低温烧结M型钡铁氧体高频软磁特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子信息产业的飞速发展,电路模块及器件的小型化,集成化及高频化成为衡量该行业发展水平的重要标准。低温共烧陶瓷LTCC技术完全迎合现代电子系统高频化、小型化的发展要求,目前它已成为电子元件集成封装的关键技术,而相应的材料研究对LTCC技术的发展起至关重要的作用。由于M型钡铁氧体具有较大的矫顽力和磁能积、单轴磁晶各向异性等优点,因而被广泛的应用在永磁、吸波和微波毫米波器件等领域中。本论文主要围绕M型钡铁氧体的低温烧结及其在LTCC技术中的应用这一主题展开。
     在材料研究方面,首先对应用在微波领域的M型钡铁氧体进行了研究,通过钴钛掺杂提高了该材料的高频软磁特性,采用sol-gel工艺制备了钴钛掺杂M型钡铁氧体粉体。重点研究了掺杂量、烧结温度以及助烧剂BBSZ对钴钛掺杂的M型钡铁氧体材料磁性能参数的影响。通过研究发现,助烧剂BBSZ能够促进晶粒生长,降低粉体的烧结温度;钴钛离子的掺杂能够提高M型钡铁氧体材料起始磁导率,改善材料的高频软磁特性。通过大量实验研究,主要在提高起始磁导率、改善频率特性、降低烧结温度方面取得进展,成功研制了起始磁导率为14,烧结温度为920℃,截至频率为800MHZ应用于高频片式电感的M型钡铁氧体粉体。
     在片式器件研究方面,首先对M型铁氧体的流延工艺进行了研究,研制了性能较佳的M型铁氧体的流延膜片,确定了M型钡铁氧体在LTCC应用的工艺可行性。在有限元计算和电磁场仿真的理论指导下,借助HFSS软件进行片式电感、滤波器结构的优化设计及性能的仿真预测。用本文研制的低温烧结的Co/Ti掺杂钡铁氧体材料,按照仿真设计的片式元器件参数,在电子科技大学LTCC工艺生产线上进行了实际研制。经验证,实际制备的高频高感值片式电感,电感值为1μH,其感量比仿真预测值偏低,这主要是由于铁氧体的磁导率与标样环有一定差异缘故所造成。实际制备的低通滤波器,截止频率为400MHZ,带外抑制在2GHZ时大于25dB,其截止频率略高于仿真预测值,这主要是受LTCC工艺参数的精确控制较为困难的影响。
The rapidly developing of electronic and information technology calls for the circle components and modules being miniaturized integrated and high frequency all of this has become the crucial standard of the evaluating the development of this industry. Low Temperature Co-firing Ceramic (LTCC) technology being one of the best candidates to obtain these requirements so naturedly the study of the materials used in LTCC technology is important even to the whole electronic industry. And the M-style barium ferrite having the large coercive force magnetic energy produce and uniaxial magnetocrystalline anisotropy is widly studied in many fields including permanent magnetic material wave absorption material and microwave and millimeter wave devices. So in this article our work is largely focus on the application of M-style barium ferrite in LTCC technology is studied.
     In the materials aspect the performance of Ba-ferrite in microwave is taken in consideration. The Co and Ti substituted ferrite is fabricated by sol-gel process the measurement shows that the substitution increase the soft magnetic performance of this material in high-frequency. And the study of how the doping amount sintering temperature and sintering agent BBSZ effect the magnetic characteristics of M-style Ba-ferrite is carried out which shows that the sintering agent will benefit the growth of grain bring down the sintering temperature and the doping of Co and Ti will increase the initial permeability of the Ba-ferrite and also improve the soft magnetic behavior in high frequency. We have fabricated the M-style Ba-ferrite with initial permeability being 14 cut-off frequency being 800MHz which can be applied in high frequency multilayer chips inductor.
     In the multilayer chips components aspect we have studied tape casting process and confirmed the feasibility of M-style Ba-ferrite applicated in LTCC technology. Utilizing HFSS we obtained the optimized parameters of the multilayer chips inductors and filters. Then the samples of these inductors and filters were fabricated using the LTCC production line in UESTC. The measurements show that the inductance of the inductor sample is 1μH a little lower than the simulation one which is thought to be caused by the difference of permeability between the ferrite and standard sample. On the other hand the filter sample with cut-off frequency being 400MHz out band rejection larger than 25dB in the frequency 2GHz reason of the higher cut-off frequency is thought to be the processing parameters in LTCC are hard to be controlled.
引文
[1] Kapitanova Polina Turalchuk Pavel Fischuk Irina et al. Design of quasi-lumped-element filters and directional couplers using multilayer technologies. Proceedings of 16th International Conference on Microwaves Radar and Wireless Communications 2006
    [2] Reichl Herbert Wolf M. J.. System integration technologies for ultra small systems. IEEE 11th International Symposium and Exhibition on Advanced Packaging Materials Processes Properties and Interfaces. 2007 11
    [3] Zayniyev Damir Budimir Djuradj Zouganelis George. Miniaturized microstrip filters and diplexers for wireless communication systems. Microwave and Optical Technology Letters 2008 50(10): 2701-2702
    [4]童志义.低温共烧陶瓷技术现状与趋势.电子工业专用设备,2008,166:1-9
    [5] C.-H. Lee A. Sutono S. Han and J. Laskar.A compact LTCC Ku-band transmitter module with integrated filter for satellite communication applications.in Proc. IEEE Int. Microwave Symp. 2001 945-948.
    [6] Choi B.G. Stubbs M.G. Park. C.S.A Ka-band narrow bandpass filter using LTCC technology. Microwave and Wireless Components Letters. IEEE Volume: 13 . Issue: 9 .Sept. 2003.
    [7] Scrantom C.Q. Lawson J.C LTCC technology: where we are and where we're going .Technologies for Wireless Applications 1999. Digest. 1999 IEEE MTT-S Symposium on 21-24 Feb. 1999. 193– 200.
    [8] Johann Heyen Andriy Gordiyenko Patric Heide.Vertical Feedthroughs for Millimeter- Wave LTCC Modules 33rd European Microwave Conference Munich 2003 411-414.
    [9] Sebastian M.T. Jantunen H.. Low loss dielectric materials for LTCC applications: A review. International Materials Reviews 2008 53(2): 57-90
    [10]郭贵芳,贺志新,郭继华等. LTCC中的寄生效应:材料的开发现状和展望.北京联合大学学报,2008,22(4):67-69
    [11]邢孟江.基于LTCC技术的建模与应用研究:[硕士学位论文].西安:西安电子科技大学,2008
    [12]程龙宝.微波LTCC技术设计:[硕士学位论文].南京:南京理工大学,2007
    [13]刘浩斌.基于低温共烧陶瓷的片式无源集成器件.现代制造,2005,(26):75-77
    [14] Sawhill H. T. Low temperature co-fireable ceramics with co-fired resistors . Int Soc for Hybrid Microelectronics 1986. 473-480.
    [15] Prochazka T Fischer M. High quality LTCC resonator for voltage-controlled oscillator. Components and Packaging Technologies IEEE Transactions on Volume: 26 Issue: 3 Sept. 2003 591– 597.
    [16] Schuler K.; Venot Y.“Innovative material modulation for multilayer LTCC antenna design at 76.5 GHz in radar and communication applications”Microwave Conference 2003. 33rd European Volume: 2 7-9 Oct. 2003 ,P707– 710.
    [17]王悦辉,杨正文,王婷等.LTCC:元件集成化模块首选.中国电子报2006,6
    [18] J.Azadmanjiri. Structural and electromagnetic properties of Ni-Zn ferrite prepared by sol-gel combustion method. Materials Chemistry and Physics .2007:4~9
    [19] R.B.KambleV.L.Mathe. Nanocrystalline nickel ferrite thick as an efficient gas sensor at room temperature. Sensors and Actuators B. 2007:5~9
    [20] M.MozaffariF.EbrahimiS.Daneshfozon. Preparation of Mn-Zn ferrite nanocrystalline powders vis mechanochmical processing. Journal of Alloys and Compounds.2008:65~67
    [21]王焕平.溶胶-凝胶发制备低温共烧低介质高频纳米陶瓷粉体及其应用技术研究:[博士学位论文].杭州:浙江大学2007
    [22] I.E. Grey N.C. Wilson. Titanium vacancy defects in sol–gel prepared anatase. Journal of Solid State Chemistry 2007180: 670-678
    [23] Zhang Haijun Liu Zhichao Ma Chengliang Yao Xi Zhang Liangying“Complex permittivity permeability and microwave absorption of Zn- and Ti-substituted barium ferrite by citrate sol-gel process”Materials Science and Engineering B96 (2002) 289-295
    [24] P.Braun. The crystal structures of a new group of ferromagnetic compounds[J]. Philips Research. Report 1957.12.491-548
    [25]张海军姚熹张良莹等. BaM、BaCoTiM、BaZnTiM的柠檬酸溶胶-凝胶合成及其微波介电性能、磁性能研究[J].功能材料,2003.34(3):269-271
    [26] Han-Shin Cho . M-Hexaferrites with Planar Magnetic Anisotropy and Their Application to High-Frequency Microwave Absorbers Transactions on magnetics Vol 35 No5 Sep 1999
    [27] C.WangF.WeiM.Lu et al. Structure and magnetic properties of ZnTi-substituted Ba-ferrite particles for magnetic recording[J]. Journal of Magnetism and Magnetic Materials1998.183:241-246
    [28]刘浩斌.基于低温共烧陶瓷的片式无源集成器件.现代制造,2005,(26):75-77
    [29] Wasserman Y“Integrated Single-Wafer RP Solutions for 0.25-micron Technologies”IEEE Trans-CPMT-A Vol. 17 No. 3 (1995) pp. 346-351.
    [30]杨立群.低温共烧陶瓷嵌入式电感与电容元件之设计模型化:[硕士学位论文].台湾国立中山大学机电工程系.2003.6
    [31]盧信嘉,趙子威,周晏田.较高制程变异容忍度之耦合电感.台湾:零组件杂志,2008
    [32] Ching-Wen Tang Chi-Yang Chang.Using buried capacitor in LTCC-MLC balun. Electronics Letters Volume: 38 Issue: 15 18 July 2002801– 803.
    [33]丁士华姚熹等.低温共烧片式陶瓷微波带通滤波器.压电与生光. Vol.25No.6 2003 :463.
    [34] Philip E.Garrou.Lwona Turlik著.王传声.叶天培等译.多芯片组件技术手册.2006北京:电子工业出版社.46-57.
    [35] Eurskens W Wersing W. Design and performance of UHF band inductors capacitors and resonators using LTCC technology for mobile communication systems IEEE MTT-S International Microwave Symposium Digest v 3 1998 TH1E2 1285-1288.
    [36] Eurskens W Wersing W. Design and performance of UHF band inductors capacitors and resonators using LTCC technology for mobile communication systems IEEE MTT-S International Microwave Symposium Digest v 3 1998 TH1E2 1285-1288.
    [37] Sawhill H. T. Low temperature co-fireable ceramics with co-fired resistors . Int Soc for Hybrid Microelectronics 1986. 473-480.
    [38]森荣二(日)著.LC滤波器设计与制作.北京:科学出版社,200630-122.
    [39]陈惠开(美)著.无源与有源滤波器-理论与应用.北京:人民邮电出版社,198945-84.
    [40]顾继慧编著.微波技术.北京:科学出版社,2008219-253.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.