vgbM基因在植物中的表达及抗虫棉GK12中外源基因整合的初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常规的栽培及育种技术使粮食产量再上一个大的台阶难度很大。面对人多地少的矛盾,解决未来我国粮食安全问题必须依靠一次新的农业科技革命,也就是转基因农作物的产业化。在转基因农作物的研究中,人们至今仍对外源基因与植物基因组整合的机制所知有限,尤其针对具有我国特色的花粉管通道法遗传转化机理的相关研究更少。本研究在我国转基因抗虫棉研究的基础上,一方面,进行了透明颤菌血红蛋白基因转基因植物的研究,分析了其在增产转基因作物研究方面的作用;另一方面,对抗虫棉GK12中杀虫基因的整合进行了初步分析,对于进一步揭示花粉管通道遗传转化的机理、改进并提高转化效率以及尝试通过同源重组实现定位整合的研究等方面都具有积极的意义。
     根据透明颤菌血红蛋白的氨基酸序列,按照植物偏爱密码子,人工设计合成了vgbM基因,并成功构建了植物表达载体pGBI4ASVHB。在对通过农杆菌介导法获得的转基因烟草的研究中发现:该基因的表达可增加烟草的生长量,并促进提早开花和增加花量,叶绿素含量增加23.4%。进一步构建了vgbM和GFM Cry1A Bt双价基因植物表达载体pGBI4ABV,通过花粉管通道法导入棉花,获得了转双基因的7个株系。转基因棉花在表现对棉铃虫显著抗性的同时,还发现其萌发速度较快,叶绿素含量平均增加13%左右,花期明显提前,结铃数显著增加。本研究首次报道了转透明颤菌血红蛋白基因的棉花在增产和抗涝性提高两方面具有作用,并注意到了叶绿素含量测定可作为检测vgbM基因表达的指标,为进一步获得增产转基因农作物提供了研究基础。
     本研究还通过改进的基于单链及巢式PCR的染色体步移方法,对通过花粉管通道法转化获得的抗虫棉GK12中杀虫基因整合的旁侧序列进行了分析。结果发现:整合在棉花基因组中的杀虫基因表达盒和其它外源DNA片段发生了串联重组,支持了外源基因整合的“两步整合机制”模型。并发现了整合过程有拓扑异构酶和转座作用参与的分子证据;同时证明了构建在普通质粒上的外源基因可以通过花粉管通道法成功转化植物。暗示了不包括载体骨架的外源基因表达盒片段直接转化作物是可行的。这对于提高转基因植物的安全性具有一定的意义。更重要的是,没有载体骨架序列的干扰对于通过同源重组实现外源基因在植物中的定位整合(基因打靶)也是有利的。利用整合旁侧序列分析的结果,结合影响外源基因表达的已知相关因素,直接将外源目的基因定位整合到‘稳定高表达’位置,可简化转基因农作物研究中的筛选鉴定程序,建立无载体参与的外源基因片段植物转化新模式。无疑对于促进转基因农作物的研究和产业化具有重要意义。
To increase the yield of crops in a large scale, the potentiality of traditional breeding and cultivation technology is rather limited so far. Therefore, a new agricultural revolution namely genetic modified crop is indispensable to solve the problems of the future food security in China. However, the integration mechanism between foreign gene and the plant genomic DNA is still an enigma about the transgenic plant. Especially few endevours had been done to discover the mechanism of the pollen tube pathway transformation method, which was developed by Chinese scientist. On the basis of the achievement of the Bt cotton, this study, on the one hand, had developed vgbM (modified Vitreoscilla hemoglobin gene) transgenic plants and evaluated the effect of the GM crop on yield improvement. On the other hand, the integration loci of the insecticidal gene on GK12 Bt cotton were analyzed. The result will be helpful to the studies in understanding the transformation mechanism, improving gene transfer efficient, and the
     site-specific integration by homologous recombination.
    According to the amino acid sequence and plant preference codon usage, vgbM gene was designed and synthesized and the plant expression vector pGBI4ASVHB was constructed successfully. Studies found that the transgenic tobacco plants obtained by agrobacterium-mediated transformation exhibited enhanced growth and showed more flowering rates. Meanwhile, the bloom date moved up. Furthermore, transgenic plants contained, on average, 23.4% more chlorophyll in leaves. A bivalent plant expression vector pGBRABV carrying both vgbM gene and Bt insecticidal gene was constructed in further. Seven transgenic lines were obtained by pollen tube pathway transformation. The transgenic cotton plants had showed obvious cotton bollworm resistance. Simultaneously, we also found their geminating speeded up, leave chlorophyll content improved by 13%, flowering date moved up and the boll number increased significantly. This work had proved that the transgenic cotton expressing Vitreoscilla hemoglobin showed both yield improvement an
    d water logging resistance. We also noticed that chlorophyll content was a good mark to judge the expression of Vitreoscilla hemoglobin in transgenic plant. This work had laid a research foundation for developing yield improvement transgenic crops in further.
    This study also developed a genome walking method based on single chain PCR and nested PCR. Utilizing the method, the integration flanking sequence of the insecticidal gene in GK12 cotton was analyzed. We found the CrylA expression box had recombined with other foreign DNA fragment. The result had supported the 'Two phase integration mode'. Meanwhile, we found some evidence for that topoishomerase and transposon may involve with foreign DNA integration process. We also proved foreign gene harbored in a normal small plasmid can be transformed successfully by pollen tube pathway transformation. This suggested that a vector-free transformation is feasible. So it is beneficial for GMO safety evaluation. More important, it is favorable for site-specific integration (gene targeting) through homologous recombination without the vector impediment. According the integration flanking sequence and considering the know factors that may influence foreign gene expression, if the foreign gene can be targeted on a 'stable-e
    xpression' position directly, the tedious screening procedures during GM crop development could be simplified. The setup of a vector-free new plant transformation mode will undoubtedly promote the studies and the commercialization of the GM crops.
引文
1.邓德旺,郭三堆,杨志民.棉花花粉管通道法转基因的分子细胞学机理研究.二十一世纪农业生物技术展望论坛文集.1999,pp63
    2.龚蓁蓁,沈慰芳,周光宇.受粉后外源DNA导入植物技术—DNA通过花粉管通道进入胚囊.中国科学(B),1988,611~614
    3.郭三堆,倪万潮,徐琼芳.编码杀虫蛋白质融合基因和表达载体及其应用.1995.12.8.专利号:ZL.95119563.8.C12N 15/32
    4.华志华,黄大年.转基因植物中外源基因的遗传学行为.植物学报,1999,41(1):1~5
    5.熊爱生,彭日荷,陈建民,李贤,姚泉洪.透明颤菌血红蛋白(VHb)基因合成及原核生物中的效应.上海农业学报,2000,16(3):19~24
    6.许大全.光合速率、光合效率与作物产量.生物学通报,1999,34(8):8-10
    7.张静娴,荆玉祥.植物的血红蛋白.生命科学,1999,11(2):66-71
    8.郑恒河.浅析血红蛋白运氧机制.济宁师范专科学校学报,2002,23(3)47-50
    9.邹绮主编.植物生理学试验指导.北京:中国农业出版社,2000:72-75
    10.左开井,张献龙,聂以春等.转基因抗虫棉Bt基因插入区碱基组成分析.遗传学报,2002,29(8):735~740
    11. Adang MJ, Firoozabady E, Klein J et al. Application of a Bacillus thuringiensis crystal protein for insect control. In: Alan RL ed. Molecular strategies for crop protection. New York: 1987, 345~353
    12. Albert H, Dale EC, Lee E, et al. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J, 1995, 7(4):649-659.
    13. Allen GC, Hall G Jr, Michalowski S, et al., Thompson WF.High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell, 1996 May;8(5): 899-913.
    14. Andersson CR, Jensen EO, Llewllyn DJ et al. A new hemoglobin gene from soybean: A role for hemoglobin in all plants. Proc. Natl. Acad. Sci. USA, 1996, 93:5682~5687
    15. Appleby CA, Tjepkema JD, Trinick MJ. Hemoglobin in a nonleguminous plant, Parasponia: possible genetic origin and function in nitrogen fixation. Science, 1983,220:951~953.
    16. Arredondo Peter R, Hargrove M S, Sarath G et al. Rice haemoglobins. Gene cloning, analysis, and O2-binding kinetics of a recombinant protein synthesized in Escherichia coli. Plant Physiol., 1997, 115:1259~1266
    17. Arredondo-Peter R, Hargrove MS, Moran JF, et al. Plant hemoglobins. Plant Physiol., 1998, 118: 1121~1125
    18. Barton KA, Whiteley HR, N-S Yang. Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol., 1987, 85:1103~1109
    19. Beilmann A, Albrecht K, Schultze S, Wanner G, and Pfitzner UM. Activation of a truncated PR-1 promoter by endogenous enhancers in transgenic plants. Plant Molecular Biology, 1992, 18(1):
    
    65~78
    20. Bogusz D, Appleby CA, Landsmann J, Dennis ES, Trinick MJ, Peacock WJ. Functioning haemoglobin genes in non-nodulating plants. Nature, 1988, 331: 178~180.
    21. Bourgouin C, Delecluse A, Ribier J et al. A Bacillus thuringiensis subsp, israelensis gene encoding a 125-kilodalton larvicidal polypeptide is associated with inverted repeat sequences. J. Bacteriol., 1988, 170:3575~3583
    22. Bradley D, Harkey MA, Kim M-K et al. The insecticidal CryIB crystal protein of Bacullus thuringiensis has dual specificity to coleopteran and lepidopteran larvae. J. Invert. Pathol., 1995, 65:162~173
    23. Brewin N J, Flavell R B. A cure for anemia in plants? Nature Biotechnol. 1997, 15:222-223
    24. Brouwer C, Bruce W, Maddock S, et al. Suppression of transgene silencing by matrix attachment regions in maize: a dual role for the maize 5' ADH1 matrix attachment region. Plant Cell. 2002; 14(9): 2251-64.
    25. Chen J. J., Janssen B. L., Williams A., Sinha N. A gene fusion at a homeobox locus: alterations in leaf and implications for morphological evolution. Plant Cell, 1997, 9: 1289~1304
    26. Chen XJ, Curtiss A, Alcantara E et al. Mutations in domain I of Bacillus thuringiensis δ-endotoxin CryIAb reduce the irreversible binding of toxin to Manduca sexta brush border membrane vesicles. J. Biol. Chem., 1995, 270:6412~6419
    27. Chen XJ, Lee MK and Dean DH. Site-directed mutations in a highly conserved region of Bacillus thuringiensis δ-endotoxin affect inhibition of short circuit current across bombyx mori midguts. Proc. Natl. Acad. Sci. USA, 1993, 90:9041~9045
    28. Choma CT, Surewicz WK, Carey PR et al. Unusual proteolysis of the protoxin and toxin of Bacillus thuringiensis-structural implications. Eur. J. Biochem., 1990, 189:523~527
    29. Clive James. Preview: Global Review of Commercialized Transgenic Crops: 2002,ISAAA Briefs Http://www.isaaa.org
    30. Crickmore N, Zeigier DR, Feitelson J et al. Revision of the nomenclature for the Bacillus Thuringenisis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 1998, 62: 807~813
    31. Crickmore N, Zeigler DR, Feitelson J et al. In: Bethesda MD ed. Program and abstracts of the 28th annual meeting of the society for invertebrate pathology. Society for invertebtrate pathology. 1995,
    32. Cummings CE, Armstrong G, Hodgman TC et al. Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuringiensis δ-endotoxin. Mol. Memb. Biol., 1994, 11:87~92
    33. Czernilofsky AP, Hain R, Herrera-Estrella L. Fate of selectable marker DNA integrated into the genome of Nicotiana tabacum. DNA, 1986, 5(2): 101~13
    34. Dai SM, Gill SS. In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp. Israelensis CryIVD protein by Culex quinquefacsiatus larva midgut proteases. Insect Biochem. Mol. Biol, 1993, 23:273~283
    
    
    35. De Buck S, Jacobs A, Van Montagu M et al. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration. Plant J, 1999, 20(3): 295~304
    36. DeModena J A, Gutierrez S, Velasco J, Fernandez F J, Fachini R A, Galazzo J L, Hughes D E, Martin J F. The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Biotechnology (N Y), 1993, 11(8): 926~929
    37. Dikshit K L, Orii Y, Navani N, Patel S, Huang H Y, Stark BC, Webster DA. Site-directed mutagenesis of bacterial hemoglobin: the role of glutamine (E7) in oxygen-binding in the distal heme pocket. Arch. Biochem. Biophys., 1998, 349(1): 161~166.
    38. Dikshit R P, Dikshit K L, Liu Y, et al. The bacterial hemoglobin from Vitreoscilla can support the aerobic growth of Escherichia coli lacking terminal oxidases. Archs. Biochem. Biophys., 1992, 293(2): 241~245
    39. Dordas C., Rivoal J, and Hill RD. Plant Haemoglobins, Nitric Oxide and Hypoxic Stress. Annals of Botany, 2003, 91:173~178
    40. Duff S M G, Wittenberg J B, Hill R D, Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin. Optical spectra and reactions with gaseous ligands. J Biol Chem., 1997, 272:16746~16752
    41. Feitelson JS, Payne J and Kim L. Bacillus thuringiensis insects and beyond. Bio/Technology, 1992, 10:271~275
    42. Ferre J, Real MD, Van Rie J et al. Resistance to the Bacillus thuringiensis bio-insecticide in a field population of Plutella xylostellais due to a change in a midgut membrance receptor. Proc. Natl. Acad. Sci. USA, 1991, 88:5119~5123
    43. Fischhoff DA, Bowdish KS, Perlak FJ et al. Insect tolerant transgenic tomato plants. Bio/Technology, 1987, 5:807~813
    44. Fromm ME,Taylor LP, Walbot V. Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA, 1985, 82:5824~5828
    45. Garczynski SF, Crim JW and Adang MJ. Identification of putative insect brush border membrane-binding molecules specific to Bacillus thuringiensis δ-endotoxin by protein blot analysis. Appl. Environ. Microbiol., 1991, 57:2816~2820
    46. Gazit E and Shai Y. Structural and functional characterization of the α5 segment of Bacillus thuringiensis δ-endotoxin. Biochemistry, 1993, 32:3429~3436
    47. Ge AZ, Shivarova NI and Dean DH. Location of the Bombyx mori specificity domain on a Bacillus thuringiensis δ-endotoxin protein. Proc. Natl. Acad. Sci., 1989, 86:4037~4041
    48. Gheysen G, Villarroel R, Van Montagu M. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev., 1991, 5(2): 287~97
    49. Gilbertson L. Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol., 2003; 21(12): 550-555.
    50. Gill SS, Ccowlest EA and Pictrantonio PV. The mode of action of Bacillus thuringiensis
    
    endotoxins. Annu. Rev. Entomal., 1992, 37:615~636
    51. Gonzalez JM, Brown B and Carlton B. Transfer of Bacillus thuringiensis plasmids coding for δ-endotoxin aming strains of B. thuringiensis and B. Cereus. Proc. Natl. Acad. Sci., 1982, 79: 6951~6955
    52. Gonzalez JM, Carlton BC. Plasmid transfer in Bacillus thuringiensis. Genet Cell Technol., 1982, 1: 85~95.
    53. Gonzalez JM, Dulmage HT, Carlton BC. Correlation between specific plasmids and δ-endotoxin production in Bacillus thuringiensis. Plasmid, 1981, 5:351~365
    54. Goodman MD and Hargrove M. Quaternary structure of rice nonsymbiotic hemoglobin. J. Biol. Chem., 2001, 276 (2): 6834~6839
    55. Grochulski P, Masson L, Borisova S et al. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J. Mol. Biol., 1995, 254:447~464
    56. Haider MZ and Ellar DJ. Analysis of the molecular basis of insecticidal specificity of Bacillus thuringiensis δ-endotoxins. J. Biochem., 1987, 248:197~201
    57. Haider MZ, Knowles B and Ellar DJ. Specificity of Bacillus thuringiensis Var. Colmeri insecticidal delta-endotoxin by differential processing of the protoxin by larval gut proteases. Eur. J. Biochem., 1986, 156:531~540
    58. Hannay CL and Fitz-James P. The protein crystals of Bacillus thuringiensis Berliner. Can. J. Microbiol., 1955, 1:674~710
    59. Hardison R C. A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc. Natl. Acad. Sci. USA, 1996, 93:5675~5679
    60. Hargrove, M., Brucker, E., Stec, B., et al. Struct. Fold., 2000, 8:1005~1014
    61. Hart CM, Fischer B, Neuhaus JM et al. Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Molecular and General Genetics, 1992, 235 (23): 179~188
    62. Hill RD. What are hemoglobins doing in plants? Can J Bot, 1998, 76:707~712
    63. Hofmann C, Vanderbruggen H, H(?)fte H et al. Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci., 1988, 85:7844~7848
    64. H(?)fte H and Whiteley HR. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev., 1989, 53:241~255
    65. H(?)fte H, Greve HD, Seurinck J et al. Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis berliner 1715. Eur. J. Biochem., 1986, 161:273~278
    66. Hohe A. Reski R. A tool for understanding homologous recombination in plants. 2003. Plant Cell Rep. 21:1135 - 1142
    67. Holmberg N, Lilius G, Bailey J E, Bulow L. Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nat Biotechnol, 1997,
    
    15(3): 244~247
    68. Hooykaas PJJ, Beijersbergen AGM. The virulence system of Agrobacterium tumefaciens. Annu. Rev. Phytopath., 1994, 32:157-179
    69. Jacobsen-Lyon K, Jensen EO, Jorgensen JE, et al. Symbiotic and Nonsymbiotic Hemoglobin Genes of Casuarina glauca. The Plant Cell, 1995, 7:213~223
    70. Jayabalan N, Anthony P, Davey MR et al. Hemoglobin promotes somatic embryogenesis in peanut cultures. Artif Cells Blood Substit Immobil Biotechnology, 2004; 32 (1): 149-157.
    71. Jenkins JL, Dean DH. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. Genet. Eng. (N Y), 2000, 22: 33~54.
    72. Joshi M, Mande S, Dikshie K L. Hemoglobin biosynthesis in Vitreoscilla stercoraria DW: cloning, expression, and characterization of a new homolog of a bacterial globin gene. Appl. Environ. Microbiol., 1998, 64(6): 2220~2228
    73. Kallio P T, Bailey J E. Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of a-amylase and neutral protease in Bacillus subtilis. Biotechnol. Prog., 1996, 12(1): 31~39
    74. Khosla C, Bailey J E. Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J. Bacteriol., 1989, 171(11): 5995~6004
    75. Khosla C, Curtis J E, DeModena J, et al. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Bio/Technology, 1990, 8:849~853
    76. Khosravi M, Webster D A, Stark B C. Presence of the bacterial hemoglobin gene improves α-amylase production of a recombinant Escherichia coli strain. Plasmid, 1990, 24:190~194
    77. Knight P J, Crickmore N, Ellar DJ. The receptor for Bacillus thuringiensis Cry1A(c) δ-endotoxins in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol., 1994, 11: 429~436
    78. Knowles BH and Ellar DJ. Characterization and partial purification of a plasma membrane receptor for Bacillus thuringiensis var kurstaki Lepidopteran-specific delta-endotoxin. J. Cell Sci., 1986, 83:89~101
    79. Kohli A, Griffiths S, and Palacios N. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspots in the CaMV35S promoter and confirms the predominance of microhomology mediated recombination. Plant J., 1999, 17(6): 591~601
    80. Kohli A, Leech M, Vain P, et al. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated the establishment of integration hot spots. Proc. Natl. Acad. Sci. USA, 1998, 95:7203~7208
    81. Kononov ME, Bassuner B, Gelvin SB. Integration of T-DNA binary vector 'backbone'sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J., 1997, 11(5): 945~957
    
    
    82. Krizkova L and Hrouda M. Direct repeats of T-DNA integrated in tobacco chromosome: characterization of junction regions. Plant J., 1998, 16(6): 673~680
    83. Kronstad JW and Whiteley HR. Inverted repeat sequences flank the Bacillus thuringiensis crystal protein gene. J. Bacteriol., 1984, 160:95~102
    84. Krynetskaia NF, Cai XJ, Nitiss JL, et al. Thioguanine substitution alters DNA cleavage mediated by topoisomerase Ⅱ. 2000, The Faseb Journal, 14:2340~2344
    85. Kumar PA, Sharma RP and Malik VS. The insecticidal proteins of Bacillus thuringiensis. Adv Appl Microbiol., 1996, 42: 1~43.
    86. Kumpatla S.P., Chandrasekharan M.B., Lyer L.M., Li G.F. and Hall T.C. Genome intruder scanning and modulation systems and transgene silencing. Trends in science, 1998, 3(3): 97~104
    87. Lamarre D, Talbot B, de Murcia G, et al.. Structural and functional analysis of poly (ADP ribose) polymerase: an immunological study. Acta Biochi. Biophy., 1988, 50:147~160
    88. Lambert B, Hfte H, Annys K et al. Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae. Appl. Environ. Microbiol., 1992, 58:2536~2542
    89. Lambert B, Van Audenhove K, Theunis W et al. Nucleotide and deduced amino acid sequence of CryIIID, a novel coleopteran active crystal protein gene from a Bacillus thuringiensis subsp. kurstaki isolate. Gene, 1992, 110:131~132
    90. Leonne M. Pollen-mediated transformation. Transgenic Research, 1985, 4: 77~86,
    91. Li J, BonaventuraC, Bonaventura J, et al. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature, 1996, 380:221~226
    92. Li J J, Carroll and Ellar DJ. Crystal structure of an insecticidal protein:the δ-endotoxin gene from Bacillus thuringiensis subsp, tenebrionis at 2.5 resolution. Nature, 1991, 353:815~821
    93. Liang Y, Patel S and Dean DH. Irreversible binding of Bacillus thuringiensis δ-endotoxins to Lymantria dispar brush border membrane vesicles is directly correlated to toxicity. J. Biol. Chem., 1995,270:24719~24727
    94. Liao C, Heckel DG, Akhurst R. Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. J Invertebr. Pathol., 2002, 80(1): 55~63.
    95. Liu Y-G, Shirano Y, Fukaki H, et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Plant Biology, 1999, 96(11): 6535-6540
    96. Lohuis M.ten, Muller A.,Heidmann I. et al. A repetitive DNA fragment carrying a hot spot for de novo DNA methylation enhances expression variegation in tobacco and petunia. Plant J, 1995, 8(6): 919~932
    97. Lu H, Rajamohan F And Dean DH. Identification of amino acid residues of Bacillus thuringiensis δ-endotoxin CryIA(a) associated with membrane binding and toxicity to Bombyx mori. J. Bacteriol, 1994, 176:5554~5559
    
    
    98. Mankin SL, Allen GC, Phelan T, et al. Elevation of transgene expression level by flanking matrix attachment regions (MAR) is promoter dependent: a study of the interactions of six promoters with the RB7 3'MAR. Transgenic Res. 2003; 12(1): 3-12.
    99. Mao Z C, Hu Y L, Zhong J, Wang L X, et al. Improvement of the hydroponic growth and waterlogging tolerance of Petunias by the introduction of vhb Gene. Acta Botanica Sinica., 2003, 45 (2): 205~210
    100. Marten and Bosch D. Mapping and characterization of the entomocidal domain of the Bacillus thuringiensis CryIA(b) protoxin. Mol. Gen. Genet., 1995, 247:482~487
    101. Martin C., Paz-Ares J. MYB transcription factors in plants. Trends Genet., 1997, 13:67
    102. Mary-Dell M, Chilton, Qiudeng Q. Targeted Integration of T-DNA into the Tobacco Genome at Double-Stranded Breaks: New Insights on the Mechanism of T-DNA Integration. Plant Physiology, 2003, 133:. 956~965
    103. Matsumoto S, Ito Y, Hosoi T, et al. Integration of Agrobacterium T-DNA into a tobacco chromosome: possible involvement of DNA homology tetween T-DNA and plant DNA. Mol Gen Genet., 1990, 224(3): 309~316
    104. Mayerhofer R, Koncz-Kalman Z, Nawrath C. et al. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J., 1991, 10(3): 697~704
    105. McGaughey WH. Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 1985, 229:193~195
    106. Meyer P., Heidmann I. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Molecular & General Genetics, 1994, 243:390~399
    107. Meyer P., Heidmann I., Niedenhof I. Differences in DNA-methylation are associated with a paramutation phenomenen in transgenic petunia. Plant J, 1993, 4:89~100
    108. Muller AE, Kamisugi Y, Gruneberg R et al. Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum. J Mol Biol, 1999, 291(1): 29~46
    109. Murray EE, Rocheleau T, Eberle Met al. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroplated protoplasts. Plant Mol. Biol., 1991,16:1035~1050
    110. Nie Xih, Hill R D, Nie X Z, Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol, 1997, 114:835~840
    111. Nishimoto T, Yoshisue H, Ihara K et al. Functional analysis of block 5, one of the highly conserved amino aci sequences in the 130-kD CryIVA protein produced by Bacillus thuringiensis subsp. Israelensis. FEBS Lett., 1994, 348:249~254
    112. Offringa R, De Groot M J, Haagsman H J, et al. Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J, 1990, 9(10): 3077~3084
    
    
    113. Park K W, Kim K J, Howard A J, et al. Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiqinol oxidases. J Biol Chem, 2002, 277:33334~33337
    114. Patel S M, Stark B C, Hwang K W, Dikshit K L, Webster D A. Cloning and expression of Vitreoscilla hemoglobin gene in Burkholderia sp. strain DNT for enhancement of 2, 4-dinitrotoluene degradation. J. Biotechnol Prog., 2000, 16(1): 26~30
    115. Pawlowski WP and Somers DA. Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. PNAS, 1998, 95(21): 12016~12110
    116. Perlak FJ, Deaton RW, Armstrong TA et al. Insect resistant cotton plants. Bio/Technology, 1990, 8: 939~942
    117. Perlak F J, Fuchs RL, Dean DA et al. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA, 1991, 88:3324~3328
    118. Pringsheim E G. The Vitreoscillaceae: a family of colourless, gliding, filamentous organisms. J Gen. Microbio., 1951, 5:124~149
    119. Prols F., Meyer P. The methylation Pattern of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. Plant J, 1992, 2:465~475
    120. Purugganan MD, Rounsley SD, Schmidt RJ et al. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics, 1995, 140:345~356
    121. Purugganan MD., Wessler SR. Molecular evolution of the plant R regulatory gene family. Genetics, 1994, 138:849-854
    122. Rajamohan F, Alcantara E, Lee MK et al. Single amino acid changes in domain Ⅱ of Bacillus thuringiensis CrylAb δ-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J. Bacteriol., 1995, 177:2276~2282
    123. Ramandeep, Hwang K W, Raje M, et al. Vitreoscilla hemoglobin. Intracellular localization and binding to membranes. J. Biol. Chem., 2001, 276(27): 24781~2478.
    124. Ruud A, DE Maagd, Hilde Van Der Klei, et al. Different domains of Bacillus thuringiensis δ-endotoxins can bind to insect midgut membrane proteins on ligand blots. Applied and Environmental Microbiology, 1996, 62(8): 2753~2757
    125. Salomon S, Puchta H. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J, 1998, 17(20): 6086~6095
    126. Schnepf HE, Tomczak K, Ortega JP et al. Specificity-determining regions of lepidopteran-specific insecticidal proteins produced by Bacillus thuringiensis. J. Biol. Chem., 1990, 265:20923~20930
    127. Schnepf HE, Whiteley HR. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA, 1981, 78:2893~2897
    128. Stahly DP, Dingman DW, Bulla LA et al. Possible origin and function of the parasporal crystals in Bacillus thuringiensis. Biochem. Biophys. Res. Commun.,. 1978, 84:581~588
    129. Strohl W R, Schmidt T M, Lawry N H et al. Characterization of Vitreoscilla beggiatoides and Vitreoscilla filifornis sp. nov., nora. rev., and comparison with Vitreoscilla stercoraria and
    
    Beggiatoa alba. International Journal of Systematic Bacterology, 1986, 4:302~313
    130. Takano M, Egawa H, Ikeda JE et al. The structures of integration sites in transgenic rice. Plant J, 1997, 11(3): 353~361
    131. Tarricone C, Galizzi A, Coda A, et al. Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure, 1997, 5(4): 497~507.
    132. Taylor E R, Nie X Z, Macgregor A W, et al. A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Molecular Biology, 1994, 24:853~862
    133. Taylor ER, Nie XZ, MacGregor AW, Hill RD. A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Molecular Biology, 1994, 24: 853~862.
    134. Tinland B, Hohn B. Recombination between prokaryotic and eukaryotic DNA: intergration of Agrobacterium tumefaciens T-DNA into the plant genome. In: Setlow JK ed. Genetic Engineering vol 17, Plenum Press, New York: 1995, pp: 209~229
    135. Tinland B, Schoumacher F, Gloeckler V. et al. The Agrobacteriurn tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J, 1995, 14(14): 3585~95
    136. Topfer R, Schell J, Steinbiss HH. Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells. Nucleic Acids Res., 1988, 16(17):,8725
    137. Trevaskis B, Watts R A, Andersson C R et al, Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins ofleghemoglobins. Proc. Natl. Acad. Sci. USA, 1997, 94:12230~12234
    138. Vadlamudi RR, Ji TH and Bulla LA. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. Berliner. J. Biol. Chem., 1993, 269: 12334~12340
    139. Vaeck M, Reynaerts A, Hfte H et al. Transgenic plants protected from insect attack. Nature, 1987, 328:33~37
    140. Van Rie J, Jansens S, H6fte H et al. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science, 1990, 247:72~74
    141. Vasudevan S G, Armaregro W L, Shaw D C et al. Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Mol Gen Genet, 1991, 226: 49~58
    142. Von Tersch MA, Slatin SL, Kulesza CA et al. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl. Environ. Microbiol., 1994, 60:3711~3717
    143. Waiters FS, Slatin SL, Kulesza CA et al. Ion channel activity of N-terminal fragments from CrylA(c) delta-endotoxin. Biochem. Biophys. Res. Commun., 1993, 196:921~926
    144. Watts RA, Hunt PW, Hvitved AN, et al. A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc. Natl. Acad. Sci. USA, 2001, 98:10119~10124
    145. Whalon ME, Wingerd BA. Bt: mode of action and use. Arch. Insect. Biochem. Physiol., 2003,
    
    54(4): 200~211
    146. Wittenberg J B. The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J. Biol. Chem., 1966, 241:104~114
    147. Wolfersberger MG. The toxicity of two Bacillus thuringiensis δ-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experientia, 1990, 46:475~477
    148. Wu SJ and Dean DH. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA δ-endotoxin. J. Mol. Biol., 1996, 255:628~640
    149. Yoshimichi Hatsuyama, Natsuo Sunaga et al, Direct transfer of plasmid DNA from intact yeast spheroplasts into plant protoplasts. Plant Cell Physiol., 1994, 35(1): 93~98
    150. Zambryski PC. Chronicles from the Agrobacterium plant cell DNA transfer story. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, 43:465~490
    151. Zhou GY, Weng J, Zeng Y, et al. Introduction of exogenous DNA into cotton embryos. Methods in Enzymology, 1983, 101:433~481
    152. Zhuang,L.-J., Cheng,L.-m., Xu,N., et al. Efficient transformation of tobacco by ultrasonication. Bio/Technology, 1991, 9:996~997
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.