。为了克服上述缺点,本论文采用化学修饰的方法来提高纳米TiO_2光催化杀伤癌细胞的效率和选择性。同时还研究了纳米TiO_2及其复合物在生物电化学领域中的其它用途,主要研究内容有:
     1.采用沉积-沉淀法(DP)和硼氢化钠还原法合成了Au纳米粒子修饰的P25TiO_2(Au/P25)和Au纳米粒子修饰的锐钛矿型TiO_2(Au/锐钛矿TiO_2),首次深入探讨了Au纳米粒子修饰后纳米TiO_2对癌细胞的杀伤作用。实验结果表明:沉积-沉淀法和化学还原法均可实现Au纳米粒子在TiO_2样品表面的均匀沉积;黑暗中TiO_2纳米粒子和Au/TiO_2纳米复合物对LoVo细胞几乎没有毒性;在紫外光激发下,纳米TiO_2(P25或锐钛矿型)可以通过光催化氧化作用对LoVo细胞产生杀伤作用,而且锐钛矿型TiO_2对LoVo细胞的杀伤效果明显比P25 TiO_2更好;Au沉积能有效提高纳米TiO_2的光催化效率。当加入50μg/mL的P25 TiO_2或锐钛矿TiO_2时,紫外光(光强1.8 mW/cm~2)照射100min后,分别有40%和60%的LoVo细胞被杀死。当加入50μg/mL的2 wt%Au/P25 TiO_2和2 wt%Au/锐钛矿TiO_2时,紫外光(1.8 mW/cm~2)照射100min后,杀伤LoVo细胞分别达到100%和93%。而且Au沉积对光催化效率的提高效果受到沉积量的控制,Au的最佳沉积量为2%;从机理上分析,Au/TiO_2对癌细胞光催化杀伤的作用主要来源于紫外光激发下Au/TiO_2表面生成的活性物种羟基自由基(·OH)。
     2.首次将癌胚抗原单抗与纳米TiO_2粒子进行结合,提出利用癌胚抗原单抗与肿瘤细胞的特异性结合将纳米TiO_2粒子导向癌细胞表面,再利用电穿孔的方法促使它们进入癌细胞中,然后用紫外光照射,使TiO_2纳米粒子在癌细胞内部产生光催化氧化作用杀死癌细胞。紫外-可见吸收光谱和荧光光谱证明了抗体在纳米TiO_2表面的吸附,共聚焦荧光显微镜图像表明了抗体.纳米TiO_2复合物与LoVo癌细胞的选择性结合。而细胞毒性实验结果显示:无光照下纳米TiO_2悬浮液对LoVo癌细胞和正常TE353.sk细胞均无明显的细胞毒性;在紫外光(强度为4mW/cm~2)照射60分钟后,仅用纳米TiO_2时对LoVo细胞的杀死率为47%,而用抗体-纳米TiO_2复合物时癌细胞的死亡率上升为61%;当抗体-纳米TiO_2复合物结合了电穿孔技术后,具有最高的癌细胞杀伤效率和选择性,紫外灯(强度1.8 mW/cm~2)光照90 min后,LoVo癌细胞全部被杀死,而正常TE353.sk细胞仍然有61%的存活率。综上所述,本论文利用抗原和抗体之间的特异性反应和电穿孔技术实现了纳米TiO_2粒子与癌细胞的选择性结合,提高了纳米TiO_2粒子对癌细胞的光催化杀伤效应。
     3.以三嵌段高分子非离子表面活性剂(EO_(20)PO_(70)EO_(20),P123)为结构导向剂,采用模板组装法合成了孔径分布均一、比表面积高的有序介孔二氧化钛材料,并以大肠杆菌(E.coli)为实验对象,首次研究了该有序纳米介孔TiO_2对大肠杆菌的光催化杀菌效应。实验结果表明:合成的介孔TiO_2具有较大的孔径(约6.5nm),且孔径分布较窄、比表面积(BET)为208m~2/g,约为无表面活性剂时合成的TiO_2(50m~2/g)的四倍;制备的有序介孔纳米TiO_2材料具有良好的光催化杀菌效应,光照60分钟后,大肠杆菌的存活率仅为10%,光照120min后,大肠杆菌的存活率几乎为零;随着有序介孔纳米TiO_2量的增加,对大肠杆菌的杀死效率也提高;在一定的菌液浓度条件下,存在一个发挥杀菌效率最佳的TiO_2量,本实验中TiO_2的最佳浓度为1mg/ml。
     4.采用沉积.沉淀法合成了Au负载量为8 wt%的Au纳米粒子修饰的纳米TiO_2复合物(AuNP-TiO_2),并将其应用于固定辣根过氧化物酶(HRP),考察利用Au纳米粒子修饰的纳米TiO_2复合物加速HRP与玻碳电极之间的直接电子传递行为,探索研制非媒介体型的过氧化氢传感器。实验结果表明:当纳米TiO_2用Au纳米粒子修饰后,电极的反应电阻大大下降,TiO_2/GC电极的反应电阻为1548 O,而AuNP-TiO_2/GC电极的反应电阻为1134 O;Au在纳米TiO_2上的修饰提高了HRP的电化学响应,HRP/AuNP-TiO_2/GC电极的氧化还原峰电流大于HRP/TiO_2/GC电极的峰电流;HRP/AuNP-TiO_2/GC电极中的HRP对过氧化氢具有较强的催化作用,对H_2O_2具有快速地电流响应,能在小于2秒的时间内达到95%的稳态电流;HRP/AuNP-TiO_2/GC电极具有较小的表观米氏常数K_M~(app)(234μM),说明固定在AuNP-TiO_2膜中的HRP显示了较高的酶催化活性和对过氧化氢的高亲和力;HRP/AuNP-TiO_2/GC电极的重现性较好,对浓度为200μM过氧化氢连续测试6次,其相对标准偏差(R.S.D.)为4.3%。
     5.初步尝试以高压汞灯作为紫外线的光源,以纳米TiO_2溶胶作为载体,采用简便的紫外光还原法制备了纳米Au/TiO_2复合半导体粒子。用紫外—可见光谱,SEM和XRD进行了表征,证实了纳米Au粒子的形成,并采用提拉法将此复合溶胶固定在ITO基底上制备成薄膜,测量纳米Au/TiO_2复合膜电极的光电流,考察纳米Au/TiO_2复合膜的光电化学性质。实验结果表明:光电流起于345 nm,并在360 nm波长时光电流达到峰值,然后光电流值开始减小,当波长达到395 nm时,光电流会变得较弱;纳米Au/TiO_2电极的光电流值明显大于没有修饰纳米Au的TiO_2电极,当光的波长为360nm时,纳米TiO_2膜电极的光电流值为23nA/cm~2,而纳米Au/TiO_2复合膜电极的光电流为37 nA/cm~2。总体来说,纳米Au的修饰能显著提高TiO_2电极光电响应,从而提高TiO_2电极的光电转换效率。
Titanium dioxide (TiO_2) is n-type semiconductor and has unique photocatalytic properties. Its principle is as follows: (1) When TiO_2 photocatalysts were illuminated under UV light with wavelengths of less than 385 nm, electrons in the valence band of the TiO_2 semiconductor nanoparticles are excited to jump to the conduction band, and create photo-induced electron-hole pairs at the surface of the TiO_2; (2) Under the action of electric field in space charge layer, the photoinduced electrons and holes separated; (3) The photogenerated holes can react with adsorbed hydroxyl ions (OH~-) or water (H_2O) to produce the highly reactive oxygen species (ROS) such as the radicals OH and HO_2; (4) The photoinduced electrons can react with oxygen vacancies to form superoxide ions (O_2~-). These ROS will react with organic substance, bacteria, virus, cancer cells, which results in the decomposition and damage of organism structure through a series of oxidation reaction. TiO_2 nanoparticle has important applications in catalysis, environmental protection, medicine and health, electronic industry because of its unique characteristics such as safety, little noxious and side effect, minor wound, excellent chemical stability, and low price.
     Cancer has become severe harm to people's health in our country. The rising incidence of cancer in the world demands an increase in effort towards the development of novel and effective therapy for killing cancer cells. TiO_2 photocatalytic oxidation killing cancer cells is an exploring therapy for cancer. As one kind of photosensitize, TiO_2 nanoparticle is an attractive minimal-invasive treatment reagent for cancers because of the localized phototoxic effect upon irradiation and has been successfully used to treat gastric cancer, colon carcinoma, and so on. It is important and worthwhile to explore further the photocatalytic killing effect of TiO_2.However, up till now, such researches on TiO_2 photocatalytic killing cancer cells have still been few. Furthermore, TiO_2 nanoparticles have some drawbacks in clinical use: (1) The high degree of recombination between photogenerated electrons and holes is a major limiting factor controlling the photocatalytic efficiency; (2) TiO_2 has insufficient selectivity and low efficiency resulted from lack of cell-specific accumulation of TiO_2 on cancer cells. In order to improve the selectivity and photocatalytic efficiency of TiO_2 on cancer cells, we took chemical modification methods. In addition, we studied other application of TiO_2 and Au/TiO_2 in bioelectrochemical area. The main results and conclusions are summarized as follows:
     1.Gold-capped TiO_2 (AU/TiO_2) nanocomposites with different Au ratio (1-4 wt%) were successfully prepared by gold deposition on the surface of TiO_2 nanoparticles (P25 or anatase TiO_2) using deposition-precipitation (DP) and chemical reduction methods. The synthesized Au/TiO_2 nanocomposites were characterized by X-ray reflection diffraction (XRD), transmission electron microscopy (TEM), inductively coupled plasma atom emission spectroscopy (ICP-AES) and UV-vis spectroscopy. The photocatalytic killing effect of TiO_2 nanoparticles and Au/TiO_2 nanocomposites on cancer cells was investigated quantitatively and compared using human colon carcinoma LoVo cells as a model. The experimental results show that in comparison with photoexcited pure TiO_2 nanoparticles, the modification of gold nanoparticles on the surface of the TiO_2 nanoparticles (P25 or anatase TiO_2) can greatly improve the photocatalytic killing effect on LoVo cancer cells. In the case of using culture medium containing 2 wt% Au/P25 TiO_2 nanocomposites, the LoVo cancer cells were totally photokilled within 100 min under the irradiation of UV light (λ=365nm, 1.8 mW/cm~2) , while only 40% cancer cells were photokilled in the case using P25 TiO_2 nanoparticles. Furthermore, the noble metal amount on the TiO_2 surface influence the efficiency of the photocatalytic process and the maximum photocatalytic killing effect was obtained with about 2 wt% Au on TiO_2 sample.
     2.We firstly conjugated TiO_2 nanoparticles with a specific antibody against the carcinoembryonic antigen (CEA) of human LoVo cancer cells, which is useful for target accumulation of TiO_2 nanoparticles on LoVo cancer cells. Furthermore, we utilized electroporation to improve the delivery of antibody-TiO_2 bioconjugates into the cancer cells. The combination of electroporation and synthesized antibody-TiO_2 bioconjugates can improve the photokilling selectivity and efficiency of photoexcited TiO_2 on cancer cells. The experimental results demonstrate that highly cell-specific antibody-TiO_2 bioconjugates were achieved and delivered into human LoVo cancer cells using electroporation technique. Under UV light (365 nm) irradiation, 100% of the cancer cells were photokilled within 90 min, while in control, only 39% of the normal cells were killed. This combination method shows high cell-specificity and efficiency in photokilling cancer cells, indicating the potential of this bioconjugates as photosensitizes for photodynamic therapy. Furthermore, this method may be used to photokill various kinds of caner cells by using similar procedure, just need to change the corresponding antibodies.
     3.We synthesized ordered mesoporous TiO_2 using block copolymer EO_(20) PO_(70) EO_(20) (P123) as the template. The mesoporous material presents high surface area (BET surface area: 208m~2/g) and high ordered structure. The photocatalytic bactericidal behaviors of this mesoporous TiO_2 are firstly studied. Experimental results show that E.coli can be efficiently killed by the mesoporous TiO_2 under UV irradiation and the cell viability is only 10% of initial cell amount after 60min illumination. After 120min irradiation, E.coli can be completely killed. The effect of different TiO_2 loading on the inactivation of E.coli is investigated, revealing that the optimum concentration of TiO_2 is 1 mg/mL. Compared with other TiO_2 materials, ordered mesoporous TiO_2 shows its high photocatalytic bactericidal capability. After 60min irradiation, the ordered mesoporous TiO_2 can photokill 90% of E.coli, but the bactericidal efficiency of commercial bulk TiO_2 and nano-TiO_2 is 25% and 70%, respectively. The possible bactericidal mechanism is also discussed.
     4.Gold nanoparticles-modified TiO_2 nanocomposite (AuNP-TiO_2) was used to immobilize horseradish peroxidase (HRP) on a glassy carbon electrode surface for the construction of an amperometric hydrogen peroxide (H_2O_2) biosensor. The properties of HRP immobilized in the AuNP-TiO_2 film were characterized by the electrochemical methods. The HRP immobilized in the AuNP-TiO_2/GC electrode retained its bioactivity and exhibited a pair of well-defined and quasi-reversible cyclic voltammetric peaks at about-0.330 V versus saturated calomel electrode (SCE) in pH 7.0 buffers. Moreover, the HRP immobilized in AuNP-TiO_2/GC electrode exhibited a rapid electrocatalytical response (less than 2 s), a linear calibration range from 2.0μM to 280μM and a sensitivity of 16μA mM~(-1) for monitoring of H_2O_2.The apparent Michaelis-Menten constant (K_m~(app)) of the biosensor was calculated to be 234μM. The good direct electrochemical behavior of HRP and electrocatalytical response to H_2O_2 reduction was due to the enhancement of specific surface area and the reduction of electron transfer resistance by the uniform deposition of gold nanoparticle on TiO_2 surface.
     5.Au/TiO_2 nanocomposites have been prepared by using high-pressure mercury lamp as the light source to illuminate the HAuCl_4/nano-TiO_2 solution. SEM, XRD and UV-Vis absorption spectrum confirmed the existence of the Au nanoparticles in the composite material. The formation mechanism of Au nanoparticles is proposed. The nano-Au/TiO_2 composite film modified ITO presented higher photocurrent than the pure TiO_2 film modified ITO. The improvement of this photoelectrochemical performance can be explained as the inhibition in charge recombination of photo-induced electrons and holes, and the improvement in interfacial charge-transfer kinetics at nano-Au/TiO_2 composite film. The nano-Au/semiconductor composite films have potential applications in photocatalytic system and photoelectrochemical solar cells.
引文
[1] D. F. Ollis, E. Pelizzetti, N. Serpone. Photocatalyzed destruction of water contaminants [J]. Environ. Sci. Technol., 1991, 25 (9): 1522-1529.
    [2] A. Haarstrick, O. M. Kut, E. Heinzle. TiO_2-assisted degradation of environmentally relevant organic compounds in waste water using a novel fluidized bed photoreactor [J]. Environ, Sci. Technol., 1996, 30 (3): 817-824.
    [3] 唐玉朝,胡春,王怡中.TiO_2光催化反应机理及动力学研究进展[J].化学进展,2002,14(3):192-199.
    [4] 王福平,孙德智,王俊辉,苏彤.用纤维TiO_2作光催化剂降解饮用水中腐殖质[J].高技术通讯,1998,8(12):21-24.
    [5] 方佑龄,赵文宽,尹少华等.纳米TiO_2在空心陶瓷微球上的固定化及光催化分解辛烷[J].应用化学,1997,14(4):81-83.
    [6] 贺飞,唐怀军,赵文宽,方佑龄.二氧化钛光催化自洁功能陶瓷的研制[J].武汉大学学报(理学版),2001,47(4):419-424.
    [7] A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.
    [8] B. O'Regan, M. Gratzel. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO_2 films [J]. Nature, 1991, 353: 737-740.
    [9] Y. Ohko, S. Saitoh, T. Tatsuma, A. Fujishima. Photoelectrochemical anticorrosion and self-cleaning effect of a TiO_2 coating for type 304 stainless steel [J]. J. Electrochem. Soc., 2001, 148(1): 24-28.
    [10] J. Yuan, S. Tsujikawa. Characterization of Sol-Gel-Derived TiO_2 coating and their photoeffects on copper substrates [J]. J. Electrochem. Soc., 1995, 142(10): 3444-3450.
    [11] 刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,第一版,2006.
    [12] 施利毅,李春忠,房鼎业.气相氧化法制备超细Yi02粒子的研究进展[J].材料导报,1998,6:23-26.
    [13] 杨海垄.气相氢氧焰水解法生产超微细二氧化钛[J].中国粉体技术,2000,1:30-34.
    [14] 李晓娥,陈秀娟,张森等.醇盐水解制备纳米级二氧化钛[J].稀有金属材料与工程,1995,24(5):65-70.
    [15] M. Jakob, H. Levanon, P. V. Kamat. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the fermi level [J]. Nano Letters, 2003, 3(3): 353-358.
    [16] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gratzel. Conversion of light to electricity by cis-X2bis(2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. J. Am. Chem .Soc., 1993, 115: 6382-6390.
    [17] 傅正文,罗骞,张伟,赵东元,秦启宗,有序中孔纳米多晶TiO_2薄膜的Li~+嵌脱行为[J].化学学报,2000,58(10),1226-1229.
    [18] Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai, Photoelectrochemical properties of metal-ion-doped TiO_2 nanocrystalline electrodes [J]. Thin. Solid. Films, 1999, 349, 120-125.
    [19] 高濂,陈锦元,黄军华等.醇盐水解法制备二氧化钛纳米粉体fJ].无机材料学报,1995,10(4):423-427.
    [20] 张汝冰,刘宏英,李凤生.均匀沉淀法制备纳米TiO_2及其在环保方面的应用[J].环境化学,1999,18(6):579-583;
    [21] 施利毅,胡莹玉,张剑平,房鼎业,李春忠.微乳液反应法合成二氧化钛超细粒子[J].功能材料,1999,30(5):495-497.
    [22] 全学军,李大成,谢扩军等.微波能在制备超细YiO_2中的应用[J].电子元件与材料,1998,17(2):38-40.
    [23] T. Ashikaga, M. Wada, H. Kobayashi, M. Mori, Y. Katsumura, H. Fukui, S. Kato, M. Yamaguchi, T. Takamatsu. Effect of the photocatalytic activity of TiO_2 on plasmid DNA [J]. Mutation Research, 2000, 466: 1-7.
    [24] 江显异,赵英.TiO_2薄膜的抗菌作用[J].陶瓷,2002,5:14-17.
    [25] J. A. Ilmay, I. Fridovich. Suppression of oxidative envelope damage by pseudoreversion of flsuperoxide dismutase dericient murant of E [J]. Coli J Bacteriol, 1992, 174(3): 953-961.
    [26] R. X. Cai, K. Hashimoto, K. Itoh, etal. Photokilling of malignant cells with ultrafine TiO_2 powder [J]. Bull Chem Soc Jpn, 1991, 64 (4): 1268-1273.
    [27] E. Pelizzeti, C. Minero. Mechanism of the photo-oxidative degradation of organic pollutants over TiO_2 particles [J]. Electrochimica Acta, 1993, 38(1): 47-55.
    [28] W. Chang, Y. L. Wen, Z. Zulkarnain, etal. Bactericidal activity of TiO_2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system [J]. Environmental Science and Technology, 1994, 28: 934-938.
    [29] M. Tomkiewicz. Scaling properties in photocatalysis [J]. Catalysis Today, 2000, 58: 151-159.
    [30] M. N. Hoffman, S. T. Martin, etal. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95: 69-76.
    [31] L. E. Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state [J]. J. Chem. Phys., 1984, 80: 4403-4409.
    [32] P. J. Senogles, J. A. Scott, G. Shaw, H. Stratton. Photocatalytic degradation of the cyanotoxin cylindrospermopsin, using titanium dioxide and UV irradiation [J]. Water Research, 2001, 35(5): 1245-1255.
    [33] G. S. Shephard, S. Stockenstron, D. V. David, W. J. Engelbrecht. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst [J]. Water Research, 2002, 36(1): 140-146.
    [34] M. S. Kim, K. M. Hong, G. C. Jaygwan. Removal of Cu(Ⅱ) from aqueous solutions by adsorption process with anatase-type titanium dioxide [J]. 2003, 37(14): 3524-3529.
    [35] G. Jlannna, M. A. Waldemar. Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide [J]. Applied Catalysis B: Environmental, 2002, 36(1): 45-51.
    [36] Z. Beata, G. Joanna, G. Barbara, A. W. Morawski. Photocatalytic degradation of reactive black 5: a comparison between TiO_2-Tytanpol all and TiO_2-Degussa P25 photocatalysts [J]. Applied Catalysis B: Envrionmental, 2001, 35(1): L1-L7.
    [37] 张庆庆,汤斌,薛正莲,陶玉贵,黄晓东.聚丙烯二氧化钛负载固定化活性污泥对污水处理的研究[J].生物学杂志,2004,21(1):15-16.
    [38] 张金龙,徐华胜,安保正一,紫外光照射下丙炔光催化水解反应的研究Ⅰ.纳米二氧化钛光催化剂的性能Ⅰ.纳米二氧化钛光催化剂的性能[J].催化学报,2003,24(11):845-848.
    [39] 张海禄,童仕唐,吴省.载银二氧化钛光催化性能的研究[J].应用化工,2003,32(2):20-22.
    [40] 黄进,王斌.二氧化钛的制备及光催化降解阳离子艳红染料[J].环境工程,2003,21(1):72-75.
    [41] 冷文华,张莉,成少安,张鉴清,曹楚南.负载二氧化钛光催化降解水中对氯苯胺(PCA)[J].环境科学,2000,21(6):46-50.
    [42] 张天永,李祥忠,赵进才.国产二氧化钛在光催化降解染料废水中的应用[J].催化学报,1999,20(3):356-358.
    [43] 范崇政,肖建平,丁延伟.纳米TiO_2的制备与光催化反应研究进展[J].科学通报,2001,4(46):265-273.
    [44] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews, 1995, 95(1): 69-76.
    [45] A. Rachel, M. Sarakha, M. Subrahmanyam, P. Boule. Comparison of several titanium dioxide for the photocatalytic degradation of benzensulfonic acids [J]. Applied Catalysis B: Environmental, 2002, 37(4): 293-300.
    [46] 岳林海.稀土元素掺杂二氧化钛催化剂光降解久效磷的研究[J].上海环境科学,1998,17(9):17-19.
    [47] R. Dillert, A. E. Cassano, R. Goslich, D. Bahnemann. Large scale studies in solar catalytic waste water treatment [J]. Catalysis Today, 1999, 54(2-3): 267-282.
    [48] S. Yamazaki, S. Matsunaga, K. Hori. Photocatalytic degradation of trichloroethylenein water using TiO_2 pellets [J]. Wat. Res. 2001, 35(4): 1022-1028.
    [49] G. Martra. Lewis acid and base sites at the surface of microcrystalline TiO_2 anatase: Relationships between surface morphology and chemical behaviour [J]. Applied Catalysis A, 2000, 200(2): 275-285.
    [50] E. Borgarello, N. Serpon, G. Emo, R. Harris, E. Pelizzeti, C. Minero. Light-induced reduction of rhodium(Ⅲ) and palladium(Ⅱ) on titanium dioxide dispersions and the selective photochemical sepatation and recovery of gold(Ⅲ), platinum(Ⅳ), and rhodium(Ⅲ) in chloride media [J]. Inorg. Chem., 1986, 25(25): 4499-4503.
    [51] J. Papp, H. S. Shen, R. Kershaw, K. Dwight, A. Wold. Titanium(IV) oxide photocatalysts with palladium [J]. Chem. Mater., 1993, 5 (3): 284-288.
    [52] 李晓倩,孙晓君,井立强,蔡伟民,王二东.Au改性TiO_2纳米粒子的制备及其光催化活性[J],哈尔滨工业大学学报,2004,36(10):1368-1371.
    [53] N. Serpone, I. Texier, A. V. Emeline, E Pichat, H. Hidaka, J. Zhao. Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO_2/water interfaces in the presence of prominent hoIscavengers [J]. J. Photochem. Photobiol. A, 2000, 136(3): 145-155.
    [54] A. Dawson, E V. Kamat. Semiconductor-metal nanocomposites photoinduced fusion and photocatalysis of gold-capped TiO_2 (TiO_2/Gold) nanoparticles [J]. J Phys. Chem. B, 2001, 105(5): 960-966.
    [55] M. Schiaveuo. Some working principles of heterogeous photocatalysis by semiconductors [J]. Electrochemical Acta, 1993, 38(1): 1056-1062.
    [56] T. Tanaka, T. Ito, S. Takenaka, T. Funabiki, S. Yoshida. Photocatalytic oxidation of alkane at a steady rate over alkali-ion-modified vanadium oxide supported on silica [J]. Catal. Today, 2000, 61(4): 109-115.
    [57] J. J. Testa, M. A. Grela, M. I. Litter. Experimental evidence in favor of an initial one-electron-transfer process in the Heterogeneous photocatalytic reduction of chromium (Ⅵ) over TiO_2 [J]. Langmuir, 2001, 17(12): 3515-3517.
    [58] M. G. Kang, H. E. Han, K. J. Kim. Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO_2 [J]. J Photochem Photobiol: A, 1999, 125(3): 119-125.
    [59] S. Al-Qaradawi, S. R. Salman. Photocatalytic degradation of methyl orange as a model compound [J]. J. Photochemistry and Photobiology A, 2002,148(1-3): 161-168.
    [60] A. V. Vorontsov, I. V. Stoyanova, D. V. Kozlov, V. I. Simagina, E. N. Savinov. Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide [J]. Journal of Catalysis, 2000,189(2): 360-369.
    [61] J. C. Yu, J. Lin, R. W. M. Kwok. Enhanced photocatalytic activity of Ti_(1-x)V_xO_2 solid solution on the degradation of acetone [J]. J. Photochem. Photobiol A, 1997,111(1-3): 199-203.
    [62] J. C. Yu, J. Lin, R. W. M. Kwok. Ti_(1-x)Zr_xO_2 solid solutions for the photocatalytic degradation of acetone in air [J]. J.Phys .Chem., 1998,102(26): 5094-5098.
    [63] J. F. Kelly, M. E. Snell. Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder [J]. J Urol. 1976,115(2): 150-151.
    [64] E. Rodriguez, P. Baas, J. S. Friedberg. Innovative therapies: photodynamic therapy [J]. Thorac Surg Clin, 2004,14 (4): 557-566.
    [65] Z. H. Huang, G J. Zhou, J. L. Yu, Z. Li, L. S. Ding, R. X. Xu, X. D. Jiang. Efect of photodynamic therapy with 5-aminolevulinic acid on human gastric cancer cells in vitro [J]. Nan Fang Yi Ke Da Xue Xue Bao. 2006, 26(3): 255-257.
    [66] Z. Huang. A review of progress in clinical photodynamic therapy [J]. Technol Cancer Res Treat. 2005, 4(3): 283-293.
    [67] K. Kondo, T. Miyoshi, H. Takizawa, K. Kenzaki, S. Sakiyama, A. Tangoku.Photodynamic therapy for submucosal tumor of the central bronchus [J]. J Med Invest. 2005, 52 (3-4): 208-211.
    [68] H. F. Huang, Y. Z. Chen, Y. Wu. ZnPcS2P2-based photodynamic therapy induces mitochondria-dependent apoptosis in K562 cells [J]. Acta Biochim Biophys Sin,2005, 37 (7): 488-494.
    [69] D. Nowis, M. Makowski, T. Stoklosa, M. Legat, T. Issat, J. Golab. Direct tumor damage mechanisms of photodynamic therapy [J]. Acta Biochim Pol., 2005,52(2): 339-352.
    [70] H. Wiseman, B. Halliwell. Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer [J]. J. Biochem., 1996, 313: 17-19.
    [71] T. V. Akhlynina, D. A. Jans, A. A. Rosenkranz etal. Nuclear targeting of chlorin e6 enhances its photosensitizing activity [J]. J. Biol. Chem., 1997, 272: 20328-20331.
    [72] T. V. Akhlynina, D. A. Jans, N. V. Statsyuk, I. Y. Balashova, G. Toth, I. Pavo, A.A. Rosenkranz, B. S. Naroditsky, A. S. Sobolev. Adenovirus synergize with nuclear localsation signals to enhance nuclear deliver and photodynamic action of internalizable conjugates containing chlorin e6 [J]. Int. J. Cancer, 1999, 81(5):734-740.
    [73] A. Douplik, A. A. Stratonnikov, V. B. Loshchenov, V. S. Lebedeva, V. M. Derkacheva, I. Alex Vitkin, V. D. Rumyanceva, S. G. Kusmin, A. F. Mironov, E.A. Luk'Yanets. Study of photodynamic reactions in human blood [J]. J Biomed Opt, 2000, 5(3): 338-349.
    [74] T. Ito. Cellular and subcellular mechanisms of photodynamic action: The singlet oxygen hypothesis as a driving force in recent research [J]. Photochem Photobiol., 1978, 28: 493-508.
    [75] C. Tanielian, R. Mechin, R. Seghrouchni, C. Schweitzer. Mechanistic and kinetic aspects of photosensitization in the presence of oxygen [J]. Photochem Photobiol,2000,71 (1):12-19.
    [76] M. A. El-Missiry, M. Abou-Seif. Photosensitization induced reactive oxygen species and oxidative damage in human erythrocytes [J]. Cancer Lett, 2000, 158(2): 155-163.
    [77] L. Lilge, M. Portnoy, B. C. Wilson. Apoptosis induced in vivo by photodynamic therapy in normal brain and intracranial tumour tissue [J]. Br. J. Cancer, 2000, 83 (8): 1110-1117.
    [78] I. E. Kochevar, M. C. Lynch, S. Zhuang, C. R. Lambert. Singlet oxygen, but not oxidizing radicals, induces apoptosis in HL-60 cells [J]. Photochem Photobiol,2000, 72(4): 548-553.
    [79] I. Schulz, H. C. Mahler, S. Boiteux, B. Epe. Oxidative DNA base damage induced by singlet oxygen and photosensitization: Recognition by repair endonucleases and mutagenicity [J]. Mutation Research, 2000, 461(2): 145-156.
    [80] C. Salet, G. Moreno, F. Ricchelli, P. Bernardi. Singlet oxygen produced by photodynamic action causes activation of the mitochondrial permeability transition pore [J]. J Biol. Chem, 1997, 272(35): 21938-21943.
    [81] V. Gottfried, D. Peled, J. Winkelman, S. Kimel. Photosensitizers in organized media: Singlet oxygen production and spectral properties [J]. Photochem.Photobiol, 1988, 48:157-163.
    [82] R. Nilsson, P. Merkel, D. Keams. Unambiguous evidence for the participation of singlet oxygen in photodynamic oxidation of amino acids [J]. Photochem.Photobiol., 1972,16: 117-124.
    [83] X. Zhou, B. W. Pogue, B. Chen, T. Hasan. Analysis of effective molecular diffusion rates for verteporfin in subsutaneous versus orthotopic Dunning prostate tumors [J]. Photochem Photobiol., 2004,79(4): 323-331.
    [84] K. I. Lin, N. Chattopadhyay, M. Bai, R. Alvarez, C. V. Dang, J. M. Baraban, E. M. Brown, R. R. Ratan. Elevated extracellular calcium can prevent apoptosis via the calcium-sensing receptor [J]. Biochem. Biophys. Res. Commu, 1998, 249(2): 325-331.
    [85] Z. Malik, H. Lugaci. Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins [J]. Br. J. Cancer,1987, 56: 589-595.
    [86] 马金石.卟啉类第二代光敏剂的发展[J].感光科学与光化学,2002,20(2):131-148.
    [87] R. E Turchiello, E C. B. Vena, Ph. Maillard, C. S. Souza, M. V. B. L. Bentley, A. C. Tedesco. Cubic phase gel as a drug delivery system for topical application of 5-ALA, its ester derivatives and m-THPC in photodynamic therapy(PDT). J Photochem Photobiol B, 2003, 70(1): 1-6.
    [88] S. K. Bisland, D. Singh, J. Gariepy. Potentiation of chlorine e6 photodynamic activity in vitro with peptide-based intracellular vehicles [J]. Bioconjugate Chemistry, 1999, 10: 982-992.
    [89] A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, G. B. Behera. Cyanines during the 1990s: a review [J]. Chemical Reviews, 2000, 100: 1973-2011.
    [90] J. Xie, J. Ma, J. Zhao. Prediction on amphiphilicity of hypocrellin derivatives [J]. Science in China (series B), 2002, 45 (3): 251-255.
    [91] 林善良,王荣先,李美佳.光动力治疗药物研究进展[J].国外医学放射医学·核医学分册,1999,23(3):124-127.
    [92] 王瑞平,李迎新.光动力疗法在肿瘤治疗中的应用[J].国外医学生物医学工程分册,1999,22(6):355-359.
    [93] P. Shum, J. M. Kim, D. H. Thompson. Phototriggering of liposomal drug delivery systems [J]. Advanced Drug Delivery Reviews, 2001, 53: 273-284.
    [94] Z. Sheng, X. Ye, Z. Zheng, S. Yu, D. K. P. Ng, T. Ngai, C. Wu. Transient absorption and fluorescence studies of disstacking phthalocyanine by poly(ethylene oxide) [J]. Macromolecules, 2002, 35: 3681-3685.
    [95] 李桂兰.用于肿瘤光动力治疗的不对称a光敏剂中间化合物的合成[M].北京:中国协和医科大学出版,2000.
    [96] M. Daphne, C. K. Wat, G. H. N. Touers, etal. Photoimmunotherapy: treatment of animal tumors with tumor specific monoclonal antihody-hemotoporphyrin conjugates [J]. J. Immunol., 1983, 130 (3):1473-1477.
    [97] L. R. Duska, M. R. Hamblin, J. L. Miller, T. Hasan. Combination photoimmunotherapy and cisplatin: effects on human ovarian cancer ex vivo [J]. J. National Cancer Inst. 1999, 91 (18): 1557-1663.
    [98] 陈璐,罗荣城,李黎波,严晓,丁雪梅.血卟啉-赫赛汀光敏免疫偶联物的制备及光敏免疫疗法研究[J].南方医科大学学报,2006,26(3):355-357.
    [99] 傅晓琴,王平.二氧化钛光照对人癌细胞光敏作用的研究[J].华南国防医学杂志,2002,16(4):29-31.
    [100] 高春华,黄新友,纳米TiO_2光催化在医学上的应用[J].新材料产业,2003,7:68-71
    [101] H. Sakai, R. X. Cai, T. Kato, etal. Photocatalytic efect of TiO_2 particles on tumor cells-study on mechanism of cell death by measuring concentration of intracellular calcium ion [J]. Photomed. Photobiol., 1990, 12: 135-138.
    [102] R. X. Cai, K. Hashimoto, Y. Kubota. etal. Increment of photocatalytic killing of cancer cells using TiO_2 with the aid of superoxide dismutase [J]. Chem. Lett., 1992, 427-430.
    [103] R. X. Cai, Y. Kubota, T. Shuin, etal. Induction of cytotoxicity by photoexcited TiO_2 particles [J]. Cancer Res., 1992, 52: 2346-2348.
    [104] A. Fujishima, R. X. Cai, J. Otsuki. etal. Biochemical application of photoelectrochemistry: photokilling of malignant cells with TiO_2 powder [J]. Electrochim Acta, 1993, 38 (1): 153-157.
    [105] H. Sakai, E. Ito, R. X. Cai, etal. Intracellular Ca~(2+) concentration change of T24 cell under irradiation in the presence of TiO_2 ultrafine particles [J]. Biochim Biophys Acta, 1994, 1201: 259-265.
    [106] Y. Kubota, T. Shuin, C. Kawasaki, etal. Photokilling of T-24 human bladder cancer cells with titanium dioxide [J]. Br J Cancer, 1994, 70: 1107-1111.
    [107] H. Sakai, R. Baba, K. Hashimoto, etal. Selective killing of a single cancerous T24 cell with TiO_2 semiconducting microelectrode under irradiation [J]. Chem. Lett., 1995, 185-186.
    [108] 徐敏华,黄宁平,顾建华.TiO_2光化自由基对U937细胞氧化压迫凋亡研究[J].东南大学学报,1997,27(4):15-18.
    [109] 黄宁平,黄丹,徐敏华,袁春伟.超微粒TiO_2对U937细胞光杀伤效应及机理研究[J].生物化学与生物物理进展,1997,24(5):470-473.
    [110] 王浩,赵文宽,方佑龄,王润帮,李莉.二氧化钛光催化杀灭肿瘤细胞的 研究[J].催化学报,1999,20(3):373-374.
    [111] 熊先立,吴美玲,李世普.纳米二氧化钛对人肝癌Bel-7402细胞周期的影响[J].肿瘤防治研究,2003,30(4):300-300.
    [112] 张爱平,张彦平,樊彩梅.纳米TiO_2对胃癌细胞的光催化氧化杀伤效应[J].应用化学,2004,21(11):1109-1112.
    [113] 朱梅英,崔晓莉.纳米TiO_2在医学领域中的应用研究进展[J].复旦学报(医学版),2005,32(2):249-252.
    [114] 夏春辉,刘亚琴,王玉,李红梅.抗癌光敏剂纳米二氧化钛研究进展[J].医学研究杂志,2006,35(7):80-82.
    [115] H. Hidaka, S. Horikoshi, N. Serpone, J. Knowland. In vitro photochemical damage to DNA, RNA and their bases by an inorganic sunscreen agent on exposure to UVA and UVB radiation [J]. Photochem Photobiol A, 1997, 111: 205-213.
    [116] A. Fujishima, N. R. Tata, A. T. Donald. Titanium dioxide photocatalysis [J]. Photochem Photobiol C: Photochem Rev, 2000, 1: 1-21.
    [117] S. J. Singer, G. L. Nicolson. The fluid mosaic model of the structure of cell membranes [J]. Science, 1972, 175: 720-731.
    [118] 熊兰,孙才新,廖瑞金,胡丽娜,李大强.细胞膜电穿孔的机理及应用前景的初步探讨[J].重庆大学学报,2000,23(4):76-79.
    [119] J. C. Weaver. Electroporation of cells and tissues [J], IEEE Trans. Plasma Sci., 2000, 28 (1): 24-33.
    [120] J. Labanauskiene, J. Gehl, J. Didziapetriene. Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro[J]. Bioelectrochemistry, 2007, 70: 78-82.
    [121] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake. Photochemical sterilization of microbial cells by semiconductor powders [J]. FEMS Microbiol. Lett., 1985, 29(4): 211-214.
    [122] Y. Horie, D. A. David, M. Taya, S. Tone. Efects of light intensity and titanium dioxide concentration on photocatalytic sterilization rates of microbial cells [J]. Ind Eng Chem Res, 1996, 35: 3920-3926.
    [123] K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima. Bactericidal and detoxification effects of TiO_2 thin film photocatalysts [J]. Environ Sci Technol, 1998, 32 (5): 726-728.
    [124] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima. Photocatalytic bactericidal effect of TiO_2 thin films: dynamic view of the active oxygen species responsible for the effect [J]. J. Photochem. Photobiol. A, 1997, 106: 51-56.
    [125] S. Nagame, T. Oku, M. Kambara, etal. Antibacterial effect of the powdered semiconductor TiO_2 on the viability of oral micro-organisms [J]. J. Dent. Res, 1989, 68: 1696-1697.
    [126] H. N. Pham, E. Wilkins, A. S. Heger, etal. Quantitative analysis of variations in initial Bacillus pumilus spore densities in aqueous TiO_2 suspension and design of a photocatalytic reactor[J]. J Environ. Sci. Health, Part A: Environ Sci Eng Toxic Hazard Subst Control, 1997, A32 (1): 153-163.
    [127] I. M. Butterfield, P. A. Christensen, T. P. Curtis, J. Gunlazuardi. Water disinfection using an immobilized titanium dioxide film in a photochemical reactor with electric field enhancement [J]. Water Res, 1997, 31(3): 675-677.
    [128] B. Kim, D. Kim, D. Cho, S. Cho. Bactericidal effect of TiO_2 photocatalyst on selected food-borne pathogenic bacteria [J]. Chemosphere, 2003, 52(1): 277-281.
    [129] J. A. Jlmay, I. Fridovich. Suppression of oxidative damage by pseudoreversion of a superoxide dismounts deficient mucanc of E.Coli [J]. J Bacteriol., 1992, 174(3): 953-961.
    [130] K. Shimada, K. Shimahara. Responsibility of hydrogen peroxide for the lethality of resting Escherichia Coli. B cells [J]. Agric Biol Chem, 1982, 46(8): 1329-1337.
    [131] 吕跃钢,马家津.TiO_2/GAC光催化剂对中水杀菌效果的研究[J].北京工商大学学报(自然科学版),2005,23(4):4-7.
    [132] 苏会东,郝清伟,邵忠财,翟玉春.载银微弧氧化TiO_2膜光催化杀菌研究[J].稀有金属快报,2005,24(10):18-22.
    [133] G. Battistuzzi, M. Borsari, D. Dallari, I. Lancellotti, M. Sola. Anion binding to mitochondrial cytochromes c studied through electrochemistry. Effects of the neutralization of surface charges on the redox potential [J]. Eur. J. Biochem., 1996, 241(1), 208-214.
    [134] 彭图治,杨丽菊.生命科学中的电分析化学[M].杭州:杭州大学出版社,1999.
    [135] 考利达主编,董绍俊,殷晋尧,张月霞,汪尔康,章咏华译.医学生物电化学方法[M].长春:吉林人民出版社,1983.
    [136] C. M. A. Brett, A. M. O. Brett. Electrochemistry: principles, methods, and applications [M]. Oxford, UK, Oxford University Press, 1993.
    [137] D. E. Reed, E M. Hawridge. Direct electron transfer reactions of cytochrome c at silver electrodes [J]. Anal. Chem., 1987, 59(19): 2334-2339.
    [138] 金利通,全威,徐金瑞,方禹之.化学修饰电极[M].上海:华东师范大学出版社,1992.
    [139] F. A. Armstrong. Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions [J]. J. Chem. Soc. Dalton. Trans. 2002, 5: 661-671.
    [140] A. L. Ghindilis, P. Atanasov, E. Wilkins. Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications [J]. Electroanalysis, 1997, 9(9): 661-674.
    [141] L. Gorton, A. Lindgern, T. Larsson, E D. Munteanu, T. Ruzgas, I. Gazaryan. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors [J]. Anal. Chim. Act., 1999, 400(1-3): 91-108.
    [142] C. Leger, S. J. Elloitt, K. R. Hoke, L. J. C. Jeuken, A. K. Jones, E A. Armstrong. Enzyme Electrokinetics: Using Protein Film Voltammetry To Investigate Redox Enzymes and Their Mechanisms [J]. Biochemistry, 2003, 42: 8653-8662.
    [143] G. Battistuzzi, M. Borsari, M. Sola, E Francia. Redox Thermodynamics of the Native and Alkaline Forms of Eukaryotic and Bacterial Class I Cytochromes c [J]. Biochemistry, 1997, 36: 16247-16258.
    [144] J. Yang, N. Hu, J. F. Rusling. Enhanced electron transfer for hemoglobin in poly (ester sulfonic acid) films on pyrolytic graphite electrodes [J]. J. Electroanal. Chem., 1999, 463: 53-62.
    [145] I. Willner, E. Katz, B. Willner. Layered Biomaterials on Electrode Supports: Routes to Electrochemical Biosensors, Immunosensors and DNA- Sensors [J]. Sensors update, 1999, 5(1), 45-102.
    [146] I. Willner. Biomaterials for Sensors, Fuel Cells, and Circuitry [J]. Science, 2002, 298: 2407-2408.
    [147] E. Katz, I. Willner, A. B. Kotlyar. A non-compartmentalized glucose |O_2 biofuel cell by bioengineered electrode surfaces [J]. J. Electroanal. Chem. 1999, 479(1): 64-68.
    [148] S. C. Barton, J. Gallaway, P. Atanassov. Enzymatic biofuel cells for implantable and microscale devices [J]. Chem. Rev., 2004,104: 4867-4886.
    [149] M. D. Ryan, E. F. Bowden, J. Q. Chambers. Dynamic Electrochemistry:Methodology and Application [J]. Anal. Chem., 1994, 66(12): 360R-427R.
    [150] J. L. Anderson, E. F. Bowden, P. G. Pichup. Dynamic Electrochemistry: Methodology and Application [J]. Anal. Chem., 1996, 68(12): 379-444.
    [151] J. L. Anderson, L. A. Coury, J. Leddy. Dynamic Electrochemistry: Methodology and Application [J]. Anal. Chem., 1998, 70(12): 519-590.
    [152] J. L. Anderson, L. A. Coury, J. Leddy. Dynamic Electrochemistry: Methodology and Application [J]. Anal. Chem., 2000, 72(18): 4497-4520.
    [153] A. Heller. Electrical wiring of redox enzymes [J]. Acc. Chem. Res., 1990, 23:128-134.
    [154] F. A. Armstrong, G. S. Wilson. Recent developments in faradaic bioelectrochemistry [J]. Electrochim. Acta., 2000, 45(15-16): 2623-2645.
    [155] S. Cosnier. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review [J]. Biosens.Bioelectron. 1999,14: 443-456.
    [156] J. Jia, B. Wang, A. Wu, G. Cheng, Z. Li, S. Dong. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network [J]. Anal. Chem., 2002,74: 2217-2223.
    [157] M. Qhobosheane, S. Santra, P. Zhang, W. Tan. Biochemically functionalized silica nanoparticles[J]. Analyst, 2001,126(8): 1274-1278.
    [158] N. Q. Li, J. X. Wang, M. X. Li. Electrochemistry at carbon nanotube electrodes [J]. Reviews in Analytical Chemistry, 2003, 22(1): 19-33.
    [159] S. Q. Liu, Z. H. Dai, H. Y. Chen, H.X. Ju. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor [ J]. Biosensors&Bioeiectronics, 2004,19(9): 963-969.
    [160] Y. Zhang, P. L. He, N. F. Hu. Horseradish peroxidase immobilized in TiO_2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis [J]. Electrochimica Acta, 2004, 49(12): 1981-1988.
    [161] J. M. Gong, X. Q. Lin. Ion channel behavior of a supported bilayer lipid membrane composed of 5,5-ditetradecy]-2-(2-trimethyl-ammonioethyl)-1,3-dioxane bromide modified glassy carbon electrode [J]. Chinese Journal of Chemistry,2003, 21: 761-766.
    [162] T. Liu, J. Zhong, X. Gan, C. Fan, G. Li, N. Matsuda. Wiring electrons of cytochrome c with silver nanoparticles in layered films [J]. ChemPhysChem, 2003, 4,1364-1366.
    [163] M. Viticoli, A. Curulli, A. Cusma, S. Kaciulis, S. Nunziante, L. Pandolfi, F. Valentini, G. Padeletti. Third-generation biosensors based on TiO_2 nanostructured films [J]. Mater. Sci. Eng. C, 2006, 26: 947-951.
    [164] D. Yu, B. Blankert, E. Bodoki, S. Bollo, J. C. Vire, R. Sandulescu, A. Nomura, J. M. Kauffmann. Amperometric biosensor based on horseradish peroxidase-immobilised magnetic microparticles [J]. Sens. Actuat. B, 2006, 113: 749-754.
    [165] Y. Zhuo, R. Yuan, Y. Chai, Y. Zhang, X. L. Li, Q. Zhu, N. Wang. An amperometric immunosensor based on immobilization of Hepatitis B surface antibody on gold electrode modified gold nanoparticles and horseradish peroxidase [J]. Anal. Chim. Acta, 2005,548: 205-210.
    [166] Q. Xu, C. Mao, N. N. Liu, J. J. Zhu, J. Sheng. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticles nanocomposite [J]. Biosens.Bioelectron., 2006, 22: 768-773.
    [167] D. Shan, M. Zhu, H. Xue, S. Cosnier. Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: Calcium carbonate nanoparticles [ J]. Biosens.Bioelectron., 2007, 22: 1612-1617.
    [168] E. Topoglidis, A. E. G. Cass, G Gilardi, S. Sadeghi, N. Beaumont, J. R. Durrant. Protein adsorption on nanocrystalline TiO_2 films: an immobilization strategy for bioanalytical devices [J]. Anal. Chem., 1998, 70 (23): 5111-5113.
    [169] E. Topoglidis, A. E. G. Cass, B. O'Regan, J. R. Durrant. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO_2 and ZnO films [J]. J. Electroanal. Chem., 2001, 517 (1-2): 20-27.
    [170] E. Topoglidis, C. J. Campbell, A. E. G. Cass, J. R. Durrant. Factors that Affect Protein Adsorption on Nanostructured Titania Films. A Novel Spectroelectrochemical Application to Sensing [J]. Langmuir, 2001, 17(25): 7899-7906.
    [171] E. Topoglidis, Y. Astuti, F. Duriaux, M. Gratzel, J. R. Durrant. Direct Electrochemistry and Nitric Oxide Interaction of Heme Proteins Adsorbed on Nanocrystalline Tin Oxide Electrodes [J]. Langmuir, 2003,19(17): 6894-6900.
    [172] J. Wang, P. V. A. Pamidi, M. Jiang. Low-potential stable detection of 6-NADH at sol-gel derived carbon composite electrodes [J]. Anal. Chim. Acta, 1998,360 (1-3): 171-178.
    [173] Q. W. Li, G. A. Luo, J. Feng. Direct electron transfer for heme proteins assembled on nanocrystalline TiO_2 film[J]. Electroanal., 2001,13: 359-363.
    [174] Y. Zhang, P. L. He, N. F. Hu. Horseradish peroxidase immobilized in TiO_2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis [ J]. Electrochim. Acta, 2004, 49(12): 1981-1988.
    [175] T. Ruzgas, E. Csoregi, J. Emneus, L. Gorton, G. Marko-Varga.Peroxidase-modified electrodes: Fundamentals and application [J]. Anal. Chim.Acta., 1996, 330(2-3): 123-138.
    [176] O. Ryan, M. R. Smyth, C. o. Fagain. Thermostabilized chemical derivatives of horseradish peroxidase [J]. Enzyme Microb. Technol. 1994,16(6): 501-505.
    [177] A. Olea, G. Ponce, P. J. Sebastian. Electron transfer via organic dyes for solar conversion [J]. Solar Energy Materials and Solar Cells. 1999, 59(1-2):137-143.
    
    [178] M. Gratzel. Photoelectrochemical cells [J]. Nature, 2001, 414: 338-344.
    [179] A. Hagfeldt, M. Gratzel. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev., 1995,95(1): 49-68.
    [180] R. Vogel, P. Hoyer, H. Weller. Quantum-sized PbS, CdS, Ag_2S, Sb_2S_3, and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors [J]. J. Phys. Chem., 1994, 98(12): 3183-3188.
    [181] C. Nasr, P. V. Kamat, S. Hotchandani. Photoelectrochemistry of composite semiconductor thin films. photosensitization of the SnO_2/TiO_2 coupled system with a ruthenium polypyridyl complex [J]. J. Phys. Chem. B, 1998, 102(49):10047-10056.
    [182] S. Sakohara, L. D. Tickanen, M. A. Anderson. Luminescence properties of thin zinc oxide membranes prepared by the sol-gel technique: change in visible luminescence during firing [J]. J. Phys. Chem., 1992, 96(26): 11086-11091.
    [183] R. Koenenkamp, R. Henninger, P. Hoyer. Photocarrier transport in colloidal titanium dioxide films [ J]. J. Phys. Chem., 1993, 97(28): 7328-7330.
    [184] G. Redmond, A. OKeefe, G Burgess, C. Machale, D. Fitzmaurice.Spectroscopic determination of the flatband potential of transparent nanocrystalline zinc oxide films [J]. J. Phys. Chem., 1993, 97(42):11081-11086.
    [185] S. Hotchandani, I. Bedja, R. W. Fessenden, P. V. Kamat. Electrochromic and Photoelectrochromic Behavior of Thin WO_3 Films Prepared from Quantum Size Collodal Particles [J]. Langrnuir, 1994, 10(1): 17-22.
    [186] 黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京大学出版社,2001.
    [187] 波利斯科夫著,张天高译.光电化学太阳能转换[M].北京:科学出版社,1994.
    [188] A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.
    [189] E Cao, G. Oskam, P. C. Searson. A solid state, dye sensitized photoelectrochemical cell [J]. J. Phys. Chem., 1995, 99(47): 17071-17073.
    [190] H. N. Ghosh. Charge transfer emission in coumarin 343 sensitized TiO_2 nanoparticle: A direct measurement of back electron transfer [J]. J. Phys. Chem. B, 1999, 103(47): 10382-10387.
    [191] W. E Tai. Photoelectrochemical properties of SnO_2/TiO_2 coupled electrode sensitized by a mercurochrome dye [J]. Mater. Lett., 2001, 51(5): 451-454.
    [192] Y. Amao, T. Komori. Dye-sensitized solar cell using a TiO_2 nanocrystalline film electrode modified by an aluminum phthalocyanine and myristic acid coadsorption layer [J]. Langmuir, 2003, 19(21): 8872-8875.
    [193] M. Gratzel. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J. Photochem. Photobiol. A, 2004, 164(1-3): 3-14.
    [194] M. Jakob, H. Levanon, P. V. Kamat. Charge distribution between UV-irradiated TiO_2 and gold nanoparticles: determination of shift in the fermi level [J]. Nano. Lett., 2003, 3(3): 353-358.
    [195] Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai. Photoelectrochemical properties of metal-ion-doped TiO_2 nanocrystalline electrodes [J]. Thin. Solid Films, 1999, 349(1-2): 120-125.
    [196] L. Kavan, B. O'Regan, A. Kay, M. Graitzel. Preparation of titania (anatase) films on electrodes by anodic oxidative hydrolysis of titanium trichloride [J]. J. Electroanal. Chem., 1993, 346: 291-307.
    [197] L. Kavan, T. Stoto, M. Graitzel, D. Fitzmaurice, V. Shklover. Quantum size effects in nanocrystalline semiconducting titania layers prepared by anodic oxidative hydrolysis of titanium trichloride [J]. J. Phys. Chem., 1993, 97(37): 9493-9498.
    [198] 罗谨,周静,祖延兵,林仲华.电沉积TiO_2纳米微粒膜的光电化学性能和表面形貌研究[J].高等学校化学学报,1998,19:1484-1487.
    [199] C. Natarajan, G. Nogami. Cathodic electrodeposition of nanocrystalline titanium dioxide thin films [J]. J. Electrochem. Soc, 1996, 143(5): 1547-1550.
    [200] 潭小春,黄颂羽.电泳法制备TiO_2超微粒薄膜的研究[J].化学物理学报,1998,11(5):416-421.
    [201] R. G. Hayward, D. A. Saville, I. A. Aksay. Electrophoretic assembly of colloidal crystals with optically tunable micropattems[J]. Nature, 2000, 404: 56-59.
    [202] 邱健斌,曹亚安,马颖,管自生,姚建年.担载材料对TiO_2薄膜光催化活性的影响[J].物理化学学报,2000,16(1):1-4.
    [203] 王瑞斌,戴松元,王孔嘉.纳米TiO_2性能表征及在染料敏化纳米薄膜太阳电池中的应用[J].高科技通讯,2003,1:50-52.
    [204] 魏培海,姚发业,王娅娟.MOCVD法制备TiO_2薄膜的光电化学性质研究[J].山东师大学报(自然科学版),2000,16(2):151-153.
    [205] 张永熙,章壮健,杨锡良.磁控溅射制备TiO_2薄膜的光学和光电化学性质研究,复旦大学硕士论文,2000.
    [206] 傅正文,孔继烈,秦启宗,田中群.脉冲激光沉积纳米TiO_2薄膜电极的现场光电化学[J].中国科学,1999,29(6):546-552.
    [207].黄丹,黄宁平,袁春伟.TiO_2薄膜的自组装制备与表征[J].东南大学学报,1997,27(1):68~71.
    [208] J. Jin, L. S. Li, Y. Li, X. Chen, L. Jiang, Y. Y. Zhao, T. J. Li. Preparation of titanium dioxide and barium titanate nanothick film by Langmuir-Blodgett technique [J]. Thin Solid Film, 2000, 379(1-2): 218-223.
    [209] A. Fujishima, K. Kohayakawa, K. Honda. Hydrogen production under sunlight with electrochemical photo-cell [J]. J. Electrochem. Soc., 1975, 122: 1487-1489.
    [210] S. U. M. Khan, M.A1-Shahry, B.Willian, I.Jr. Effcient photochemical water splitting by a chemically modified n-TiO_2 [J]. Science, 2002, 297: 2243-2245.
    [211] Y. K. Choi, S. S. Seo, K. H. Chio, Q. W. Choi, S. M. Park. Thin Ti dioxide film electrodes prepared by thermal oxidation [J]. J Electrochem $oc, 1992, 139: 1803-1807.
    [212] J. Akikusa, S. U. M. Khan. Photoresponse and AC impedance characterization of n-TiO_2 films during hydrogen and oxygen evolution reactions in an electrochemical cell [J]. Int. J. Hydrogen. Energy., 1997, 22(9): 875-882.
    [213] K. E. Karakitsou, X. E. Verykios. Influence of catalyst parameters and operational variables on the photocatalytic cleavage of water [J]. J. Catal., 1992,134: 629-643.
    [214] K. E. Karakitsou, X. E. Verykios. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage [J]. J. Phys. Chem.,1993, 97(6): 1184-1189.
    [215] K. E. Karakitsou, X. E. Verykios. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO_2/TiO_2 catalysts [J]. J. Catal., 1995,152: 360-367.
    [216] N. R. de. Tacconi, J. Carmona, K. Rajeshwar. Chemically modified Ni/TiO_2 nanocomposite films: charge transfer from photoexcited TiO_2 particles to hexacyanoferrate redox centers within the film and unusual photoelectrochemical behavior [J]. J. Phys. Chem B., 1997, 101(49):10151-10154.
    [217] H. Kozuka G.. Zhao, T.Yoko. Sol-gel preparation and photoelectrochemical properties of TiO_2 films containing Au and Ag metal particles [J]. Thin Solid Films, 1996, 277:147-154.
    [218] G. Zhao, H. Kozuka, T. Yoko. Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO_2 film electrodes prepared by sol-gel method [J]. Solar Energy Materials & Solar Cells,1997, 46: 219-231.
    [219] J. W. Yoon, T. Sasaki, N. Koshizaki, E. Traversa. Preparation and characterization of M/TiO_2 (M = Ag, Au, Pt) nanocomposite thin films [J].Scripta. Mater., 2001, 44:1865-1868.
    [220] E. W. Mcfarland, J. Tang. A photovoltaic device structure based on internal electron emission [J]. Nature, 2003, 421: 616-618.
    [221] J. Tang, M. White, G. D. Stucky, E. W. Mcfarland. Electrochemical fabrication of large-area Au/TiO_2 junctions [J]. Electrochem.Comm., 2003, 5: 497-501.
    [222] V. Subramanian, E. Wolf, P. V. Kamat. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO_2 films? [J]. J.Phys.Chem.B, 2001, 105:11439-11446.
    [223] N. Chandrasekharan, P. V. Kamat. Improving the photoelectrochemical performance of nanostructured TiO_2 films by adsorption of gold nanoparticles [J]. J. Phys. Chem. B, 2000, 104: 10851-10857.
    [224] H. Deng, Z. Lu. Heteroaggregation and photoelectric conversion of porphyrins on a nanostructured TiO_2 electrode [J]. Supramolecular Science, 1998, 5: 669-674.
    [225] A. kay, M. Graetzel. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins [J]. J. Phys. Chem., 1993, 97(23): 6272-6277.
    [226] 祁玉兰.大麦原生质体光电化学及电生孔研究[M].复旦大学硕士论文,2002.
    [227] E G.. Gao, A. J. Bard, L. D. Kispert. Photocurrent generated on a carotenoid-sensitized TiO_2 nanocrystalline mesoporous electrode[J]. J. Photochemistry. Photobiology, A:Chemistry, 2000, 130: 49-56.
    [228] L. Spanhel, H. Weller, A. Henglein. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles [J]. J.Am.Chem.Soc., 1987, 109: 6632-6635.
    [229] R. Vogel, K. Pohl, H. Weller. Sensitization of highly porous, polycrystalline TiO_2 electrodes by quantum sized CdS [J]. Chem. Phys. Lett., 1990, 174: 241-246.
    [230] D. Liu, P. V. Kamat. Electrochemical rectification in CdSe+TiO_2 coupled semiconductor films [J]. J. Electroanal. Chem., 1993, 347: 451-456.
    [231] F. T. A. Vork, B. C. A. M. Schuenmans, E. Barendrecht. Influence of inserted anions on the properties of polypyrrole [J]. Electrochim. Acta, 1990, 35, 567-575.
    [232] 柳闽生,杨迈之,郝彦忠,蔡生民,李永舫.纳米尺度TiO_2/聚吡咯多孔膜电极光电化学研究[J].高等学校化学学报,1997,18(6):938-942.
    [233] 康志敏,郝彦忠,王庆飞,童汝亭,李军锁.聚吡咯敏化纳米结构TiO_2电极的光电化学研究[J].功能材料,2004,2(35):220-222.
    [1] 鄂征.组织培养和分子细胞学技术[M].北京:北京出版社,1995.
    [2] 薛庆善.体外培养的原理与技术[M].北京:高等教育出版社,2001;
    [3] 司徒镇强,吴军正.细胞培养[M].西安:世界图书出版西安公司,2004.
    [4] 陈国良,陈志宏.细胞培养工程[M].上海:华东工程学院出版社,1992.
    [5] 刘鼎新,吕证宝.细胞生物学研究方法与技术[M].北京:北京医科大学·中国协和医科大学联合出版社,1990.
    [6] 大星章一,管野晴天,吴政安.人癌细胞培养[M].北京:科学出版社,1979.
    [7] 王蘅文.实验肿瘤学基础[M].北京:人民卫生出版社,1992.
    [8] 鄂征.组织培养技术[M].北京:人民卫生出版社,1993.
    [9] T. Mosmann. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays [J]. J Immunol Methods, 1983, 65: 55-63.
    [10] P. R. Twentyman, M. Luscombe. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity [J]. Br J Cancer 1987, 56: 279-285.
    [11] 崔巍.流式细胞术PI染色进行细胞周期分析的原理是什么?[J].中华检验医学杂志,2004,27(3):151-151.
    [12] 左连富,王风荣,张祥宏等.流式细胞术样品制备技术[M].北京:华夏出版社,1991.
    [1] I. E. Kochevar, M. C. Lynch, S. Zhuang, C. R. Lambert. Singlet oxygen, but not oxidizing radicals, induces apoptosis in HL-60 cells [J]. Photochem Photobiol, 2000, 72(4): 548-553.
    [2] I. Schulz, H. C. Mahler, S. Boiteux, B. Epe. Oxidative DNA base damage induced by singlet oxygen and photosensitization: Recognition by repair endonucleases and mutagenicity [J]. Mutation Research, 2000, 461(2): 145-156.
    [3] C. Salet, G. Moreno, E Ricchelli, P. Bemardi. Singlet oxygen produced by photodynamic action causes activation of the mitochondrial permeability transition pore [J]. J Biol. Chem, 1997, 272(35): 21938-21943.
    [4] V. Gottfried, D. Peled, J. Winkelman, S. Kime!. Photosensitizers in organized media: Singlet oxygen production and spectral properties [J]. Photochem. Photobiol, 1988, 48: 157-163.
    [5] R. Nilsson, P. Merkel, D. Keams. Unambiguous evidence for the participation of singlet oxygen in photodynamic oxidation of amino acids [J]. Photochem. Photobiol., 1972, 16: 117-124.
    [6] H. Sakai, R. X. Cai, T. Kato, etal. Photocatalytic elect of TiO2 particles on tumor cells-study on mechanism of cell death by measuring concentration of intracellular calcium ion [J]. Photomed. Photobiol., 1990, 12: 135-138.
    [7] R. X. Cai, K. Hashimoto, K. Itoh, etal. Photokilling of malignant cells with ultrafine TiO_2 powder [J]. Bull Chem Soc Jpn, 1991, 64 (4): 1268-1273.
    [8]. R. X. Cai, K. Hashimoto, Y. Kubota. etal. Increment of Photocatalytic Killing of Cancer Cells Using TiO_2 with the Aid of Superoxide Dismutase [J]. Chem. Lett., 1992, 427-430.
    [9] R. X. Cai, Y. Kubota, T. Shuin, etal. Induction of cytotoxicity by photoexcited TiO_2 particles [J]. Cancer Res., 1992, 52: 2346-2348.
    [10] A. Fujishima, R. X. Cai, J. Otsuki. etal. Biochemical application of photoelectrochemistry: photokilling of malignant cells with TiO_2 powder [J]. Electrochim Acta, 1993, 38 (1): 153-157.
    [11] H. Sakai, E. Ito, R. X. Cai, etal. Intracellular Ca~(2+) concentration change of T24 cell under irradiation in the presence of TiO_2 ultrafine particles [J]. Biochim Biophys Acta, 1994, 1201: 259-265.
    [12] Y. Kubota, T. Shuin, C. Kawasaki, etal. Photokilling of T-24 human bladder cancer cells with titanium dioxide [J]. Br J Cancer, 1994, 70: 1107-1111.
    [13] H. Sakai, R. Baba, K. Hashimoto, etal. Selective killing of a single cancerous T24 cell with TiO_2 semiconducting microelectrode under irradiation [J]. Chem. Lett., 1995, 185-186.
    [14] C. D. Jaeger, A. J. Bard. Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate systems [J]. J Phys Chem., 1979, 83: 3146~3152.
    [15] 黄宁平,黄丹,徐敏华,袁春伟.超微粒Yi02对U937细胞光杀伤效应及机理研究[J].生物化学与生物物理进展,1997,24(5):470-473.
    [16] 李芳柏,古国榜,李新军.纳米复合Sb_2O_3/TiO_2的光催化性能研究[J].无机化学学报,2001,17(1):37-42.
    [17] K. Vinodgopal, P. V. Kamat. Enhanced rates of photocatalytic degradation of an azo dye using SnO_2/TiO_2 coupled semiconductor thin film [J]. Environ. Sci. Technol., 1995, 29 (9): 841-845.
    [18] 蔡乃才,王亚平,曹银良.负载型Pt-TiO_2光催化剂的研究[J].催化学报,1999,20(2):177-180.
    [19] 沈学优,李华英,陈群燕,郭艳萍.载铂二氧化钛对3B艳红染料溶液光催化降解性能的研究[J].水处理技术,2001,27(1):33-36.
    [20] F. B. Li, X. Z. Li. The enhancement of photodegradation efficiency using Pt-TiO_2 catalyst [J]. Chemosphere, 2002, 48: 1103-1111.
    [21] E. Sanchez, T. Lopez, R. Gomez, A. Bokhimi, A. Morales, O. Novaro. Synthesis and charouterization of Sol-Gel Pt/TiO_2 catalyst. Journal of Solid State Chemistry [J]. 1996, 122: 309-314.
    [22] A. Sclafani, J. M. Herrmann. Influence of metallic silver and of platmium-silver bimetallic deposits on the photocatalytie activity of titanium (anatase and rutile) in organic and aqueous media [J]. J. Photochem. Photobiol A: chem., 1998, 113(2): 181-188.
    [23] V. L. Colbin, A. N. Goldstein, A. P. Alivisatos. Semiconductor nanocrystals covalently bound to metal surface with self-assembled monolayers [J]. J. Am. Chem. Soc, 1992, 114(13): 5221-5230.
    [24] C. Xi, Z. Chen, Q. Li, Z. Jin. Elect of H~+, Cl~- and CH3COOH on the photocatalytic conversion of PtCl_6~(2-) in aqueous TiO_2 dispersion [J]. J Photochem. Photobiol. A, 1995, 87(3): 249-255.
    [25] T. Yonezawa, H. Mutsum, T. Kunitake. Layer nanocomposite of close-packed gold nanoparticles and TiO_2 gel layers [J]. Chem. Mater., 1999, 11(1): 33-35.
    [26] M. K. Maucia, F. J. Wison. Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst [J]. Wat. Res., 1991, 25(7): 823-827.
    [27] S. Antonino, N. Marie, Mozzanega, etal. Influence of silver deposits on the photocatalytic activity of titania [J]. Journal of Catalysis. 1997, 168: 117-120.
    [28] 蒋伟川,谭湘萍.载银TiO_2半导体光催化剂降解染料水溶液的研究[J].环境科学,1998,16(2):17-20.
    [29] 程沧沧,李太友.载银TiO_2光催化降解2,4-二氯苯酚水溶液的研究[J].环境科学进展,1998,11(6):27-29.
    [30] R. Zanella, S. Giorgio, C. R. Henry, C. Louis. Alternative methods for the preparation of gold nanoparticles supported on TiO2 [J]. J. Phys. Chem. B, 2002, 106: 7634-7642.
    [31] G. Fu, P. S. Vary, C. T. Lin. Anatase TiO_2 nanocomposites for antimicrobial coatings [J]. J. Phys. Chem. B, 2005,109: 8889-8898.
    [32] C. Kormann, D. W. Bahnemann, M. R. Hoffinann. Preparation and characterization of quantum-size titanium dioxide [J]. J Phys Chem, 1988, 92:5196-5201.
    [33] B. O'Regan, J. Moser, M. Anderson. Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation [J]. J Phys Chem, 1990, 94: 8720-8726.
    [34] J. H. Yang, J. D. Henao, M. C. Raphulu, Y. M. Wang, T. Caputo, A. J. Groszek,M. C. Kung, M. S. Scurrell, J. T. Miller, H. H. Kung. Activation of Au/TiO_2 catalyst for CO oxidation [J]. J Phys Chem B, 2005,109(20): 10319-10326.
    [35] Haruta M. Turnover frequency (TOF) for CO oxidation over Pt/SiO_2 and Au/TiO_2 [J]. Gold Bull, 2004,37 (1-2): 27-36.
    [36] W. C. Li, M. Comotti, F. Schiith. Highly reproducible syntheses of active Au/TiO_2 catalysts for CO oxidation by deposition-precipitation or impregnation [J]. J Catal., 2006, 237(1): 190-196.
    [37] A. Dawson, P. V. Kamat. Semiconductor-metal nanocomposites photoinduced fusion and photocatalysis of gold-capped TiO_2 (TiO_2/Gold) nanoparticles [J]. J Phys. Chem. B, 2001,105(5): 960-966.
    [38] A. L. Linsebigler, G Lu, J. T. Yates. Interfacial photochemistry, fundamentals and applications [J]. Chem. Rev., 1995, 95: 735-738.
    [39] M. Andersson, L. osterlund, S. Ljungstrom, A. Palmqvist. Preparation of nanosize anatase and rutile TiO_2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol [J]. J. Phys. Chem. B,2002,106:10674-10679.
    [40] M. Addamo, V. Augugliaro, A. D. Paola, E. Garcia-Lopez, V. Loddo, G. Marci,R. Molinari, L. Palmisano, M. Schiavello. Preparation, characterization, and photoactivity of polycrystalline nanostructured TiO_2 catalysts [J]. J. Phys. Chem.B, 2004,108: 3303-3310.
    [41]V. Subramanian, E.E. Wolf, P.V. Kamat. Influence of metal/metal ion concentration on the photocatalytic activity of TiO_2-AU composite nanoparticles [J]. Langmuir, 2003, 19: 469-474.
    [42] P. V. Kamat, M. Flumiani, A. Dawson. Metal-metal and metal-semiconductor composite nanoclusters [J]. Coll. Surf. A, 2002, 202: 269-279.
    [43] R. X. Cai, K. Hashimoto, K. Itoh, etal. Photokilling of malignant cells with ultrafine TiO_2 powder [J]. Bull Chem Soc Jpn, 1991, 64 (4): 1268-1273.
    [44] A. P. Zhang, Y. P. Sun. Photocatalytic killing effect of TiO_2 nanoparticles on Ls-174-t human colon carcinoma cells [J]. World J. Gastroenterol, 2004, 10:3191-3193.
    [45] B. K. Bernard, M. R. Osheroff, A. Hofmann, etal. Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female Fischer 344 rats [J]. J. Toxicol. Environ. Health, 1989, 28: 415-426.
    [46] K. Linnainmaa, P. Kivipensas, H. Vainio. Toxicity and cytogenetic studies of ultrafine titanium dioxide in cultured rat liver epithelial cells [J]. Toxicol in vitro,1997,11:329-335.
    [47] Y. Li, G. Lu, S. Li. Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO_2 [J]. Appl. Catal. A, 2001,214:179-185.
    [48] M. Abdullah, G. K. C. Low, R. W. Mattews. Effect of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide [J]. J. Phys. Chem, 1990,94(17): 6820-6825.
    
    [49] D. M. Blake, P. C. Maness, Z. Huang, E. J. Wolfrum, J. Huang, W. A. Jacoby.Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells [J]. Separation and Purification Methods, 1999, 28:1-50.
    
    [50] P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, W. A. Jacoby.Bactericidal actility of photocatalytic TiO_2 reaction: toward an understanding of its killing mechanism [J]. Applied and Environmental Microbiology, 1999, 65 (9):4094-4098.
    [1] 林善良,王荣先,李美佳.光动力治疗药物研究进展[J].国外医学放射医学,核医学分册,1999,23(3):124-127.
    [2] 王瑞平,李迎新.光动力疗法在肿瘤治疗中的应用[J].国外医学生物医学工程分册,1999,22(6):355-359.
    [3] 李桂兰.用于肿瘤光动力治疗的不对称a光敏剂中间化合物的合成[M].北京:中国协和医科大学,2000.
    [4] M. Takahashi, A. Ueno, T. Uda, etal. Design of novel porphyrin-binding peptides based on antibody CDR [J], Bioorg. Med. Chem. Lett., 1998, 8: 2023-2026.
    [5] M. E. W. Daphne, C. K. Wat, G. H. N Touers, etal. Photoimmunotherapy: treatment of animal tumors with tumor specific monoclonal antihody-hemotoporphyrin conjugates [J]. J Immunol., 1983, 130(3): 1473-1477.
    [6] L. R. Duska, M. R. Hamblin, J. L. Miller etal. Combination photoimmunotherapy and cisplatin: effects on human ovarian cancer ex vivo [J]. J Natl cancer inst., 1999, 91 (18):1557-1662.
    [7] 陈璐,罗荣城,李黎波,严晓,丁雪梅.血卟啉-赫赛汀光敏免疫偶联物的制备及光敏免疫疗法研究[J].南方医科大学学报,2006,26(3):355-357.
    [8] T. Ashikaga, M. Wada, H. Kobayashi, M. Mori, Y. Katsumura, H. Fukui, S. Kato, M. Yamaguchi, T. Takamatsu. Effect of the photocatalytic activity of TiO_2 on plasmid DNA [J]. Mutation Research, 2000, 466: 1-7.
    [9] A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis [J]. J. photochem. Photobiol. C, 2000, 1: 1-21.
    [10] O. A. Semenikhin, V. E. Khazarinov, L. Jiang, etal. Suppression of surface recombination on TiO_2 anatase photocatalysts in aqueous solutions containing alcohol [J]. Langmuir, 1999, 15: 3731-3737.
    [11] S. Fukahori, H. Ichiura, T. Kitaoka, etal. Photocatalytic decomposition of bisphenol A in water using composite TiO_2-zeolite sheets prepared by a papermaking technique [J]. Environ. Sci. Technol., 2003, 37: 1048-1051.
    [12] C. H. Wu, K. S. Huang, J. M. Chem. Decomposition of acid dye by TiO_2 thin films prepared by the sol-gel method [J]. Ind. Eng. Chem. Res., 2006, 45: 2040-2045.
    [13] M. A. Henderson. Complexity in the decomposition of formic acid on the TiO_2 (110) surface [J]. J. Phys. Chem. B, 1997, 101: 221-229.
    [14] A. Petrella, M. Tamborra, M. L Curri, P. Cosma, M. Striccoli, P. D. Cozzoli, A. Agostiano. Colloidal TiO_2 nanocrystals/MEH-PPV nanocomposites: (Photo)electrochemical study [J]. J. Phys. Chem. B, 2005, 109(4): 1554-1562.
    [15] I. A. Shkrob, M. C. Sauer. D. Gosztola. Efficient, rapid photooxidation of chemisorbed polyhydroxyl alcohols and carbohydrates by TiO2 nanoparticles in an aqueous solution [J]. J. Phys. Chem. B, 2004, 108(33): 12497-12511.
    [16] G. Fu, P. S. Vary, C. T. Lin. Anatase TiO2 nanocomposites for antimicrobial coatings [J]. J. Phys. Chem. B, 2005, 109: 8889-8898.
    [17] J. Kiwi, V. Nadtochenko. Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the titanium dioxide by attenuated total reflection (ATR)/Fourier transform infrared (FTIR) spectroscopy [J]. Langmuir, 2005, 21(10): 4631-4641.
    [18] W. G.. Wamer, J. J. Yin, R. R. Wei. Oxidative damage to nucleic acids photosensitized by titanium dioxde [J]. Free Radical Biology and Medicin, 1997, 23(6): 851-858.
    [19] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake. Photochemical sterilization of microbial cells by semiconductor powders [J]. FEMS Microbiol. Lett., 1985, 29(4): 211-214.
    [20] R. X. Cai, K. Hashimoto, K. Itoh, etal. Photokilling of malignant cells with ultrafine TiO_2 powder [J]. Bull Chem Soc Jpn, 1991, 64 (4): 1268-1273.
    [21] 傅晓琴,王平.二氧化钛光照对人癌细胞光敏作用的研究[J].华南国防医学杂志,2002,16(4):29-31.
    [22] R. X. Cai, Y. Kubota, T. Shuin, etal. Induction of cytotoxicity by photoexcited TiO_2 particles [J]. Cancer Res., 1992, 52: 2346-2348.
    [23] 黄宁平,黄丹,徐敏华,袁春伟.超微粒TiO_2对U937细胞光杀伤效应及机理研究[J].生物化学与生物物理进展,1997,24(5):470-473.
    [24] H. Sakai, E. Ito, R. X. Cai, etal. Intracellular Ca~(2+) concentration change of T24 cell under irradiation in the presence of TiO_2 ultrafine particles [J]. Biochim Biophys Acta, 1994, 1201: 259-265.
    [25] W. G. Wamer, J. J. Yin, R. R. Wei. Oxidative damage to nucleic acids photosensitized by titanium dioxide [J]. Free Radic. Biol. Med., 1997, 23: 851-858.
    [26] A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis [J]. J. photochem. Photobiol. C, 2000,1:1-21.
    [27] G Liang, L. Wang, Z. Yang, etal. Using enzymatic reactions to enhance the photodynamic therapy effect of porphyrin dityrosine phosphates [J]. Chem. Commun., 2006,48: 5021-5023.
    
    [28] E. Topoglidis, A. E. G Cass, G Gilardi, S. Sadeghi, N. Beaumont, J. R. Durrant.Protein adsorption on nanocrystalline TiO_2 films: an immobilization strategy for bioanalytical devices [J]. Anal. Chem., 1998,70 (23): 5111-5113.
    [29] A. D. Roddick-Lanzilotta, P. A. Connor, A. J. McQuillan. In situ infrared spectroscopic study of the adsorption of lysine to TiO_2 from an aqueous solution [J]. Langmuir, 1998,14: 6479 - 6484.
    [30] J. Labanauskiene, J. Gehl, J. Didziapetriene. Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro [J].Bioelectrochemistry, 2007, 70: 78-82.
    [31] M. F. Underhill, C. Coley, J. R. Birch, etal. Engineering mRNA translation initiation to enhance transient gene expression in Chinese hamster ovary cells [J].Biotechnol. Prog., 2003,19:121-129.
    
    [32] K. Nolkrantz, C. Farre, K. J. Hurtig, etal. Functional screening of intracellular proteins in single cells and in patterned cell arrays using electroporation [J]. Anal. Chem., 2002,74: 4300-4305.
    [33] L. J. F. Hefta, M. Neumaier, J. E. Shively. Kinetic and affinity constants of epitope specific anti-carcinoembryonic antigen (CEA) monoclonal antibodies for CEA and engineered CEA domain constructs [J]. Immunotechnology, 1998, 4: 49-57.
    [34] Z. Huang, P. C. Maness, D. M. Blake, etal. Bactericidal mode of titanium dioxide photocatalysis [J]. J. Photochem. Photobiol. A: Chem., 2000,130:163-170.
    [35] T. Saito, T. Iwase, J. Horie, etal. Mode of photocatalytic bactericidal action of powered semiconductor TiO_2 on mutans streptococci [J]. J. Photochem. Photobiol. B: Biol., 1992, 14: 369-379.
    [36] K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima. Bactericidal and detoxification effects of TiO_2 thin film photocatalysts [J]. Environ Sci Technol, 1998, 32 (5): 726-728.
    [37] R. Dunford, A. Salinaro, L. Cai, etal. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients [J]. FEBS Lett., 1997,418: 87-90.
    [38] K. Hirakawa, M. Mori, M. Yoshida, etal. Photo-irradiated titanium dioxide catalyzes site specific damage via generation of hydrogen peroxide [J]. Free Radic Res, 2004, 38(5): 439-447.
    [39] K. Konca, A. Lankoff, A. Banasik, H. Lisowska, T. Kuszewski, S. Gozdz, Z.Koza, A. Wojcik. A cross-platform public domain PC image-analysis program for the comet assay [J]. Mutation Research, 2003, 534:15-20.
    
    [40] S. Woo, S. Kim, S. Yum, U. H. Yim, T. K. Lee. Comet assay for the detection of genotoxicity in blood cells of flounder (Paralichthys Olivaceus) exposed to sediments and polycyclic aromatic hydrocarbons [J]. Marine Pollution Bulletin, 2006, 52:1768-1775.
    [41] T. C. Wang, K. Y. Jan, A. S. S. Wang, J. R. Gurr. Trivalent arsenicals induce lipid peroxidation, protein carbonylation, and oxidative DNA damage in human urothelial cells [J]. Mutation Research, 2007, 615: 75-86.
    [42] Z. L. Jiang, Q. W. Li, W. Y. Li, J. H. Hu, H. W. Zhao, S. S. Zhang. Effect of low density lipoprotein on DNA integrity of freezing-thawing boar sperm by neutral comet assay [J]. Animal Reproduction Science, 2006, ASAP.
    [43] S. H. Bhat, A. S. Azmi, S. M. Hadi. Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: Involvement of endogenous copper and a putative mechanism for anticancer properties [J]. Toxicology and Applied Pharmacology, 2007, 218: 249-255.
    [1] A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.
    [2] A. J. Bard. Photoelectrochemistry and heterogeneous photocatalysis at semiconductors [J]. J. Photochem., 1979, 10: 59-75.
    [3] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Wissortel, J. Salbeck, H. Spreitzer, M. Gratzel. Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficlencies [J]. Nature, 1998, 395: 583-585.
    [4] M. Graitzel. Photoelectrochemical cells [J]. Nature, 2001, 414:338-344.
    [5] A. Fujishima, K. Hashimoto, T. Watanabe. TiO_2 Photocatalysis: Fundamentals and applications [M]. Tokyo: BKC Inc., 1999.
    [6] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojiima. Light-induced amphiphilic surfaces [J]. Nature, 1997, 388:431-432.
    [7] D. M. Blake, P. C. Maness, Z. Huang, E. J. Wolfrum, J. Huang, W. A. Jacoby. Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells [J]. Separation and Purification Methods, 1999, 28: 1-50.
    [8] D. A. Tryk, A. Fujishima, K. Honda. Recent topics in photoelectrochemistry: achievements and future prospects [J]. Electrochimica Acta, 2000, 45: 2363-2376.
    [9] 范崇政,肖建平,丁延伟.纳米TiO_2的制备与光催化反应研究进展[J].科学通报,2001,46:265-273.
    [10] 钱新明,白玉白,李铁津,汤心颐,吕红辉.Graetzel型光电化学太阳能电池(PEC)研究进展[J].化学进展,2000,12,141-151.
    [11] A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis [J]. J. photochem. Photobiol. C, 2000, 1: 1-21.
    [12] 宋承辉,刘希真.二氧化钛光催化氧化机理及杀菌效果[J].中国消毒杂志,2001.18:169-173.
    [13] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake. Photochemical sterilization of microbial cells by semiconductor powders [J]. FEMS Microbiol. Lett., 1985, 29(4): 211-214.
    [14] 邓慧华,陆祖宏.半导体TiO_2光催化杀灭微生物的机理及应用[J].微生物 学通报, 1997,24(2): 113-115.
    [15] H. Zheng, P. C. Maness, D. M. Blake, E. J. Wolfrum, S. L. Smolinski, W. A.Jacoby. Bactericidal mode of titanium dioxide photocatalysis [J]. J. Photochem.Photobiol. A, 2000,130:163-170.
    [16] P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, W. A. Jacoby.Bactericidal actility of photocatalytic TiO_2 reaction: toward an understanding of its killing mechanism [J]. Applied and Environmental Microbiology, 1999, 65 (9): 4094-4098.
    [17] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake. Photochemical sterilization of microbial cells by semiconductor powders [J]. FEMS Microbiol. Lett., 1985,29(4): 211-214.
    [18] K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima. Bactericidal and detoxification effects of TiO_2 thin film photocatalysts [J]. Environ Sci Technol,1998, 32 (5): 726-728.
    [19] Y. Koizumi, J. Nishi, M. Taya. Photosterilization of Escherichia coil cells using iron-doped titanium dioxide particles [J]. Journal of Chemical Engineering of Japan, 2002, 35: 299-303.
    [20] Y. Koizumi, M. Taya. Photocatalytic inactivation rate of phage MS2 in titanium dioxide suspensions containing various ionic species [J]. Biotechnology Letters,2002, 24: 459-462.
    [21] Y. Koizumi, R. Yamada, M. Nishioka, Y. Matsumura, T. Tsuchido, M. Taya. Deactivation kinetics of Escherichia coli cells correlated with intracellular superoxide dismutase activity in photoreaction with titanium dioxide particles [J].J. Chem. Technology Biotechnology, 2002, 77: 671-677.
    [22] J. S. Hur, Y. J. Koh. Bactericidal activity and water purification of immobilized TiO_2 photocatalyst in bean sprout cultivation [J]. Biotechnology Letters, 2002,24: 23-25.
    [23] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen doped titanium oxides [J]. Science, 2001, 293: 269-271.
    [24] J. Keleher, J. Bashant, N. Heldt, L. Johnson, Y. Z. Li. Photo-catalytic preparation of silver-coated TiO_2 particles for antibacterial applications [J]. World J.Microbiology & Biotechnology, 2002,18:133-139.
    [25] Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima. Photocatalytic bactericidal effect of TiO_2 thin films: dynamic view of the active oxygen species responsible for the effect [J]. J. Photochem. Photobiol. A, 1997, 106: 51-56.
    [26] F. M. Salih. Enhancement of solarinactivation of Escherichia coli by titanium dioxide photocatalytic oxidation [J]. J. Appl. Microbio., 2002, 92: 920-926.
    [27] 祖庸,雷闫盈,李晓娥,王训,吴金龙.纳米TiO_2—一种新型的无机抗菌剂[J].现代化工,1999,8:46-48.
    [28] A. Fujishima, J. Ohtsuki, T. Yamashita, S. Hayakawa. Behavior of tumor cells on photoexcited semiconductor surface [J]. Photomed. Photobiol.,1986, 8: 45-46.
    [29] R. X. Cai, Y. Kubota, T. Shuin, etal. Induction of cytotoxicity by photoexcited TiO_2 particles [J]. Cancer Res., 1992, 52: 2346-2348.
    [30] 王浩,赵文宽,方佑龄,王润帮,李莉.二氧化钛光催化杀灭肿瘤细胞的研究[J].催化学报,1999,20(3):373-374.
    [31] 黄宁平,黄丹,徐敏华,袁春伟.超微粒TiO_2对U937细胞光杀伤效应及机理研究[J].生物化学与生物物理进展,1997,24(5):470-473.
    [32] K. Sunda, T. Watanabe, K. Hashimoto. Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination [J]. Environ. Sci. Technol., 2003, 37: 4785-4789.
    [33] C. Wei, W. Y. Lin, Z. Zainal, N. E. Williams, K. Zhu, A. P. Kruzic, R. L. Smith, K. Rajeshwar. Bactericidal activity of TiO_2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system [J]. Environmental Science and Technology, 1994, 28: 934-938.
    [34] Z. Huang, P. C. Maness, D. M. Blake, E. J. Wolfrum, S. L. Smolinski, W. A. Jacoby. Bactericidal mode of titanium dioxide photocatalysis [J]. J. Photochemistry & photobiology A, 2000, 130: 163-170.
    [35] M. J. M. Engineer. Water Treatment Principles and Design [M]. New York: John Wiley, 1985.
    [36] W. A. Jacoby, P. C. Maness, E. J. Wolfrum, D. M. Blake, J. A. Fennell. Mineralization of bacterial cell mass on a photocatalytic surface in air [J]. Environmental Science and Technology, 1998, 32: 2650-2653.
    [37] B. Kim, D. Kim, D. Cho, S. Cho. Bactericidal effect of TiO_2 photocatalyst on selected food-borne pathogenic bacteria [J]. Chemosphere, 2003, 52(1): 277-281.
    [38] T. Tatsuma, S. Takeda, S. Saitoh, Y. Ohko, A. Fujishima. Bactericidal effect of an energy storage TiO2-WO_3 photocatalyst in dark [J]. Electrochemistry Communications, 2003, 5(9): 793-796.
    [39] C. T. Kresge, M. E. Leonowicz, W. J. Roth. Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [40] J. S. Beck, J. C. Vartuli, W. J. Roth, M.E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins, J.L. Schlenker. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114(27): 10834-10843.
    [41] D. M. Antonelli, J. Y. Ying. Synthesis of hexagonally packed mesoporous TiO_2 by a modified sol-gel method [J]. Angew. Chem. Int. Ed. Eng., 1995, 34, 2014-2017.
    [42] P. Yang, D. Zhao, D. I. Margolese, B. E Chmelka, G. D. Stucky. Generalized synthesis of large-pore mesoporous metal oxides with semicrystalline frame works [J]. Nature, 1998, 396:152-155
    [43] H. S. Yun, K. Miyazawa, H. Zhou, I. Honma, M. Kuwabara. Synthesis of mesoporous thin TiO_2 films with hexagonal pore structures using triblock copolymer templates [J]. Adv. Mater., 2001, 13, 1377-1380.
    [44] B. Tian, H. Yang, X. Liu, S. Xie, C. Yu, J. Fan, B. Tu, D. Zhao. Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors [J]. Chem.Commun., 2002, 17: 1824-1825.
    [45] G.. B. Raupp, A. Alexiadis, M. M. Hossain, R. Changrani. First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification [J]. Catalysis Today, 2001, 69, 41-49.
    [46] S. Doherty, D. Fitzmaurice. Preparation and characterization of transparent nanocrystalline TiO_2 films possessing well-defined morphologies [J]. J. Phys. Chem., 1996, 100: 10732-10738.
    [47] H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S. E. Lindquist. Li~+ ion insertion in TiO_2 (Anatase). 1. Chronoamperometry on CVD films and nanoporous films [J]. J. Phys. Chem. B., 1997, 101: 7710-7716.
    [48] 傅正文,罗骞,张伟,赵东元,秦启宗.有序中孔纳米多晶TiO_2薄膜的Li~+嵌脱行为[J].化学学报,2000,58(10):1226-1229.
    [49] M. Bekbolet. Photocatalytic bactericidal activity of TiO_2. in aqueous suspensions of E. coli [J]. Wat. Sci. Tech., 1997, 35: 95-100.
    [50] 马晓敏,王怡中.二氧化钛光催化氧化杀菌的研究及进展[J].环境污染治理技术与设备,2002,3(5):15-18.
    [1] Z. M. Liu, Y. Yang, H. Wang, Y. L. Liu, G. L. Shen, R. Q. Yu. A Hydrogen peroxide biosensor based on nano-Au/PAMAM dendrimer/cystamine modified gold electrode [J]. Sens. Actuat. B, 2005, 106: 394-400.
    [2] E. C. Hurdis, Jr. H. Romeyn. Accuracy of determination of hydrogen peroxide by cerate oxidimetry [J]. Anal. Chem., 1954, 26: 320-325.
    [3] C. Matsubara, N. Kawamoto, K. Takamura. Oxo [5, 10, 15, 20-tetra (4-pyridyl) porphyrinato] titanium (Ⅳ): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide [J]. Analyst, 1992, 117: 1781-1784.
    [4] S. Hanaoka, J. M. Lin, M. Yamada. Chemiluminescent flow sensor for H_2O_2 based on the decomposition of H_2O_2 catalyzed by cobalt (Ⅱ)-ethanolamine complex immobilized on resin [J]. Anal. Chim, Acta, 2002, 426: 57-64.
    [5] S. Wu, H. Zhao, H. Ju, C. Shi, J. Zhao. Electrodeposition of silver-DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose [J]. Electrochem. Comm., 2006, 8: 1197-1203.
    [6] M. G. Garguilo, N Huynh, A. Proctor, A. C. Michael. Amperometric sensors for peroxide, choline, and acetylcholine based on electron transfer between horseradish peroxidase and a redox polymer [J]. Anal. Chem., 1993, 65: 523-528.
    [7] T. Ruzgas, E. Csoregi, J. Emneus, L. Gorton, G.. Marko-varga. Peroxidase-modified electrodes: fundamentals and application [J]. Anal. Chim. Acta, 1996, 330: 123-128.
    [8] J. Hong, H. Ghourchian, S. Rezaei-Zarchi, A. A. Moosavi-Movahedi, S. Ahmadian, A. A. Saboury. Nafion-methylene blue functional membrane and its application in chemical and biosensing [J]. Anal. Lett., 2007,40: 483-496. [9] T. Ruzgas, E. Csoregi, J. Emneus, L. Gorton, G Marko-Varga. Peroxidase-modified electrodes: Fundamentals and application [J]. Anal. Chim. Acta., 1996,330(2-3): 123-138. [10] O. Ryan, M. R. Smyth, C. o. Fagain. Thermostabilized chemical derivatives of horseradish peroxidase [J]. Enzyme Microb. Technol. 1994,16(6): 501-505.
    [11] T. Loetzbeyer, W. Schuhmann, H. L. Schmadt. Minizymes. A new strategy for the development of reagentless amperometric biosensors based on direct electron-transfer processes [J]. Bioelectrochem. Bioenerg., 1997, 42(1): 1-6.
    [12] A. Morales, F. Cespedes, J. Munoz, E. Martinez-Fabregas, S. Alegert. Hydrogen peroxide amperometric biosensor based on a peroxidase-graphite-epoxy biocomposite [J]. Anal. Chim. Act., 1996, 332,131-138.
    [13] F. A. Armstrong. Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions [J]. J. Chem. Soc. Dalton. Trans. 2002,5: 661-671.
    [14] A. L. Ghindilis, P. Atanasov, E. Wilkins. Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications [J]. Electroanalysis, 1997, 9(9): 661-674.
    [15] W. Schuhmann. Electron-transfer pathways in amperometric biosensors. Ferrocene-modified enzymes entrapped in conducting-polymer layers [J]. Biosens.Bioelectron., 1995,10:181-193.
    [16] I. Willner, E. Katz. Integration of layered redox proteins and conductive supports for bioelectronic applications [J]. Angew. Chem. Int. Ed., 2000, 39(7): 1180-1218.
    [17] M. Viticoli, A. Curulli, A. Cusma, S. Kaciulis, S. Nunziante, L. Pandolfi, F. Valentini, G. Padeletti. Third-generation biosensors based on TiO_2 nanostructured films [J]. Mater. Sci. Eng. C, 2006, 26: 947-951.
    [18] D. Yu, B. Blankert, E. Bodoki, S. Bollo, J. C. Vire, R. Sandulescu, A. Nomura, J. M. Kauffmann. Amperometric biosensor based on horseradish peroxidase-immobilised magnetic microparticles [J]. Sens. Actuat. B, 2006, 113: 749-754.
    [19] Y. Zhuo, R. Yuan, Y. Chai, Y. Zhang, X. L. Li, Q. Zhu, N. Wang. An amperometric immunosensor based on immobilization of Hepatitis B surface antibody on gold electrode modified gold nanoparticles and horseradish peroxidase [J]. Anal. Chim. Acta, 2005, 548: 205-210.
    [20] Q. Xu, C. Mao, N. N. Liu, J. J. Zhu, J. Sheng. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticles nanocomposite [J]. Biosens. Bioelectron., 2006,22: 768-773.
    [21] Q. Li, G Luo, J. Feng. Direct electron transfer for heme proteins assembled on nanocrystalline TiO_2 film [J]. Electroanalysis, 2001,13: 359-363.
    [22] E. Topoglidis, A. E. G Cass, B. O Regan, J. R. Durrant. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO_2 and ZnO films [J]. J. Electroanal. Chem., 2001,517: 20-27.
    [23] E. Topoglidis, C. J. Campbell, A. E. G. Cass, J. R. Durrant. Nitric oxide biosensors based on the immobilization of hemoglobin on mesoporous titania electrodes [J]. Electroanalysis, 2006,18: 882-887.
    [24] Y. Zhang, P. L. He, N. F. Hu. Horseradish peroxidase immobilized in TiO_2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis [J]. Electrochim. Acta, 2004,49:1981-1988.
    [25] K. J. McKenzie, F. Marken, M. Opallo. TiO_2 phytate films as hosts and conduits for cytochrome c electrochemistry [J]. Bioelectrochemistry, 2005, 66: 41-47.
    [26] H. Zhou, X. Gan, T. Liu, Q. Yang, G Li. Electrochemical study of photovoltaic effect of nano titanium dioxide on hemoglobin [J]. Bioelectrochemistry, 2006, 69: 34-40.
    [27] J. Yu, S. Liu, H. Ju. Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method [J]. Biosens. Bioelectron., 2003,19: 509-514.
    [28] C. A. Paddon, F. Marken. Hemoglobin adsorption into TiO_2 phytate multi-layer films: particle size and conductivity effects [J]. Electrochem. Commun., 2004, 6: 1249-1253.
    [29] E. Topoglidis, A. E. G. Cass, B. O'Regan, J. R. Durrant. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO_2 and ZnO films [J]. J. Electroanal. Chem., 2001, 517: 20-27.
    [30] E. Topoglidis, E. Palomares, Y. Astuti, A Green, C. J. Campbell, J. R. Durrant. Immobilization and electrochemistry of negatively charged proteins on modified nanocrystalline metal oxide electrodes [J]. Electroanalysis, 2005,17:1035-1041.
    [31] Wang, L., Wang, E. 2004. Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode. Electrochem. Commun. 6: 49-54.;
    [32] Gu, H.Y., Yu, A.M., and Chen, H.Y. 2001. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J. Electroanal. Chem. 516:119-126.;
    
    [33] Yang, W., Li, Y, Bai, Y, and Sun, C. 2006. Hydrogen peroxide biosensor based on myoglobin/colloidal gold nanoparticles immobilized on glassy carbon electrode by a nafion film. Sens. Actuat. B 115: 42-48.
    [34] R. Zanella, S. Giorgio, C. R. Henry, C. Louis. Alternative methods for the preparation of gold nanoparticles supported on TiO_2 [J]. J. Phys. Chem. B, 2002,106: 7634-7642.
    
    [35] J. H. Yang, J. D. Henao, M. C. Raphulu, Y. M. Wang, T. Caputo, A. J. Groszek, M. C. Kung, M. S. Scurrell, J. T. Miller, H. H. Kung. Activation of Au/TiO_2 catalyst for CO oxidation [J]. J Phys Chem B, 2005,109(20): 10319-10326.
    [36] Haruta M. Turnover frequency (TOF) for CO oxidation over Pt/SiO_2 and Au/TiO_2 [J]. Gold Bull, 2004, 37 (1-2): 27-36.
    [37] W. C. Li, M. Comotti, F. Schuth. Highly reproducible syntheses of active Au/TiO_2 catalysts for CO oxidation by deposition-precipitation or impregnation [J]. J Catal., 2006, 237(1): 190-196.
    [38] E. Katz, I. Willner. Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors [J]. Electroanalysis, 2003,15(11): 913-947.
    [39] D. Sun, C. Cai, X. Li, W. Xing, T. Lu. Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase immobilized on active carbon [J]. J. Electroanaly. Chem., 2004, 566: 415-421.
    [40] J. Di, C. Shen, S. Peng, Y. Tu, S. Li. A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol-gel network on gold modified electrode [J]. Anal. Chim. Acta, 2005, 553:196-200.
    [41] A. M. Bond. Modern polarographic methods in analytical chemistry [M]. New York: Marcel Dekker, 1980.
    [42] H. H. Liu, Z. Q. Tian, Z. X. Lu, Z. L. Zhang, M. Zhang, D. W. Pang. Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films [J]. Biosens. Bioelectron., 2004, 20(2): 294-304.
    [43] Y. Xu, W. Peng, X. Liu, G.. Li. A new film for the fabrication of an unmediated H_2O_2 biosensor [J]. Biosens. Bioelectron., 2004, 20: 533-537.
    [44] T. Ruzgas, E. Csoregi, J. Emneus, L. Gorton, G Marko-varga. Peroxidase-modified electrodes: fundamentals and application [J]. Anal. Chim. Acta, 1996, 330:123-128.
    [45] L. Gorton, G Jonsson-Pettersson, E. Csoregi, K. Johansson, E. Dominguez, G Marko-Varga. Amperometric biosensors based on an apparent direct electron transfer between electrodes and immobilized peroxidases. Plenary lecture[J]. Analyst, 1992,117: 1235-1241.
    [46] J. Yu, H. Ju. Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method [J]. Anal. Chem., 2002,74: 3579-3583.
    [47] J. Di, C. Shen, S. Peng, Y. Tu, S. Li. A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol-gel network on gold modified electrode [J]. Anal. Chim. Acta, 2005, 553:196-200.
    [48] S. Sampath, O. Lev. Inert metal-modified, composite ceramic-carbon, amperometric biosensors: renewable, controlled reactive laye [J]. Anal. Chem., 1996, 68: 2015-2021.
    [49] Y. Xu, W. Peng, X. Liu, G. Li. A new film for the fabrication of an unmediated H_2O_2 biosensor [J]. Biosens. Bioelectron., 2004, 20: 533-537.
    [50] J. Yu, S. Liu, H. Ju. Mediator-free phenol sensor based on titania sol-gel encapsulation matrix for immobilization of tyrosinase by a vapor deposition method [J]. Biosens. Bioelectron., 2003,19: 509-514.
    [51] Y. T. Kong, M. Boopathi, Y B. Shim. Direct electrochemistry of horseradish peroxidase bonded on a conducting polymer modified glassy carbon electrode [J]. Biosen. Bioelectron., 2003, 19: 227-232.
    [1] A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37-38.
    [2] M. Graitzel. Photoelectrochemical cells [J]. Nature, 2001, 414: 338-344.
    [3] A. Hagfeldt, M. Graitzel. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev., 1995, 95(1): 49-68.
    [4] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graitzel. Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(Ⅱ) charge-transfer sensitizers (X =Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. J. Am. Chem.Soc., 1993, 115: 6382-6390.
    [5] H. Deng, Z. Lu. Heteroaggregation and photoelectric conversion of porphyrins on a nanostructured TiO2 electrode [J]. Supramolecular Science, 1998, 5: 669-674.
    [6] A. kay, M. Graetzel. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins [J]. J. Phys. Chem., 1993, 97(23): 6272-6277.
    [7] 祁玉兰.大麦原生质体光电化学及电生孔研究[M].复旦大学硕士论文,2002.
    [8] F. G. Gao, A. J. Bard, L. D. Kispert. Photocurrent generated on a carotenoid-sensitized TiO_2 nanocrystalline mesoporous electrode [J]. J. Photochem. Photobiol. A, 2000, 130: 49-56.
    [9] R. Vogel, P. Hoyer, H. Weller. Quantum-sized PbS, CdS, AgeS, Sb_2S_3, and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors [J]. J. Phys. Chem., 1994, 98(12): 3183-3188.
    [10] C. Nasr, E V. Kamat, S. Hotchandani. Photoelectrochemistry of composite semiconductor thin films, photosensitization of the SnO_2/TiO_2 coupled system with a ruthenium polypyridyl complex [J]. J. Phys. Chem. B, 1998, 102(49): 10047-10056.
    [11] W. P. Tai, K. Inoue, J. H. Oh. Ruthenium dye-sensitized SnO_2/TiO_2 coupled solar cells [J]. Solar Energy Materials and Solar Cells, 2002, 71(4): 553-557.
    [12] L. Spanhel, H. Weller, A. Henglein. Photochemistry of semiconductor colloids.Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles [J]. J.Am.Chem.Soc, 1987,109: 6632-6635.
    [13] R. Vogel, K. Pohl, H. Weller. Sensitization of highly porous, polycrystalline TiO_2 electrodes by quantum sized CdS [J]. Chem. Phys. Lett., 1990,174: 241-246.
    [14] D. Liu, P. V. Kamat. Electrochemical rectification in CdSe + TiO_2 coupled semiconductor films [J]. J.Electroanal.Chem., 1993, 347(1-2): 451-456.
    [15] K. E. Karakitsou, X. E. Verykios. Influence of catalyst parameters and operational variables on the photocatalytic cleavage of water [J]. J. Catal., 1992, 134:629-643.
    [16] K. E. Karakitsou, X. E. Verykios. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage [J]. J. Phys. Chem.,1993, 97(6): 1184-1189.
    [17] K. E. Karakitsou, X. E. Verykios. Definition of the intrinsic rate of photocatalytic cleavage of water over Pt-RuO_2/TiO_2 catalysts [J]. J. Catal., 1995,152: 360-367.
    [18] N.R.de.Tacconi, J.Carmona, K.Rajeshwar, J.Phys.Chem.B 1997,100,10151.
    [19] H. Kozuka G.. Zhao, T.Yoko. Sol-gel preparation and photoelectrochemical properties of TiO_2 films containing Au and Ag metal particles [J]. Thin Solid Films, 1996, 277:147-154.
    
    [20] G. Zhao, H. Kozuka, T. Yoko. Effects of the incorporation of silver and gold nanoparticles on the photoanodic properties of rose bengal sensitized TiO_2 film electrodes prepared by sol-gel method [J]. Solar Energy Materials & Solar Cells,1997, 46: 219-231.
    
    [21] J. W. Yoon , T. Sasaki, N. Koshizaki, E. Traversa. Preparation and characterization of M/TiO_2 (M = Ag, Au, Pt) nanocomposite thin films [J].Scripta. Mater., 2001, 44: 1865-1868.
    [22] E. W. Mcfarland, J. Tang. A photovoltaic device structure based on internal electron emission [J]. Nature, 2003, 421: 616-618.
    [23] J. Tang, M. White, G. D. Stucky, E. W. Mcfarland. Electrochemical fabrication of large-area Au/TiO_2 junctions [J]. Electrochem.Comm., 2003, 5: 497-501.
    [24] V. Subramanian, E. Wolf, P. V. Kamat. Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO_2 Films? [J]. J.Phys.Chem.B, 2001, 105: 11439-11446.
    [25] N. Chandrasekharan, P. V. Kamat. Improving the photoelectrochemical performance of nanostructured TiO_2 films by adsorption of gold nanoparticles [J]. J. Phys. Chem. B, 2000, 104: 10851-10857.
    [26] A. Doron, E. Katz, I. Willner. Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces: Application of the Metal Colloid Films as Base Interfaces To Construct Redox-Active Monolayers [J]. Langmuir, 1995, 11, 1313-1317.
    [27] C. Wang, C. Liu, X. Zheng, J. Chen, T. Shen. The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO_2 particles [J]. Coll. Surface. A, 1998, 131, 271-280.
    [28] L. M. Liz-Marzan, M. Giersig, P. Mulvaney. Synthesis of nanosized gold-silica core-shell particles [J]. Langrnuir, 1996, 12, 4329-4335.
    [29] 马礼敦.高等结构分析[M].上海:复旦大学出版社,2001.
    [30] H. P. Boehm. Funktionelle gruppen an festkorper-oberflachen [J]. Angew. Chem., 1966, 78(12): 617-628.
    [31] Y. Yonezawa, T. Sato, M. Ohno, H. Hada. Photochemical formation of colloidal metals [J]. J. Chem. Soc. Farady Trans., 1987, 83: 1559-1567.
    [32] J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadono, M. Miya, T.Sakaguchi. Sol-Gel Processing and Optical Nonlinearity of Gold Colloid-doped Silica Glass [J]. J. Ceram. Soc. Jpn, 1993, 101: 53-58.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.