Sp3基因结构及其与多发性硬化遗传相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景 多发性硬化(multiple sclerosis,MS)是一种中枢神经系统自身免疫性疾病,其病因尚未完全清楚,遗传和环境因素均能影响对该病的易感性。其中遗传因素在MS易感性方面的作用虽已被肯定,但目前还没有发现任何一个基因对于MS的发病是起唯一决定作用的,即未发现任何单一基因可致MS,因而寻找MS与基因的相关性已成为人们试图揭示其发病机制的重要研究方向之一。Sp3(Specificity protein,Sp3)基因是一种核转录因子,属Sp家族成员之一,是继Sp1后发现的具有与之相同的DNA结合区的转录调节因子,近年来发现它对众多基因均具有调节作用,它通过与GC/GT box结合,激活许多病毒和哺乳动物细胞的启动子,决定启动子的转录效率和特异性。还发现Sp3在基因转录激活中既可有抑制作用,也可有激活作用,甚至对同一基因的不同时期也可发挥不同的作用,因此对人体内众多基因的表达有着重要意义。1996年Grekova发现79%MS患者存在Sp3基因表达缺失,此现象已开始引起国内外同行的普遍关注。
     目的 通过对核转录因子Sp3基因表达的研究,了解中国人多发性硬化Sp3基因表达缺失的特点及与临床的关系,为临床诊断及评判预后提供帮助,并探讨该基因在MS表达缺失的可能原因,有助于MS发病机制的进一步阐明。
     方法 本研究的第一部分采用RT-PCR方法,通过收集临床确诊的MS病例,提取总RNA,设计Sp3特异性引物,观察Sp3在MS中表达缺失现象,对其与临床的关系进行揭示,并对Sp3在正常人不同组织中广泛表达现象进行了观察。第二部分采
    
     中南人学湘雅【院博1:学位论上 中义搞公
    用半定量 RTPCR方法对 Sp3与 MS外周血单个核细胞 ILJ 表达关系进行初
    步观察。第三部分利用已公布的Sp3全长CDNA序列,经同源性比较分析,对该基因
    进行染色体定位及基因的结构预测,并对Sp3表达缺失的原因进行了二方面的探讨。
    首先采用SSCP方法,扩增2~5号外显子的编码序列,对病人和正常人进行比较,以
    判明 Sp3基因全长编码序列基因突变与 Sp3不表达的关系。其次对 MS病人 ZI~2065fit
     (根据 Genbank登录号 gi:13162672序歹)约 2000hp cDNA序歹进行 了坝序,探讨
    MS病人 Sp3基因是否存在 m RNA水平的改变。
     结果 实验的第一部分以CDNA为模板进行PCR,56例MS患者有33例Sp3为
    阳性结果,另外23例为阴性结果,缺夫率为41.l%;正常对照组35例30例为阳性
    结果,缺失率为8石%;OD组27例23例为阳性结果,缺失率为14.3%。经统计学处
    理,OD组与正常对照组之间缺失率差异无显著性意义,但*S组与两组对照组之间
    的差异具有显著性意义(P<0.of)。此外,还对*D组,如 RA、SLE、MG、GBS等
    作了对照研究,结果显示在这类疾病中Sp3的表达缺失为15%,比正常人稍高,也无
    统计学意义。对该组MS的研究显示有5例先后2次抽血复查Sp3表达,其间接受了
    激素治疗、病程有的经历了急性期到稳定期的变化,但其Sp3表达与否并未改变。从
    EDSS评分来看,SP3缺失组与表达组比较急性期无明显差别,稳定期则有较显著差
    别,经统计学处理显示P(0刀5。本组视神经脊髓炎有15例,表达缺失率为26厂%,
    其缺失率与MS组比较,经统计学处理P值为0卜此外还观察到Sp3在正常人8个
    不同组织均有广泛表达的现象。第二部分初步观察到25例MS中Sn3阳性组几一10
    表达较高,阴性组表达较低,但非显著性意义的差别(P>0.2)。第三部分利用已公布
    的Sp3全长CDNA序列,经同源性比较,将该基因定位在2号染色体上,它包含5个
    外显子和 4个内含子。首先采用 SSCP方法,对病人和正常人2~5号外显子的编码序
     3
    
     中南大学湘雅医院博卜学位论文 中文摘要
    列进行筛查,未筛检到单个核着酸序列的改变,同时排除了大片段DNA缺失。其次
    对MS病人对~2065lit(根据 Genbank登录号i:13162672序列)约2000hp cDNA
    序列进行了测序,仅发现239处存在G—A单核着酸的改变,导致氨基酸序列相应的
    改变,即苏氨酸(Thr)一丙氨酸W。该结果说明了 MS患者 Sp3在 mRNA水平的
    结构也大致正常。
     结论 Sp3与MS免疫学发病机制之间可能存在一定的相关性,通过对MS Sp3
    基因表达的研究,观察到中国人MS存在该基因表达缺失,但其缺失率与西方MS人
    群的分布存在较明显差异;Sp3表达缺失对于MS病人是比较特异的一种现象,其临
    床价值在于①可供临床作为判断的一个辅助资料,如可疑MS的病人,遇到Sp3阴性,
    对本病的诊断考虑可能有一定帮助。②Sp3基因表达与否与 MS临床表现之间存在一
    定的关系,MS病人中SP3表达或不表达和年龄、性别、复发次数、病灶数目、病程、
    疾病活动性或是否激素治疗等并无关系:③…不表达可能与*S稳定期的残废程度
    有关,Sp3阴性可能提示预后欠佳;④过去认为视神经脊髓炎是一个独立的疾病,近
    年来多数学者认为它是MS的一个?
Background Multiple sclerosis (MS) is a central nervous system autoimmune disease, but the cause of the disease is not yet complete clarified. Both genetic and environmental factors may influence susceptibility to the disease, the function of the heredity has already been affirmed. But even now people haven't discover a unique gene whichever to decide the development of MS or any one gene can cause MS, but Looking for the relativity of Sp3 and MS has become an important research direction to announce the mechanisms of the disease. Sp3 gene is one of the transcriptional factors, which belonging to Sp family. It has the same DNA binding site with Spl and is concerned with regulation of many genes. It activates many virus and mammalian cells' promotors through the binding with GC/GT box, deciding the efficiency and specificity of the transcription of promotor. Sp3 gene turning
    out both activating and repressing function, even to the same gene, it can also develop the different function in different period, and therefore has got the important meaning to numerous genes of human body. In 1996, the researchers discovered the deficient express of Sp3 gene existed in MS when they studied with a monozygotic twin by differential display method. Succedent clinical research proved the conclusion. The mechanism of the phenomena is still ambiguity, but it has aroused people's abroad attention.
    
    
    Objective To observe the existence of Sp3 gene deficient express in Chinese multiple sclerosis, and discuss the correlation between Sp3 and the clinical presentation and prognosis in MS. Try to find out the possible reasons that cause the deficient express of Sp3, and further reveal mechanism of MS.
    Methods In the first part, we collected the patients with definite MS, and extracted the total RNA from PBMC. The RT- PCR method was used to observe Sp3 deficient expression phenomenon in the MS. In the second part, semi-quantitative RT-PCR method was used to investigate interleukine 10 express in patients' PBMC, we further study the relationship between Sp3 deficient expression and the level of interleukine 10 express. In the third part we BLAST in the GenBank using the published Sp3 cDNA sequences, to estimate Sp3 gene organization and location in the chromosome. SSCP method was used to screen the nucleutide mutation of coding sequences inorder to compare patients with normal controls. Direct sequencing was used to sequence a MS patient's cDNA sequences including 21 to 2065 nucleutides.
    Results In the first part, in MS group, we found 33 cases of 56 got Sp3 positive results, the other 23 cases got negative results, the absent rate was of Sp3 was 41.1%; in normal control group, 5 cases of 35 got negative results, the absent rate was 8.6%; in OD group, 4 cases of 27 got negative results, the absent rate was 14.3%; in OID group, 3 cases of 20 got negative results, the absent rate was 15.0%. In OD/OID groups, the Sp3 express rate were a little above the normal control group, but without statistical significant (P>0.05). But there were significant difference between MS and control groups by
    
    statistical analysis (P<0.01). Sp3 expresses or not in MS patients was irrelevant with the number of relapse times, the number of the focus and the course of the disease. 5 Cases with hormone treatment patients who underwent active and stable stage didn't change the express of Sp3 or not. Sp3 lack express group showed no different with express group in EDSS grade in active MS, but there was distinct different in stable MS according to statistical analysis(P<0.05). Devic disease is an independent disease, most of the doctors think it is subspecies of MS. It showed lower deficient rate of Sp3 than other patients. We included 15 cases of Devic disease in our research, 4 of 15 lose the express of Sp3; while other members in MS group, 19 of 41 lose the express of Sp3, we found that Devic disease had a lower deficient rate of Sp3, but when we compared them with other members in MS group, there were no significant different between the lose rate, the valu
引文
1. Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis guidelines for research protocols. Ann Neurol 1983; 13:227-231.
    2. Peter C. Melby, Barbara J. Darnell, Victor V. Tryon. Quantitative measurement of human cytokine gene expression by polymerase chain reaction. Journal of Immunological Methods. 1993, 159:235-244.
    3. Sriram, S, Stratton, CW, Yao S. et al. Ann Neurol, 1999, 46:6.
    4. Challoner PB, Smith KT, Parker JD et al. Proc. Natl. Acad. Sci. USA, 1995, 92:7440.
    5. McFarlin DE, McFarland HF, Multiple sclerosis. N Engl J Med 1982; 307:1183-1188.
    6. Kurtzke JF. Evidence for multiple sclerosis as an infection. Clin Microbiol Rev 1993; 6:382-427.
    7 Allen I, Brankin B. Pathogenesis of multiple sclerosis-the immune diathesis and the role of viruses, J Neuropathol Exp Neurol 1993; 52:95-105.
    8. Eber GC, Sadovnick AD. The role of genetic factors in multiple sclerosis susceptibility. J Neuroimmunol. 1994, 54:1-17.
    9. Sawcer S, Jones HB, Feakes R et al. A genome screen in multiple sclerosis reaveals susceptibility loci on chromosome 6q21 and 17q22. Nat Genet. 1996, 13(4):464-468.
    10. Beall SS, Concannon P, Charmley P, MxFarland HF etal. The germline repertoire of T cell receptor bata chain genes in patients with chronic progressive multiple sclerosos. J Immunol. 1989, 21:59-66.
    11. Droogan AG, Kirk CW, Hawkins SA et al. T-cell receptor α, β, γ and δ chain gene
    
    microstellites show no association with multiple sclerosis. Neurology. 1996, 47(4):1049-1053.
    12. Oksenberg JR, Sherritt M, Begovich AB et al. T-cell receptor V α and C α alleles associated with multiple sclerosis and myasthenia gravis. Proc Natl Acad Sci USA 1989; 86:988-992.
    13. Gustav Hagen, Susanne Muller, Miguel Beato, et al. Cloning by recognition site screening of two novel GT box binding protein: a family of Spl related genes. Nucleic Acid Research 1992, 20:5519-25
    14. Hagen G. Muller S. Beato M, cloning by recognition proteins: a family of Spl,related genes. Necleic Acids Res 1992, 20, 5519-5525.
    15. Kingsley, C. Winoto, A. cloning of GT box-binding proteins: a novel Spl multigene family regulating T-cell receptor gene expression. Mol Cell Biol 1992, 2, 4251-4261.
    16. G. Suske, The Sp-family of transcription factors. Gene 1999, 238:291-300.
    17. Birnbaum M, van Wijnen, A, Odgren P, et al. Spltrans-activtion of cell cycle regulated promoters is selectively repressed by Sp3. Biochemistry 1995, 34, 16503-16508.
    18. Liang Y, Robinson DF, Dening J et al Transcriptional regulation of the SIS/PDGF-B gene in human osteosarcoma cells by the Sp family of transcription factors. J. Biol Chem. 1996, 271:11792-11797.
    19. Ihn H., Trojanowska M, Sp3 is a transcriptional activator of the human alpha2 collagen gene. Necleic Acids Res 1997, 25:3712-3717.
    20. Zhao L, Chang LS. The human POLD1 gene. Identification of an upstream activator sequence, activator by Spl and Sp3, and cell cycle regulaiton. J. Chem. 1997,
    
    272:4869-4882.
    21. Dennig. J. Happen. G. Beato. M. Suske. G. 1995. Members of the Sp transcription factor family control transknpution from the utcroglobin promoter. J. Biol. Chem. 270. 12737-12744.
    22. Kumar AP, Buttler AP, Transcription factor Sp3 antagonizes activation of the ornithine decarboxylase promotor by Sp1. Nucleic Acid Res. 1997, 25:2012-2019.
    23. Kennett SB, Udvadia AJ, Horowitz JM.. Sp3 encodes multiple proteins that differ in their capacity to stimulate or repress transcription. Necl Acids Res, 1997, 25:3310-3117.
    24. Majello B, DeLuca P, Majello B and Lania L. Sp3 is a bifunctiona transcription regulator with modular independent activation and repression domains. J Biocemistry. 1996, 272(7):4021-4026.
    25. DeLuca P, Majello B and Lania L. Sp3 represses transcription when tethered to promoter DNA or targeted to promoter proximal RNA. j Biochem. 1996, 271(15):8533-8536.
    26. Xu Q, Ji YS, Schmedtje JF. Sp1 increase expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure. J Bio Chem. 2000, 275(32):24583-24589.
    27. Maria C. Grekova, Eve D. Robinson, Marc A. Faerber et al. Deficient expression in multiple sclerosis of the inhibitory transcription factor Sp3 in mononuclear blood cells. Annal of Neurology, 1996, 40:108-112.
    28.乔立艳,许贤豪,张华等,多发性硬化患者外周血单个核细胞转录因子Sp3基因的缺陷表达 中华社经科杂志 2002,35:282-285
    
    
    29. Olerup O, Hillert J, Fredrikson S, et al Primarily chronic progressive and relapsing-remitting MS: two immunogenetically distinct disease entities. Pro Natl Acad Sci USA. 1989, 86: 7113-7117.
    30.黄友歧等 神经病学全国统编教材第二版 人民卫生出版社 1993:197.
    31. Howark LA Working protocol to be used as a guideline for trials in multiple sclerosis. Ann Neurol 1983; 40: 704-710
    32. Kurtske JF. Rating neurologic impairment in multiple sclerosis. Neurology 1983, 33(11): 1444-1452
    33.许贤豪 神经免疫学.北京医科大学、中国协和医科大学联合出版社 1994:12
    34. Maria C. Grekova, Stephen W. Scherer, Jeffrey Trabb, et al, Localization of the human Sp3 gene to chromosome 7p-15.2. The lack of expression in multiple sclerosis does not reflect abnormal gene organization. Journal of neuroimmunology 2000, 106: 214-219.
    35. Pang, H. Miranda, K. Fine, A. 1998, Sp3 regulates fas expression in lung epithelial cells. Biochem. J. 333, 209-213.
    36. Udvadia AJ, Templeton DJ, Horowitz JM. Functional interactions between the retinoblastoma protein and Sp-family members: superactivation by Rb requires amino acids necessary for growth suppression. Proc Natl Acad Sci USA. 1995, 92: 3953-3957.
    37. Kingsley, C. Winoto, A. cloning of GT box-binding proteins: a novel Sp1 multigene family regulating T-cell receptor gene expression. Mol Cell Biol 1992, 2, 4251-4261.
    38. Majello B, DeLuca P, Hagen G, et al, Different members of the Sp1 multigene family exert oppodite transcriptional regulation of the long terminal repeat of HIV-1. Necleic Acids Res 1994; 22: 4914-4921.
    
    
    39. Tone M, Powell MJ, Tone Y et al. IL-10 gene expression is controlled by the transcription factors Sp1 and Sp3. J Immunol. 2000; 165(1)286-291.
    40. Peter C. Melby, Barbara J. Darnell and Victor V. Tryon. Quantitative measurement of human cytokine gene expression by polymerase chain reaction. Journal of Immunological Methods 1993; 159: 235-244
    41. P. Rieckmann, M Alberecht, B. Kitze et al. Cytokine mRNA levels in mononuclear blood cells prom patients with multiple sclerosis. Neurology, 1994. 44: 1523-1526.
    42. Shohreh Issazadeh, Johnny C. Lorentzen, Maha I. Mustafa et al. Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats. persistent mRNA expression of proinflammatory Cytokines and absent expression of interleukine-10 and transforming growth factor-β. Journal of Neuroimmunology 1996(69): 103-115
    43. Trabattoni D, Ferrante P, Fusi ML, et al. Augmented type 1 cytokines and human endogenous retroviruses specific immune responses in patients with acute multiple sclerosis. J Neurovirol 2000, 6 suppl: 2s38-41.
    44. Rohowksy KC, Molinaro D, Cook SD, et al. Cytokine secretion profile of myelin basic protein-specific T cells in multiple sclerosis. Mult Scler, 2000, 6(2): 69-77.
    45. Maurer M, Kruse N, Giess R, et al. Genetic variation at position-1082 of interleukine 10 promotor and the outcome of multiple sclerosis. J Neuroimmunol 2000, 104(1): 98-100.
    46. Grekova MC, Salerno K, Mikkilineni R, et al. Sp3 expression in immune cells: a quantitative study. 2002; 82(9): 1131-1138
    47.林嘉友,李莉,高扬等,多发性硬化患者外周血单个核细胞IL-2、IFN-γ和TNF-αmRNA表达水平.中国医学科学院学报 1997(19):1,24-28.
    
    
    48. Gastl, G. A. J. S. Abrams, D. M. Nanus, et al. Interleukine 10 production by human carcinoma cell lines and its relatiopnship to interleukin-6 expression. Int. J. Cancer 1993, 55:96.
    49. Groux, H, A. Ogarra, M. Bigler M. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737.
    50. Apt. D, Watts, RM, Suske G. et al, High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promotor. Virology 1996, 224:281-291.
    51. Discher, D J, Bishopric NH, Wu X et al, Hypoxia regulates beta enolase and pyruvate kinase-M promotors by modulation Sp1 Sp3 binding to a conserved GC element. J Bio. Chem. 1998, 273:26087-26093.
    52. Hata Y, Duh. E, Zhang K. et al transcriptional factors Sp1 and Sp3 alter vascular endothelial growth factor receptor expression through a novel recognition sequence. J Biol. Chem. 1998, 273:19294-19303.
    53. Martha Kalff-suske, Jurgen Kunz, Karl-Heinz Grzeschik et al. Human Sp3 transcriptional regulator gene maps to chromosome 2q31. Genomics 1996:37, 410-412.
    54. Masahide Tone, Mark J. Powell, Yukiko Tone, et al. IL-10 gene expression is controlled by the transforming factor Sp1 and Sp3. The Journal of Immunology.
    55. Fiorentino. D. F. M. W. Bond and T. R. Mosmann. Twotypes of mouse T helper cell IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med 1989. 170:2081
    56. Moore, K. W. A. O. Garra, R. de Waal-Malefyt. P. Vieria and T. R.
    
    Mosmann. Interleukine-10 Annal Rev. Immunol. 1993, 11:165
    57. Del Prete. G.. M. De Carli. F. Almeigogna. M. G., Human IL-10 is produced by both type 1 helper(Th1) and type 2(Th2)T cell clones and inhibits their antigen-specific proliferation and cytokine production. J. Immunol. 150:303
    58. O Garra, A. R. Chang, N. Go, et al Ly-1 B(B-1) cells are the main source of B cell-derived interleukine 10. Eur. J. Immunol. 22:771.
    59. De Waal-Malefyt, R. J. Abrams, B. Bennett, C. G. Figdor. and J. E. de Vries. Interleukine 10 inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 1991, 174:1209
    60. Enk A. H, and S. I. Katz. Identification and induction of keratinocyte-derived IL-10. J. Immunol. 1992:149:92.
    61. Kagimoto S. PCR-SSCP, direct sequencing. Nippon Rinsho, 1995; 53suppl:310-5.
    62. Bettinaglio P, Galbusera A, Caprioli J, et al, Single strand conformation polymorphism as a quick and reliable method to genotype M235T polymorphism of angiotensiongen gene, 2002 Jul; 35(5):363-368.
    63. Dynan. W. S. Tjian, R. 1983. The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early pomoter Cell 35. 79. 87.
    64. Jones. K. A. Yamamoto. K. R. Masiarz. Tjian R. 1985. Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro Cell. 42. 559-572.
    65. Gidoni, D, Dynan WS, Tjian R. Multiple specific contacts between a mammalian transcription factor and its cognate promoters. Nature 1984, 312:409-413.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.