HepaCAM通过调节c-Myc抑制肾癌增殖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     目的:探讨肝细胞粘附分子(hepaCAM)对肾癌增殖的影响及机制。
     方法:将携带hepaCAM基因的重组质粒转染786-0细胞,RT-PCR、western blot鉴定hepaCAM基因在786-0中的表达及其对c-Myc表达的影响;细胞计数观测细胞增殖活力变化;流式细胞术检测细胞周期的变化。
     结果:上调hepaCAM基因表达可抑制肾癌786-0增殖,阻止细胞周期于G0/G1期,并伴随着c-Myc蛋白表达降低。
     结论:上调hepaCAM基因可抑制肾癌786-0增殖,并下调c-Myc蛋白表达而对c-Myc基因水平无影响,说明hepaCAM抑制肾癌增殖可能是通过调节c-Myc翻译后水平实现的。
     第二部分
     目的:探讨c-Myc特异性小分子抑制剂10058-F4对肾癌增殖的影响,进一步研究hepaCAM对c-Myc的具体调节作用及抑制肾癌增殖的作用机制。
     方法:MTT检测10058-F4对肾癌增殖作用的时间依赖性和剂量依赖性;FCM检测细胞周期;Western blot检测hepaCAM对c-Myc稳定性、磷酸化及c-Myc下游分子P21和cyclin D1表达的影响。
     结果:10058-F4可抑制肾癌增殖并阻止细胞周期于G0/G1期,上调hepaCAM表达后,c-Myc的稳定性降低; c-Myc磷酸化增加; c-Myc下游分子cyclin D1表达下调、p21表达上调。
     结论:C-Myc特异性小分子抑制剂10058-F4可抑制肾癌增殖,其作用与hepaCAM抑制肾癌增殖作用相当,hepaCAM可同时下调c-Myc蛋白水平表达,说明hepaCAM可能通过抑制c-Myc蛋白水平表达从而抑制肾癌增殖,与以上相符的是,hepaCAM可使c-Myc蛋白稳定性降低,促进其泛素化降解,而T58位c-Myc磷酸化是其泛素化降解的前题,上调hepaCAM表达后T58位c-Myc磷酸化增加,说明hepaCAM是通过增加T58位c-Myc磷酸化增加促进其降解,进而调节其相应下游分子cyclin D1、p21等表达抑制肾癌增殖。
PART ONE
     Objective: To investigate the effect of hepatocyte cell adhesion molecule (hepaCAM) on proliferation of renal cell carcinoma and its mechanisms.
     Methods: The vector containing hepaCAM gene was transfeceted into 786-0 cells, the expression of hepaCAM and c-Myc in 786-0 cells were measured by RT-PCR and western blot; Cell proliferation was detected by cell counting; the cell cycle was analyzed by FCM.
     Results: Up-regulated the expression of hepaCAM gene in 786-0 cells can inhibit cell proliferation, which accompany with down-regulation of c-Myc.
     Conclusion: we demonstrated that re-expression of hepaCAM caused an accumulation in G0/G1 phase in 786-0 cells. This reaction was accompanied by a substantial reduction of c-Myc expression through using an ectopic hepaCAM expression system. Nevertheless, re-expression of hepaCAM can result in apparent reduction of c-Myc protein while no corresponding reduction of c-Myc mRNA. This suggests that this reaction might take place at a post-transcriptional level rather than transcriptional one.
     PART TWO
     Objective: To investigate the effect of the small molecule c-Myc inhibitor, 10058-F4, on proliferation of renal cell carcinoma and the mechanisms of hepaCAM inhibits renal cell carcinoma proliferation through regulating c-Myc.
     Methods: Cell proliferation was detected by MTT assay; The proliferation of 786-0 cells was analyzed by FCM; Western blot was used to detected the effects of hepaCAM on the stability and phosphorylation of c-Myc and the targets of c-Myc, P21 and cyclin D1.
     Results: we showed a comparable decrease in proliferation and G0/G1 accumulation of 786-0 and RC-2 cells after treatment with a small molecule c-Myc inhibitor, 10058-F4. re-expression of hepaCAM decreased c-Myc stability by increasing the proportion of c-Myc phosphorylation on T58 and the expression of P21 was increased and the expression of cyclin D1 was decreased.
     Conclusion: we showed a comparable decrease in proliferation and G0/G1 accumulation of 786-0 and RC-2 cells after treatment with a small molecule c-Myc inhibitor, 10058-F4. It demonstrated that down regulation of c-Myc was an essential process in controlling growth inhibitory actions of hepaCAM. Nevertheless, re-expression of hepaCAM can result in apparent reduction of c-Myc protein while no corresponding reduction of c-Myc mRNA. This suggests that this reaction might take place at a post-transcriptional level rather than transcriptional one. Consistent with these findings, hepaCAM decreased c-Myc stability by increasing the proportion of c-Myc phosphorylation on T58 which can be abrogated by a proteasomal inhibitor (MG132). Thus, our results imply that the decrease in c-Myc protein expression, resulting from ectopic expression of hepaCAM, may contribute to inhibition of proliferation in these cells.
引文
[1] Moh MC, Zhang C, Luo C, Lee LH, Shen S, Structural and Functional Analyses of a Novel Ig-like Cell Adhesion Molecule, hepaCAM, in the Human Breast Carcinoma MCF7 Cells[J], J Biol Chem. 280 (2005) 27366–27374.
    [2] Chung Moh M, Hoon Lee L, Shen S, Cloning and characterization of hepaCAM, a novel Ig-like cell adhesion molecule suppressed in human hepatocellular carcinoma[J], J Hepatol. 42 (2005) 833–841.
    [3] Chung Moh M, Hoon Lee L, Shen S, Cloning and characterization of hepaCAM, a novel Ig-like cell adhesion molecule suppressed in human hepatocellular carcinoma[J], J Hepatol. 42 (2005) 833–841.
    [4] Xun C, Luo C, Wu X, Zhang Q, Yan L, Shen S, Expression of hepacam and its effect on proliferation of tumor cells in renal cell carcinoma[J], Urology. 75 (2010) 828-34.
    [5] Shuzhe Yang, Xiaohou Wu, Chunli Luo, Cuicui Pan, Jun Pu, Expression and clinical significance of hepaCAM and VEGF in urothelial carcinoma[J], World J Urol. 28 (2010) 473–478.
    [6] Pan, Cuicui, Wu, Xiaohou, Luo, Chunli, Yang, Shuzhe, Pu, Jun, Wang, Chunyuan, Shen, Shali, Exon 2 Methylation Inhibits hepaCAM Expression in Transitional Cell Carcinoma of the Bladder[J], Urologia internationalis . 85 (2010) 347-54.
    [7] Moh, M C, Tian, Q, Zhang, T, Lee, L H, Shen, S, The immunoglobulin-like cell adhesion molecule hepaCAM modulate cell adhesion and motility through direct interaction with the actin cytoskeleton[J], J Cell Physiol. 219 (2009) 382-91.
    [8] Lee LH, Moh MC, Zhang T, Shen S, The immunoglobulin-like cell adhesion molecule hepaCAM induces differentiation of human glioblastoma U373-MG cells[J], J cell Biochem. 107 (2009) 1129-1138.
    [9] He Y, Wu X, Luo C, Wang L, Lin J, Functional significance of the hepaCAM gene in bladder cancer[J], BMC Cancer. 10 (2010).
    [10] Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ, Cancer Statistics[J], 2009, CA Cancer J Clin. 59 (2009) 225-249.
    [11] Flanigan RC, Mickisch G, Sylvester R, Tangen C, Van Poppel H , Crawford ED,Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis[J], J Urol. 171 (2004) 1071-1076.
    [12] JON A.J. LOVISOLO*§, BARBARA CASATI?§, LIBERO CLERICI?, ERMINIO MARAFANTE?, ALDO V. BONO?, NICOLA CELATO? and MAURIZIO SALVADORE?, Gene expression profiling of renal cell carcinoma: a DNA macroarray analysis[J], BJU INTERNATIONAL. 98 (2006) 205–216.
    [13] Michelle L. Gumz, Hongzhi Zou, Pamela A. Kreinest, Secreted Frizzled-Related Protein 1 Loss Contributes toTumor Phenotype of Clear Cell Renal Cell Carcinoma[J], ClinCancer Res. 13 (2007) 4740-4748.
    [14] Tang SW, Chang WH, Su YC, Chen YC, Lai YH, Wu PT, Hsu CI, Lin WC, Lai MK, Lin JY, MYC pathway is activated in clear cell renal cell carcinoma and essential for proliferation of clear cell renal cell carcinoma cells[J], Cancer Lett. 273 (2009) 35–43.
    [15] Lovisolo JA, Casati B, Clerici L, Marafante E, Bono AV, Celato N, Salvadore M, Gene expression profiling of renal cell carcinoma: a DNA macroarray analysis[J], BJU Int. 98 (2006) 205-16.
    [16] Gumz ML, Zou H, Kreinest PA, Childs AC, Belmonte LS, LeGrand SN, Wu KJ, Luxon BA, Sinha M, Parker AS, Sun LZ, Ahlquist DA, Wood CG, Copland JA, Secreted Frizzled-Related Protein 1 Loss Contributes toTumor Phenotype of Clear Cell Renal Cell Carcinoma[J], ClinCancer Res. 3 (2007) 4740-9.
    [17] Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL, HIF-1 Inhibits Mitochondrial Biogenesis and Cellular Respiration in VHL-Deficient Renal Cell Carcinoma by Repression of C-MYC Activity[J], Cancer Cell. 11 (2007) 407-20.
    [18] John D. Gordan, Jessica A. Bertout, Cheng-Jun Hu,J. Alan Diehl, and M.Celeste Simon, HIF-2a Promotes Hypoxic Cell Proliferation by Enhancing c-Myc Transcriptional Activity[J], Cancer Cell. 11 (2007) 335–347.
    [19] Vervoorts J, Luscher-Firzlaff J, Luscher B, The ins and outs of MYC regulation by posttranslational mechanisms[J], J Biol Chem. 281 (2006) 34725-34729.
    [20] Amati, Mary W. Brooks, Naomi Levy, Trevor D. Littlewood,Gerard I.Evan and Hartmut Land, Oncogenic activity of the c-Myc protein requires dimerization with Max[J], Bruno Cell. 72 (1993) 233-245.
    [21] Lin CP, Liu JD, Chow JM, Liu CR, Liu HE, Small-molecule c-Myc inhibitor,10058-F4, inhibits proliferation, downregulates human telomerase reverse transcriptase and enhances chemosensitivity in human hepatocellular carcinoma cells[J], Anti-Cancer Drugs. 18 (2007)161-170.
    [22] Huang MJ, Cheng YC, Liu CR, Lin S, Liu HE, A small-molecule c-Myc inhibitor, 10058-F4, induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia[J], Exp Hematol. 34 (2006) 1480–1489.
    [23] Calvisi DF, Ladu S, Conner EA, Factor VM, Thorgeirsson SS, Disregulation of E-cadherin in transgenic mouse models of liver cancer, Lab Invest. 84 (2004) 1137–1147.
    [24] Ha? E, Nouraud A, Marie PJ, Negatively Regulates Osteoblast Proliferation and Survival by Antagonizing Wnt, ERK and PI3K/Akt Signalling[J], Plos One. 4 (2009)e8284.
    [25] Lu TY, Lu RM, Liao MY, Yu J, Chung CH, Kao CF, Wu HC, Epithelial Cell Adhesion Molecule Regulation Is Associated with the Maintenance of the Undifferentiated Phenotype of Human Embryonic StemCells[J], J Biol Chem. 285 (2010) 8719-32.
    [26] Salghetti SE, Kim SY, Tansey WP, Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc[J], Embo J. 18 (1999) 717–726.
    [27] Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, Clurman BE, The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation dependent c-Myc protein degradation[J], Proc Natl Acad Sci U S A. 101 (2004) 9085-9090.
    [28] Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Site specific modulation of c-Myc cotransformation by residues phosphorylated in vivo[J], Oncogene. 9 (1994) 59–70.
    [29] Moh, M C, Tian, Q, Zhang, T, Lee, L H, Shen, S, The immunoglobulin-like cell adhesion molecule hepaCAM modulate cell adhesion and motility through direct interaction with the actin cytoskeleton[J], J Cell Physiol. 219 (2009) 382-91.
    [30] Lee LH, Moh MC, Zhang T, Shen S, The immunoglobulin-like cell adhesion molecule hepaCAM induces differentiation of human glioblastoma U373-MG cells[J], J cell Biochem. 107 (2009) 1129-1138.
    [31] Moh MC, Zhang T, Lee LH, Shen S, Expression of hepaCAM is downregulated in cancers and induces senescence-like growth arrest via a p53/p21-dependent pathway in human breast cancer cells[J], Carcinogenesis. 29 (2008) 2298–2305.
    [32] van Duijn PW, Ziel-van der Made AC, van der Korput JA, Trapman J, PTEN-mediated G1 cell-cycle arrest in LNCaP prostate cancer cells is associated with altered expression of cell-cycle regulators[J], Prostate. 70 (2010) 135-146.
    [33] Jacob AI, Romigh T, Waite KA, Eng C, Nuclear PTEN levels and G2 progression in melanoma cells[J], Melanoma Res. 19 (2009) 203-210.
    [34] Seminario MC, Precht P, Wersto RP, Gorospe M, Wange RL, PTEN expression in PTEN-null leukaemic T cell lines leads to reduced proliferation via slowed cell cycle progression[J], Oncogene. 22 (2003) 8195-8204.
    [35] Geick A, Redecker P, Ehrhardt A, Klocke R, Paul D, Halter R, Uteroglobin promoter-targeted c-MYC expression in transgenic mice cause hyperplasia of Clara cells and malignant transformation of T-lymphoblasts and tubular epithelial cells[J], Transgenic Research. 10(2001) 501–511.
    [36] Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR, Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability[J], Genes Dev. 14 (2000) 2501-2514.
    [37] Caldon CE, Daly RJ, Sutherland RL, Musgrove EA, Cell cycle control in breast cancer cells[J], J Cell Biochem. 97 (2006) 261-74.
    [38] He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW, Identification of c-MYC as a target of the APC pathway[J], Science. 281 (1998) 1509-1512.
    [39] Kaizu T, Ikeda A, Nakao A, Tsung A, Toyokawa H, Ueki S, Geller DA, Murase N, Protection of transplant induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation[J], Am J Physiol Gastrointest Liver Physiol. 294 (2008) G236-G244.
    [40] Inamura K, Matsuzaki Y, Uematsu N, Honda A, Tanaka N, Uchida K, Rapid inhibition of MAPK signaling and anti-proliferation effect via JAK/STAT signaling by interferon-alpha in hepatocellular carcinoma cell lines[J], Biochim Biophys Acta. 1745 (2005) 401-410.
    [41] Gingras AC, Raught B, Sonenberg N, Regulation of translation initiation by FRAP/mTOR[J], Genes Dev. 15 (2001) 807–826.
    [1] Mei Chung Moh, Lay Hoon Lee, Xiaodong Yang, Shali Shen, HEPN1, a novel gene that is frequently down-regulated in hepatocellular carcinoma, suppresses cell growth and induces apoptosis in HepG2 cells[J]. Journal of Hepatology 39 (2003) 580–586.
    [2] LINDA FAVRE-KONTULA, ALEXANDRE ROLLAND, LILIA BERNASCON, GlialCAM, an Immunoglobulin-Like Cell Adhesion Molecule is Expressed in Glial Cells of the Centra Nervous System[J]. GLIA 56(2008)633–645.
    [3] Moh MC, Zhang C, Luo C, Lee LH, Shen S, Structural and Functional Analyses of a Novel Ig-like Cell Adhesion Molecule, hepaCAM, in the Human Breast Carcinoma MCF7 Cells[J], J Biol Chem. 280 (2005) 27366–27374.
    [4] Chung Moh M, Hoon Lee L, Shen S, Cloning and characterization of hepaCAM, a novel Ig-like cell adhesion molecule suppressed in human hepatocellular carcinoma, J Hepatol. 42 (2005) 833–841.
    [5] Chung Moh M, Hoon Lee L, Shen S, Cloning and characterization of hepaCAM, a novel Ig-like cell adhesion molecule suppressed in human hepatocellular carcinoma[J], J Hepatol. 42 (2005) 833–841.
    [6] Xun C, Luo C, Wu X, Zhang Q, Yan L, Shen S, Expression of hepacam and its effect on proliferation of tumor cells in renal cell carcinoma[J], Urology. 75 (2010) 828-34.
    [7] Pan, Cuicui, Wu, Xiaohou, Luo, Chunli, Yang, Shuzhe, Pu, Jun, Wang, Chunyuan, Shen, Shali, Exon 2 Methylation Inhibits hepaCAM Expression in Transitional Cell Carcinoma of the Bladder[J], Urologia internationalis . 85 (2010) 347-54.
    [8] Moh, M C, Tian, Q, Zhang, T, Lee, L H, Shen, S, The immunoglobulin-like cell adhesion molecule hepaCAM modulate cell adhesion and motility through direct interaction with the actin cytoskeleton[J], J Cell Physiol. 219 (2009) 382-91.
    [9] Lee LH, Moh MC, Zhang T, Shen S, The immunoglobulin-like cell adhesion molecule hepaCAM induces differentiation of human glioblastoma U373-MG cells[J], J cell Biochem. 107 (2009) 1129-1138.
    [10] Shuzhe Yang, Xiaohou Wu, Chunli Luo, Cuicui Pan, Jun Pu, Expression and clinical significance of hepaCAM and VEGF in urothelial carcinoma[J], World JUrol. 28 (2010) 473–478.
    [11] He Y, Wu X, Luo C, Wang L, Lin J, Functional significance of the hepaCAM gene in bladder cancer[J], BMC Cancer. 10 (2010).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.