LASS2在肝癌生长和转移中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LASS2 (homo sapiens longevity assurance homologue 2)是本室从人肝cDNA文库中筛选到的一个与酵母(Saccharomyces cerevisiae)长寿保障基因LAG1 (yeast longevity assurance gene 1)高度同源的人类新基因。LASS2基因定位于染色体lqll,属于LASS蛋白家族中的一员。
     在LASS2基因功能的前期研究中,我们发现过表达LASS2可以抑制肝癌细胞SMMC-7721的生长。为了验证这一结果,我们将本室构建保存的pCMV-HA2-LASS2质粒瞬时转染高转移肝癌细胞HCCLM3,未转质粒的HCCLM3细胞作为对照。结果发现外源性LASS2的过表达对HCCLM3细胞生长有抑制作用。为了深入研究LASS2基因调控细胞生长的机理,我们利用流式细胞仪和Western blotting方法分析了细胞的凋亡情况。研究发现,LASS2的过表达可以激活细胞的线粒体凋亡通路,介导细胞发生凋亡。提示LASS2可能通过介导细胞凋亡来发挥其抑制细胞生长的作用。
     前期实验还发现,LASS2在高转移肿瘤细胞中低表达,而在低转移肿瘤细胞中高表达;并且,LASS2能与V-ATPase质子泵的c亚基ATP6L相互结合。V-ATPase质子泵是真核细胞膜上存在的一种与H+主动转运有关的跨膜蛋白,其c亚基ATP6L参与H+跨膜通道的形成。目前有很多文献报导V-ATPase质子泵,尤其是c亚基ATP6L与肿瘤侵袭和转移相关。以上提示LASS2可能参与肿瘤细胞的侵袭转移。为了研究LASS2在肿瘤侵袭和转移中的作用,我们利用RNA干扰技术,下调低转移肝癌细胞MHCC97-L中LASS2基因的表达,通过检测V-ATPase质子泵的泌氢功能,对H+敏感的基质蛋白水解酶MMP-2的含量和活性,以及体外侵袭实验,探讨LASS2基因通过调控质子泵的泌氢功能来参与肿瘤细胞侵袭转移的机制。结果显示,当LASS2基因的表达被抑制后,质子泵的泌氢功能增加,细胞外H+浓度升高,细胞外MMP-2的活性形式明显增加,MHCC97-L细胞体外侵袭能力显著增强。提示LASS2基因可能通过调控V-ATPase质子泵参与肿瘤侵袭转移。
     综上所述,本研究中我们探讨了LASS2参与肝癌细胞体外侵袭的机制,加深了对LASS2参与肝癌细胞侵袭转移的了解。然而,LASS2调控细胞生长和凋亡的具体途径还不清楚。LASS2具有HOX、TLC两个功能域,它可以通过诱导神经酰胺合成酶活性,增高细胞内神经酰胺含量,导致细胞通过线粒体途径发生凋亡。同时,LASS2还可以通过与V-ATPase质子泵的c亚基ATP6L相互结合,抑制细胞内H+泵出,导致细胞内pH值下降这条通路来引发细胞线粒体途径依赖的凋亡。以上结果为深入研究LASS2在肝癌细胞生长、转移中的作用打下了良好基础。
LASS2 is the novel gene isolated from a human liver cDNA library by our laboratory and it is a human homologue of the yeast longevity assurance gene LAG1 (Saccharomyces cerevisiae longevity assurance gene). LASS2, located on chromosome 1q11, is one of the LASS family proteins.
     Overexpression of LASS2 could inhibit the cell growth of SMMC-7721, a human hepatocellular carcinoma (HCC) cell line. In order to understand the role of LASS2 in cell growth, we transiently transfected plasmid pCMV-HA2-LASS2 into HCCLM3, a HCC cell line without the significant expression of endogenous LASS2. The results showed that overexpression of LASS2 could significantly inhibit the cell growth of HCCLM3 cells compared with the mock control. To further conform the inhibitory effect of LASS2 on the cell growth of HCC cells, apoptosis in HCC cells was analyzed by flow cytometry and western blot. The results showed that LASS2 gene could induce apoptosis through mitochondrion pathway. The above data revealed that LASS2 might inhibit cell growth via inducing cell apoptosis.
     According to our previous results, the expression level of LASS2 is higher in cancer cells with lowly metastatic potential than those with highly metastatic potential. LASS2 could interact with ATP6L, the 16 kDa subunit of proton pump V-ATPase. Proton pump V-ATPase expresses in plasma membrane that can pump protons into extracellular environment. ATP6L, as one of its subunits, can provide proton a hydrophilic path across the membrane. Recently, many articles have reported that V-ATPase, especially ATP6L, is correlated with the metastatic potential of some cancer cells. These suggest that LASS2 could play an important role in tumorigenesis and metastasis of cancer. To explore the role of LASS2 in cancer metastasis, we used small interfering RNA (siRNA) technology to knock down LASS2 expression in MHCC97-L, a lowly metastatic HCC cell line. Meanwhile, we elucidated the possible mechanisms that LASS2 involved in cancer metastasis by investigating the activity of V-ATPase, the expression and activity of MMP-2 which is pH-sensitive protease, and the in vitro invasion. We found that the proton secretion was increased, the activation of MMP-2 was upregulated and the in vitro invasion was enhanced remarkably after expression of LASS2 was suppressed by siRNA in MHCC97-L cells. These results suggest that LASS2 might involve in cancer metastasis through proton pump V-ATPase.
     In conclusion, the knockdown of LASS2 expression could promote the in vitro invasion of MHCC97-L cells. However, the signal transduction that LASS2 is involved in cell proliferation and apoptosis is unclear. LASS2 contains two domains: HOX and TLC, which associate with ceramide synthesis. Thus, LASS2 may induce cell apoptosis through mitochondrion pathway by increasing ceramide. Meanwhile, LASS2 also may trigger cell apoptosis through mitochondrion pathway by which V-ATPase inhibits protons into extracellular environment and causes intracellular acidification. These findings provide a clue to investigate the further mechanisms of LASS2 in cell growth and cancer metastasis.
引文
[1]Jang J C, Kirchman P A,Zagulski M,et al. Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and Human[J]. Genome Res,1998, 8(12):1259-1272
    [2]Pan H, Qin WX, Huo KK, et al. Cloning, mapping, and characterization of a human homologue of the yeast longevity assurance gene LAG1[J]. Genomics. 2001,77(1-2):58-64
    [3]Schorling S, Vallee B, Barz W P, et al. Lag1p and Lac1p are essential for the acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae[J]. Mol Biol Cell,2001,12(11):3417-3427
    [4]Guillas I, Kirchman PA, Chuard R, et al. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p[J]. EMBO J,2001, 20(11):2655-2665
    [5]Futerman AH, Riezman H. Theins and outs of sphingolipid synthesis[J]. Trends Cell Biol,2005,15(6):312-318
    [6]Mizutani Y, Kihara A, Igarashi Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides[J]. Biochem J.2005,390, (Pt1):263-271
    [7]Venkataraman K, Riebeling C, Bodennec J, et al. Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells[J]. J Biol Chem,2002,277(38):35642-35649
    [8]Guillas I, Jiang JC, Vionnet, C, et al. Human homologues of LAG1 reconstitute acyl-CoA-dependent ceramide synthesis in yeast[J]. J Biol Chem,2003, 278(39):37083-37091
    [9]Riebeling C, Allegood JC, Wang E, et al. Two mammalian longevity assurance gene(LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors[J]. J Biol Chem,2003, 278(44):43452-43459
    [10]王南田,孙凯等。神经酰胺信使途径[J]。生理科学进展,1997,28(4):301-305
    [11]Ohanian J, Ohanian V. Sphingolipids in mammalian cell signalling[J]. Cell Mol Life SCi,2001,58(14):2053-2068
    [12]K Venkataraman, AH Futerman. Do longevity assurance genes containing Hox domains regulate cell development via ceramide synthesis[J]? FEBS Lett,2002, 528(1-3):3-4
    [13]Isabelle Guillas, James C Jiang, Christine Vionnet, et al. Human homologues of LAG1 Reconstitute Acyl-CoA-dependent Ceramide Synthesis in Yeast[J]. J Biol Chem,2003,278(39):37083-37091
    [14]Rebecca S, Matthew B, Amanda P, et al. Apoptosis, chemoresistance, and berast cancer: insights from the MCF-7 cell model system[J]. Exp Biol Med,2003, 228(9):995-1003
    [15]Yoon S, Choi J, Yoon J, et al. Okadaic acid induces JNK activation, bim overexpression and mitochondrial dysfunction in cultured rat cortical neurons[J]. Neurosci Lett,2006,394(3):190-195
    [16]Watson A, Eilers A, Lallemand D, et al. Phosphorylation of c-Jun is necessary for apoptosis induced by survival signal withdrawal in cerebellar granule neurons[J]. J Neurosci,1998,18(2):751-762
    [17]Verheij M, Bose R, Lin X H, et al. Requirement for ceramide iniitated SAFK/JNK signaling in stress-induced apoptosis[J]. Nature,1996, 380(6569):75-79
    [18]Scheid M P, Foltz I N, Young P R, et al. Ceramide and cyclic adenosine monophosphate (cAMP) induce cAMP response element binding protein phosphorylation via distinct signaling pathways while having opposite effects on myeloid cell survival[J]. Blood,1999,93(1):217-225
    [19]Ruvolo P P. Intracellular signal transduction pathways activated by ceramide and its metabolites[J]. Pharmacol Res,2003,47(5):383-392
    [20]Chalfant C E, Rathman K, Pinkerman R L, et al. Denovo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells Dependence on protein phosphatase-1[J]. J Biol Chem,2002,277(15): 12587-12595
    [21]季红斌,戳琦巍,刘新垣等。Bd-2基因的转录调控[J]。生物化学与生物物理学报,2000,2(2):95-99
    [22]Siskind J, Kolesnick N, Colombini M. Ceramide channels increase the perme-ability of the mitochondrial outer membrane to small proteins[J]. J Biol Chem, 2002,277(30):26796-26803
    [23]Zou H, Li Y, Liu X, et al. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9[J|. J Biol Chem,1999, 274(17):11549-11556
    [24]Hu Y, Benedict MA, Ding L, et al. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis[J]. EMBO J, 1999,18(13):3586-3595
    [25]Saleh A, Srinivasula SM, Acharya S, et al. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation[J|. J Biol Chem,1999,274(25):17941-17945
    [26]Nishi T, Forgac M. The vacuolar (H+)-ATPases-nature's most versatile proton pumps[J]. Nat Rev Mol Cell Biol,2002,3(2):94-103
    [27]Finbow ME, Harrison MA. The vacuolar H+-ATPase: a universal proton pump of eukaryotes[J]. Biochem J,1997,324(Pt3):697-712.
    [28]Kubasiak LA, Hernandez OM, Bishopric NH, et al. Hypoxiaand acidosisactivate cardiac myocyte death through the Bcl-2 family protein BNIPL3[J]. Prec Nad Acad Sci U S A.2002,99(22):12825-12830
    [29]Kunar S, Kasseekert S, Kostin S, et al. Isehemie acidosis causes apoptosis in coronary endothelial cells through activation of csepase-12[J]. Cardiovase Res, 2007,73(1):172-180
    [30]E J Bowman, A Siebers, K Altendorf. Bafilomycins: a class of inhibitors of membrane ATPases from micoroorganisms, animal cells, and plant cells[J]. Porc Natl Acad Sci U S A,1988,85(21):7972-7976
    [31]Pali T, Whyteside G, Dixon N, et al. Interaction of inhibitors of the vacuolar (H+)-ATPasewith the transmembrane Vo-sector[J]. Biochemistty,2004,43(38): 12297-12305
    [32]Huss M, Sasse F, Kunze B, et al. Aichazolid and apicularen:novel specific V-ATPase ihnibitors[J]. BMC Biocehm,2005,6:13
    [33]Boyd MR, Farina C, Belfiore P. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type(H+)-atpases[J]. J Pharmacol Epx Ther.2001,297(1):114-120
    [34]Torigoe T, Izumi H, IseT, et al. Vacuolar H(+)-ATPase: functional mechanisms and potential as a target for cancer chemotherapy[J]. Anticancer Drugs,2002, 13(3):237-243
    [35]Inoue H, Noumi T, Nagata M, et al. Targeted disruption of the gene encoding the proteolipid subunit of mouse vacuolar H(+)-ATPase leads to early embryonic lethality[J|. Biochim BiophysActa,1999,1413(3):130-138
    [36]Lu Xiaodong, Qin Wenxin, Li Jinjun, et al. The Growth and Metastasis of Human Hepatocellular Carcinoma Xenografts Are Inhibited by Small Interfering RNA Targeting to the Subunit ATP6L of Proton Pump[J]. Cancer Res,2005, 65(15):6843-6849
    [37]Thangaraju M, Sharma K, Leber B, et al. Regulation of acidification and apoptosis by SHP-1 and Bcl-2[J]. J Biol Chem,1999,274(41):29549-29557
    [38]Sharma K, Srikant CB. G protein coupled receptor signaled apoptosis is associated with activation of a cation insensitive acidic endonuclease and intracellular acidification[J]. Biochem Biophys Res Commun,1998,242(1): 134-140
    [39]Chang L, Karin M. Mammalian MAP kinase signalling cascades[J]. Nature,2001, 410(6824):37-40
    [40]Kyriakis JM, Banerjee P, Nikolakaki E, et al. The stress-activated protein kinasesubfamily of c-Jun kinases[J]. Nature,1994,369(6476):156-160
    [41]Yin ZM, Sima J, WU YF, et al. The effect of C- terminal fragment of JNK2 on the stability of p53 and cell proliferation[J]. Cell Res,2004,14(5):434-438
    [42]Long X, Crow MT, Sollott SJ, et al. Enhanced expression of p53 and apoptosis induced by blockade of the vacuolar proton ATPasein cardiomyocytes[J|. J Clin Invest,1998,101(6):1453-1461
    [43]Williams AC, Collard TJ, Paraskeva C. An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis[J]. Oncogene, 1999,18(21):3199-3204
    [44]Oltivai ZN, Miliman CL, Korsmeyer SJ, et al. Bcl-2heterodimerizes in vivo with conserved homolog, Bax, that accelerates programmed cell death[J]. Cell,1993, 74(4):609-619
    [45]Varghese J, Chattopadhaya S, Sarin A. Inhibition of p38 kinase reveals a TNF-a-mediated, caspase-dependent, apoptotic death pathway in a human myelomonocyte cell line[J].J Immunol,2001,166(11):6570-6577
    [46]O'Connell J, Houston A, Bennett MW, et al. Immune privilege or inflammation? I nsights into the Fas ligand enigma[J]. Nat Med,2001,7(3):271-274
    [47]卿晨,丁健。Bd-2基因家族在调节细胞凋亡中的作用[J]。国外医学·分子生物学分册,2000,22(1):17-22
    [48]Tang ZY,YeS L,Liu YK, et al. A decade's studies no metastasis of hepatocellular carcinoma[J]. J Cancer Res Clin Oncol,2004,130(4):187-196
    [49]姚明,孔韩卫,戚锦芳,周光兴。人黑色素瘤SCID小鼠高转移模型的筛选和建立[J]。上海实验动物科学,2001,21(4):195-197
    [50]Li Y, Tang Y, Ye L, et al. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray[J]. J Cancer Res Clin Oncol, 2003,129(1):43-51
    [51]Feitelson MA, Sun B, Satiroglu Tufan NL, et al. Genetic mechanisms of hepatocarcinogenesis[J]. Oncogene,2002,21(16):2593-2604
    [52]Shai S, Nathan N. Vacuolar H+-ATPase-an enzyme for all seasons[J]. Pflugers Arch,2009,457(3):581-587
    [53]Arata Y, Nishi T, Kawasaki-Nishi S, et al. Structure, subunit function and regulation of the coated vesicle and yeast vacuolar (H(+))-ATPases[J]. Biochim BiophysActa,2002,1555(1-3):71-74
    [54]Gruber G, Wieczorek H, Harvey WR, Muller V. Structure-function relationships of A-, F- and V-ATPases[J]. J Exp Biol,2001,204(Pt15):2597-605
    [55]Bowman EJ, Graham LA, Stevens TH, et al. The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae[J]. J Biol Chem,2004,279(32):33131-33138
    [56]Dang C V, Lewis B C, Dolde C, et al. Oncogenes in tumor metabolism, tumorigenesis, and apoptosis[J]. J Bioenerg Biomembr,1997,29(4):345-354
    [57]Coussens L M, Fingleton B, Matrisian L M. Matrix metal I oproteinase inhibitors and cancer:trials and tribul ations[J]. Science,2002,295(5564):2387-2392
    [58]Subarsky P, Hill R P. The hypoxic tumour microenvironment and metastatic progression[J]. Clin Exp Metastasis,2003,20(3):237-250
    [59]Gatenby R A, Gawlinski E T. Mathematical models of tumour invasion mediated by transformation-induced alteration of microenvironmental pH[J]. Novartis Found Symp,2001,240:85-96
    [60]Shunichiro Kubota1,Yousuke Seyama Overexpression of Vacuolar ATPase 16-kDa Subunit in 10T1/2 Fibroblasts Enhances Invasion with Concomitant Induction of Matrix Metalloproteinase-2[J]. Biochem and Biophys Res Commun, 2000,278(2):390-394
    [61]Sennoune SR, Bakunts K, Mart(?)nez GM, et al. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential:distribution and functional activity[J]. Am J Physiol Cell Physiol,2004,286(6):1443-1452
    [62]Sennoune SR, Luo D, Martinez-Zaguilan R. Plasmalemmal vacuolar-type H+-ATPasein cancer biology[J]. Cell Biochem Biophys,2004,40(2):185-206
    [63]Ohta T, Numata M, Yagishita H, et al. Expression of 16 kDa proteolipid of vacuolar-type H(+)-ATPase in human pancreatic cancer[J]. Br J Cancer,1996, 73(12):1511-1517
    [64]Liotta LA, Kohn EC. The microenvironment of the tumour-host interface[J]. Nature,2001,411(6835):375-379
    [65]Giannelli G, Bergamini C, Marinosci F, et al. Clinical role of MMP-2/TIMP-2 imbalancein hepatocellular carcinoma[J]. Int J Cancer,2002,97(4):425-431
    [66]Matsuyama Y, Takao S, Aikou T. Comparison of matrix metalloproteinase expression between primary tumors with or without liver metastasis in pancreatic and colorectal carcinomas[J]. J Surg Oncol,2002,80(2):105-110
    [67]Kato Y, Ozono S, Shuin T, Miyazaki K. Slow induction of gelatinase B mRNA by acidic culture conditionsin mouse metastatic melanoma cells[J]. Cell Biol Int, 1996,20(5):375-377
    [68]Johnson LL, Pavlovsky AG, Johnson AR, et al. A rationalization of the acidic pH dependence for stromelysin-1 (Matrix metalloproteinase-3) catalysis and inhibition[J]. J Biol Chem,2000,275(15):11026-11033
    [69]Creemers LB, Jansen ID, Hoeben KA, et al. Involvement of V-ATPases in the digestion of soft connective tissue collagen[J]. Biochem Biophys Res Commun, 1998,251(2):429-436
    [70]Yan Li, Bo Tian, Jiong Yang, et al. Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics[J|. J Cancer Res Clin Oncol,2004,130(8):460-468
    [71]Chaillet J R, Amsler K, Boron W F, et al. Optical measurements of intracellular pH in single LLC-PK1 cells: Demonstration of CI-/HCO3- exchange[J]. Proc Natl Acad Sci USA,1986,83(2):522-526
    [72]Albini A, Iwamoto Y, Kleinman HK,et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells[J]. Cancer Res,1987,47(12):3239-3245.
    [73]Gatenby RA, Gawlinski ET. The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models[J]. Cancer Res,2003, 63(14):3847-3854
    [74]Stefano F, Angelo D M, You H Y, et al. Targeting Vacuolar H+-ATPases as a New Strategy against Cancer[J]. Cancer Res,2007,67 (22):10627-10630
    [75]Fang J, ShingY, Wiederschain D, et al. Matrix metalloproteinase2 isrequired for the switch to the angiogenic phenotype in atumor mode[J]. Proc Natl Acad Sci USA,2000,97(8):3884-3889
    [76]Liotta LA, Trggvason K, Garbisa S, et al. Metastatic potential correlates with enzymatic degradation of basement member collagen[J]. Nature,1980, 284(5751):67-68.复旦大学 上海市肿瘤研究所 硕士毕业论文 54
    [1]Jang J C, Kirchman P A, Zagulski M, et al. Homologsof theyeast longevity gene LAG1 in Caenorhabditis elegans and Human[J]. Genome Res,1998, 8(12):1259-1272
    [2]Pan H, Qin WX, Huo KK, et al. Cloning, mapping, and characterization of a human homologue of the yeast longevity assurance gene LAG1[J]. Genomics. 2001,77(1-2):58-64
    [3]Schorling S, Vallee B, Barz W P, et al. Lag1p and Lac1p are essential for the acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae[J]. Mol Biol Cell,2001,12(11):3417-3427
    [4]Guillas I, Kirchman PA, Chuard R, et al. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p[J]. EMBO J,2001, 20(11):2655-2665
    [5]K Venkataraman and AH Futerman. Do longevity assurance genes containing Hox domains regulate cell development via ceramide synthesis[J]? FEBS Lett,2002, 528(1-3):3-4
    [6]Watson A, EilersA, Lallemand D, et al. Phosphorylation of c-Jun is necessary for apoptosis induced by survival signal withdrawal in cerebellar granule neurons[J]. J Neurosci,1998,18(2):751-762
    [7]Verheij M, Bose R, Lin X H, et al. Requirement for ceramide iniitated SAPK/JNK signaling in stress-induced apoptosis[J]. Nature,1996,380(6569):75-79
    [8]Scheid M P, Foltz I N, Young P R, et al. Ceramide and cyclic adenosine monophosphate (cAMP) induce cAMP response element binding protein phosphorylation via distinct signaling pathways while having opposite effects on myeloid cell survival[J]. Blood,1999,93(1):217-225
    [9]Ruvolo PP. Intracellular signal transduction pathways activated by ceramide and its metabolites[J]. Pharmacol Res,2003,47(5):383-392
    [10]Chalfant C E, Rathman K, Pinkerman R L, et al. Denovo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells dependence on protein phosphatase-1[J]. J Bid Chem,2002,277(15): 12587-12595
    [11]王南田,孙凯等。神经酰胺信使途径[J]。生理科学进展,1997,28(4):301-305
    [12]Ohanian J, Ohanian V. Sphingolipids in mammalian cell signalling[J]. Cell Mol LifeSCi,2001,58(14):2053-2068
    [13]Sultan I, Senkal C E, Ponnusamy S, et al. Regulation of the sphingosinere cycling pathway for ceramide generation by oxidative stress, and its role in controlling c2Myc/Max function[J]. Biochem J,2006,393(2):513-521
    [14]Hannun YA, Obeid LM. The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind[J]. J Biol Chem,2002,277(29): 25847-25850
    [15]Rebecca S, Matthew B, Amanda P, et al. Apoptosi, chemoresistance, and berast cancer: insights from the MCF-7 cell model system[J]. Exp Biol Med,2003, 228(9):995-1003
    [16]Yoon S, Choi J, Yoon J, et al. Okadaic acid induces JNK activation, bim overexpression and mitochondrial dysfunction in cultured rat cortical neurons[J]. Neurosci Lett,2006,394(3):190-195
    [17]Shai S, Nathan N. Vacuolar H+-ATPase-an enzyme for all seasons[J]. Pflugers Arch,2009,457(3):581-587
    [18]Lu Xiaodong, Qin Wenxin, Li Jinjun, et al. The Growth and Metastasis of Human Hepatocellular Carcinoma Xenografts Are Inhibited by Small Interfering RNA Targeting to the Subunit ATP6L of Proton Pump[J]. Cancer Res,2005, 65(15):6843-6849
    [19]Shunichiro Kubota1,Yousuke Seyama. Overexpression of Vacuolar ATPase 16-kDa Subunit in 10T1/2 Fibroblasts Enhances Invasion with Concomitant Induction of Matrix Metalloproteinase-2[J]. Biochem and Biophys Res Commun, 2000,278(2):390-394
    [20]Sennoune SR, Bakunts K, Mart(?)nez GM, et al. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential:distribution and functional activity[J]. Am J Physiol Cell Physiol,2004,286(6):1443-1452
    [21]Sennoune SR, Luo D, Martinez-Zaguilan R. Plasmalemmal vacuolar-type H+-ATPasein cancer biology[J]. Cell Biochem Biophys,2004,40(2):185-206
    [22]Nishi T, Forgac M. The vacuolar (H+)-ATPases-nature's most versatile proton pumps[J]. Nat Rev Mol Cell Biol,2002,3(2):94-103
    [23]Arata Y, Nishi T, Kawasaki-Nishi S, et al. Structure, subunit function and regulation of the coated vesicle and yeast vacuolar (H(+))-ATPases[J]. Biochim BiophysActa,2002,1555(1-3):71-74
    [24]Finbow ME, Harrison MA. The vacuolar H+-ATPase: a universal proton pump of eukaryotes[J]. Biochem J,1997,324(Pt 3):697-712
    [25]Gruber G, Wieczorek H, Harvey WR, Muller V. Structure-function relationships of A-, F- and V-ATPases[J]. J Exp Biol,2001,204(Pt15):2597-605
    [26]Bowman EJ, Graham LA, Stevens TH, et al. The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae[J]. J Biol Chem,2004,279(32):33131-33138
    [27]Grabe M, Wang H, Oster G The mechanochemistry of V-ATPase proton pumps[J]. Biophys J,2000,78(6):2798-2813
    [28]Kyriakis JM, Banerjee P, Nikolakaki E, et al. The stress-activated protein kinase subfamily of c-Jun kinases[J]. Nature 1994,369(6476):156-160
    [29]Chang L, Karin M. Mammalian MAP kinase signalling cascades[J]. Nature 2001, 410(6824):37-40
    [30]Yin ZM, Sima J, WU YF, et al. The effect of C-terminal fragment of JNK2 on the stability of p53 and cell proliferation[J]. Cell Res,2004,14(5):434-438
    [31]Long X, Crow MT, Sollott SJ, et al. Enhanced expression of p53 and apoptosis induced by blockade of the vacuolar proton ATPasein cardiomyocytes[J]. J Clin Invest,1998,101(6):1453-1461
    [32]Williams AC, Collard TJ, Paraskeva C. An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: implications for clonal selection during colorectal carcinogenesis[J]. Oncogene, 1999,18(21):3199-3204
    [33]Oltivai ZN, Miliman CL, Korsmeyer SJ, et al. Bcl-2 heterodimerizesin vivo with a conserved homolog, Bax, that accelerates programmed cell death[J]. Cell,1993, 74(4):609-619
    [34]Varghese J, Chattopadhaya S, Sarin A. Inhibition of p38 kinase reveals a TNF-α-mediated, caspase-dependent, apoptotic death pathway in a human myelomonocyte cell line[J]. J Immunol,2001,166(11):6570-6577
    [35]O'Connell J, Houston A, Bennett MW, et al. Immune privilege or inflammation? Insightsinto the Fasligand enigma[J]. Nat Med,2001,7(3):271-274
    [36]卿晨,丁健。Bd-2基因家族在调节细胞凋亡中的作用[J]。国外医学·分子生物学分册,2000,22(1):17-22
    [37]季红斌,戳琦巍,刘新垣等。Bd-2基因的转录调控[J]。生物化学与生物物理学报,2000,2(2):95-99
    [38]Liu X, Kim CN, Yang J, et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c[J]. Cell,1996,86(1):147-157
    [39]Zou H, Li Y, Liu X, et al. An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9[J]. J Biol Chem,1999, 274(17):11549-11556
    [40]Hu Y, Benedict MA, Ding L, et al. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis[J]. EMBO J, 1999,18(13):3586-3595
    [41]Saleh A, Srinivasula SM, Acharya S, et al. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation[J]. J Biol Chem,1999,274(25):17941-17945
    [42]Reed JC. Cytochrome c: can't live with it--can't live without it[J]. Cell,1997, 91(5):627-637
    [43]Thornberry NA, Lazebink Y. Caspases: enemies within[J]. Science,1998, 281(5381):1312-1316
    [44]李小明,孙志贤。细胞凋亡中的关键蛋白酶-caspase-3[J|。国外医学分子生物学分册,1999,21(1):6-9
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.