白灵菇分类地位的评估及遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对前人在侧耳属分类研究中未曾将中国的白灵菇和典型的Pleurotus nebrodensis进行比较分析的缺陷,对来自中国的白灵菇菌株和来自欧洲的Pleurotus nebrodensis, Pleurotus ferulae, Pleurotus eryngii, Pleurotus elaeoselini菌株进行DNA分子标记(ITS, IGS2, SRAP)分析,从分子水平为白灵菇分类地位的确定提供可靠依据,同时研究了各侧耳种的系统发育关系和遗传多样性。主要研究结果如下:
     1、菌丝体形态和菌丝生长速度实验观察结果:PN802(1号)和PN803(2号)菌株在生长后期会产色素与其他供试菌株有明显的差异,但二者根据菌丝形态特征难以区分;菌株KH5(15号)、PF ds 264(17号)、PF 882(18号)的菌丝形态也与其它菌株明显不同,说明这些菌株与其他供试菌株的遗传背景有明显差异。其余供试菌株的菌丝体形态也有一定差异,但是组内各菌株无法区分。根据菌丝体生长速度数据,无法将供试菌株分类,但从数据中可以看出KH2(14号)和PF 882(18号)菌株的生长速度显著快于其他菌株,说明这两株菌株与其他供试菌株的遗传差异较大。中国的白灵菇菌株比欧洲的Pleurotus nebrodensis菌株生长速度快,Pleurotus eryngii和Pleurotus elaeoselini菌株的菌丝体生长速度比其他侧耳种快。
     2、菌丝体拮抗反应试验结果:来自中国的绝大多数白灵菇菌株PN 2, PN sn 1, PN sn 2, PN sn 4, PN ts 1, PN ts 2, PN1 (8、9、10、11、12、13和33号)分在一组,PN802(1号)和PN803(2号)两株Pleurotus nebrodensis菌株分在一组,这与菌丝体形态特征观察的结果一致。PE ds 77, PE ds 359, PE4(27、28和32号)菌株分在一组,它们均为Pleurotus eryngii。3株Pleurotus elaeoselini菌株EL 759,EL 738,EL 720(22、23和24号)分在一组。其它菌株各自独立成组。结果表明拮抗试验可以作为侧耳初步分类的方法。
     3、对ITS序列进行比对分析,结果显示全部供试菌株的ITS序列长度范围为534~589bp。从序列长度变异来看,ITS1区序列长度变化范围为184~255bp,稍大于ITS2区的180~200bp;5.8S序列相对保守,只有154bp和158bp两种长度。所有侧耳菌株无论是ITS1区还是ITS2区(G+C)%都比较低,ITS1平均为42.5%,ITS2平均为43.9%,G+C含量低说明其碱基置换具有很大的随机性。基于ITS序列信息,构建了34株供试菌株的系统发育树,结果显示:白灵菇与Pleurotus nebrodensis具有很近的亲缘关系,Pleurotus nebrodensis菌株的多态性更丰富;多数Pleurotus eryngii菌株聚在一组;3株Pleurotus elaeoselini聚在一起;Pleurotus ferulae菌株没有独立聚为一组。
     4、用4种识别四个碱基的内切酶对供试菌株进行IGS2-RFLP分析,其中3种酶的酶切效果较好。结果显示:每个菌株均存在3种酶的酶切位点,电泳后产生不同的带型。HaeⅢ酶切后产生21条条带,HhaⅠ酶切后产生13条条带,RsaⅠ酶切后产生19条条带,共计53条,其中多态性条带为52条,多态性比率为98%。3个内切酶都不能单独将全部供试菌株区别开,3种酶共同使用时,PN802(1号)和PN803(2号)两个菌株不能区分开,PN sn 1, PN sn 2, PN sn 4 and PN ts 2(9、10、11和13号)菌株不能区分开。根据IGS2-RFLP的信息构建系统发育树,结果与基于ITS构建的系统发育树显示的结果基本一致,不同的是3株Pleurotus elaeoselini没有聚在一起。
     5、用筛选出的7对扩增条带清晰、多态性丰富、稳定性好的引物组合对34株供试菌株进行SRAP扩增,共得到420条具有重复性的条带,且均为多态性条带,多态性比率为100%。每对引物的扩增效率不同,扩增条带数目为53-71条不等,平均每对引物扩增出60条条带,其中F1-R4扩增条带数最多,为71条条带。基于SRAP标记信息,构建了供试菌株的系统发育树,聚类分析结果与ITS基本一致,表明SRAP标记可以作为侧耳菌株分类和遗传多样性分析的有效技术手段。
     6、三种DNA分子标记分析结果表明,在一定相似性水平上,白灵菇与Pleurotus nebrodensis有很近的亲缘关系,二者很可能为同一菌种;Pleurotus nebrodensis菌株的多态性较白灵菇菌株丰富,说明中国的白灵菇菌株的遗传背景较单一;供试的Pleurotus ferulae菌株不能聚在一组,各菌株之间遗传差异较大;SRAP标记技术可以作为侧耳菌株分类及遗传多样性研究的有效手段。
Because the reported Pleurotus taxonomical study didn't compare the strains of white king oyster mushroom with typical strains of Pleurotus nebrodensis, we conducted a comparative taxonomic study of white king oyster mushroom from China and Pleurotus nebrodensis, Pleurotus ferulae, Pleurotus eryngii, Pleurotus elaeoselini isolated from Europe using analysis of morphology and DNA markers. Three DNA marker systems, internally transcribed spacer (ITS) sequences analysis, intergenic spacer 2-restriction fragment length polymorphism (IGS2-RFLP) and sequence-related amplified polymorphism (SRAP) technique were used to assess the taxonomic position of white king oyster mushroom and detect genetic polymorphism among tested strains. The main results were as follows:
     1、The results based on mycelial growth rate and morphology experiment indicated that the strains PN802 (NO.1) and PN803 (NO.2) were different from other tested strains visibly because they can produce pigment, but it was impossible to distinguish one from the other according to morphology character. The strains KH5 (NO.15), PF ds 264 (NO.17) and PF 882 (NO.18) were also different from other tested strains according to morphology character. Results suggested that the genetic characters of these strains had visible difference compared with other tested strains. The other tested strains also have different morphology characters, but none of them can distinguished from the strains which in the same groupe. Mycelial growth rate of KH2 (NO.14) and PF 882 (NO.18) were visibly faster than that of other strains, this phenomenon indicated that the two strains may have very different genetic characters compared with other tested strains.
     2、The results of antagonism reactions among 34 strains revealed that the most strains of white king oyster mushroom from China were classified into one group which contained PN 2, PN sn 1, PN sn 2, PN sn 4, PN ts 1, PN ts 2 and PN 1 (NO.8,9,10,11,12,13 and 33). The strains PN 802 (NO.1) and PN 803 (NO.2) also were classified into one group. These results were consistent with the results of analysis of morphology. PE ds 77, PE ds 359 and PE 4 (NO.27,28 and 32) were in one group, they were Pleurotus eryngii. The strains EL 759, EL 738 and EL 720 (NO.22,23 and 24) were Pleurotus elaeoselini, they were also in one group. These results indicated that antagonism was a method which could be used in preliminary taxonomic analysis of Pleurotus strains.
     3、he results of ITS sequence analysis revealed that the size of the ITS region of tested strains was different, ranging from 534bp to 589bp. The length of the ITS1 and ITS2 genes among 34 strains was 184~255 bp and 180~200 bp, respectively. Most variation occurred in ITS1. The length of the 5.8S gene among 34 strains was relatively consistent, which was 154bp and 158bp. Both ITS1 and ITS2 region among 34 strains, the (G+C)% content was relatively low, the mean (G+C)% content of ITS1 and ITS2 was 42.5% and 43.9%, respectively. The low (G+C)% content indicated that the base substitution had large randomness. Based on the analysis of ITS sequence, we conducted the evolutionary trees about the 34 strains. The result revealed that the relationship between white king oyster mushroom and Pleurotus nebrodensis was very close; great mass of the strains of Pleurotus eryngii were grouped together; the strains of Pleurotus elaeoselini were grouped together; the strains of Pleurotus ferulae were not grouped together.
     4、The IGS2-RFLP analysis of tested strains using four restriction enzyme, but three of them had efficacious result. All strains had the restriction sites of three enzyme and different band pattern. The number of bands digested by HaeⅢ、HhaⅠ、RsaⅠwas 21、13 and 19, respectively. In the 53 bands, the number of the polymorphic bands was 52, the polymorphic ratio was 98%. PN 802 (NO.1) and PN 803 (NO.2) were not distinguished from each other, PN sn 1, PN sn 2, PN sn 4 and PN ts 2 (NO.9, NO.10、NO. 11、NO.13) were also not distinguished. Based on the IGS2-RFLP analysis, we constructed the phylogenetic tree. Except for the phenomenon of the strains of Pleurotus elaeoselini weren't grouped together, the results of IGS2-RFLP were rather similar with the results showed by ITS.
     5、The results of SRAP profile of DNAs from 34 strains of Pleurotus strains with seven combinations of primers showed none of all strains shared the same bands. Seven combinations produced a total of 420 bands, which were all polymorphic. The number of fragments amplified using each primer combination was ranging from 53 to 71, with an average of 60 polymorphic bands per combination of primers. Based on SRAP markers, phylogenetic dendrogram of 34 Pleurotus strains was constructed. And the results showed by SRAP were rather similar with the results showed by ITS.
     6、The results of three markers showed that white king oyster mushroom closely related to Pleurotus nebrodensis, they may be the same species. However, Pleurotus nebrodensis had more genetic polymorphism than white king oyster mushroom. The strains of Pleurotus ferulae were not grouped together, but grouped with Pleurotus eryngii or with Pleurotus nebrodensis. This phenomenon indicated that the strains of Pleurotus ferulae had genetic diversity. SRAP marker is a suitable method which could be used in the taxonomic and polymorphic analysis of Pleurotus strains.
引文
[1]陈文良.白灵菇的营养价值和开发前景.食用菌[J],1999,21(4):40-41.
    [2]肖淑霞等.白灵菇营养价值研究.菌物系统[J],2003,22(增刊):213-216.
    [3]冯改静.白灵菇亲本筛选与紫外诱变、杂交及杂种优势预测.[硕士学位论文].保定:河北农业大学.
    [4]李正鹏.白灵菇液体发酵及其胞外多糖生物活性的研究.[硕士学位论文].合肥:安徽农业大学,2006.
    [5]黄年来.加速我国珍稀食用菌的开发和推广.全国第五届食用菌学术讨论会论文及论文摘要汇编[C].郑州:1994,4-5.
    [6]卯晓岚.促进我国食用珍品白灵菇的发展.中国(广水)食用菌标准化生产研讨暨珍稀菇品种(白灵菇)交易会论文集[C].湖北广水:2005,25-27.
    [7]郑和斌,李晓宁,吕作舟.阿魏蘑、白灵菇及杏鲍菇亲缘关系的研究.食用菌学报[J],2005,12(4):1-4.
    [8]谭琦,ROMAINE CP, SCHLAGNHAUFERC等.中国六个白灵菇(Pleurotus Nebrodensis)商业菌株的DNA指纹图谱分析.食用菌学报[J],2006,13(1):13-19.
    [9]Bresinsky A, Fischer M, Meixner B, Paulus W. Speciation in Pleurotus. Mycologia [J],1987,79: 234-245.
    [10]Venturella G. Typification of Pleurotus nebrodensis. Mycotaxon [J],2000,75:229-231.
    [11]Hilber O. Die Gattung Pleurotus (Fr.) Kummer unter besonderer erucksichtigung des Pleurotus eryngii-Formenkomplexes. Bibliotheca Mycologica [J],1982.87. Vaduz:J. Cramer.
    [12]Zervakis G, Balis C. A pluralistic approach on the study of Pleurotus species, with emphasis on compatibility and physiology of the European morphotaxa. Mycol Res [J],1996,100:717-731.
    [13]Zervakis GI, Venturella G, Papadopoulou K. Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii speciescomplex as determined by RAPD analysis, isozyme profiles and ecomorphological characters. Microbiology [J],2001.147:3181-3194.
    [14]魏景超遗著.真菌鉴定手册[M].上海:上海科学技术出版社,1979,1-780.
    [15]齐向辉,周国英,王燕.分子标记技术在真菌上的应用(综述).河北职业技术师范学院学报[J],2003,17(3):72-80.
    [16]高欢欢,杨军,郭光沁.DNA指纹技术新进展.细胞生物学杂志[J],2001,23(4):196-199.
    [17]孔祥彬,张春庆,许子锋.DNA指纹图谱技术在作物品种(系)鉴定与纯度分析中的应用.生物技术[J],2005,15(4):74~77.
    [18]Castle AJ, Horgen PA, Anderson JB. Restriction fragment length polymorphisms in the mushroom Agarieus brunneseens and Agaricus bilorquis. Appl Environ Microbiol [J],1987,53 (4):816-822.
    [19]Anderson JB, Petsehe DM, Smith ML. Restriction fragment length polymorphisms in biological species of Armillaria mellea. Mycologia [J],1987,79:69-76.
    [20]Bruns TD, Palmer JD. Evolution of mushroom mitochondrial DNA:Suillus and related genera. J Mol Evol [J],1989,28 (4):349-362.
    [21]Smith ML, Anderson JB. Mitochondrial DNAs of the fungus Armillaria ostoyae:restriction map and length variation.1994,25 (6):545-553.
    [22]Anderson JB, Stasovski E. Molecular phylogeny of northern hemisphere species of Armillarja. Mycologia [J],1992,84:505-516.
    [23]李英波,罗信昌,李滨.香菇菌株的限制性片段长度多态性.真菌学报[J],1995,14(3):209-217.
    [24]Molina FI, Sllen P, Jong SC, Orikono K. Molecular evidence supports the separation of Lentinula edodes from Lentinus and related genera. Can J Bot [J],1992,70:2446-2452.
    [25]Bunyard BA, Nicholson MS, Royse DJ. A systematic assessment of Morchella using RFLP analysis of the 28S ribosomal RNA gene. Mycologia [J],1994,86 (6):762-772.
    [26]阎培生,罗信昌,周启.木耳属真菌rDNA特异性扩增片段的RFLP研究.菌物系统[J].1999,18(2):206-213.
    [27]Khush RS, Becker E, Wach M. DNA amplification poly-morphisms of the cultivated mushroom Agaricus bisporus. Appl Envion Microbiol [J],1992,58:2971-2977.
    [28]阎培生,罗信昌,周启.利用RAPD技术对木耳属菌株进行分类鉴定的研究.菌物系统[J].2000,19(1):29-33.
    [29]曾东方,罗信昌.应用RADP分析快速鉴定外生菌根蘑菇分离物的真伪.微生物学报[J].2001,29(6):59-65.
    [30]Moore AJ, Challen PJ, Waner TJ, Elliott TJ. RAPD discrimination of Agaricus bisporus mushroom cultivars. Appl Microbiol Biotechnol [J],2001,55:742-749.
    [31]赵明文,陈明杰等.灵芝生产用种的亲缘关系研究.南京农业大学学报[J],2003,26(3):60-63.
    [32]孙勇,林芳灿.中国香菇自然种质遗传多样性的RAPD分析.菌物系统[J],2003,22(3):387-393.
    [33]邓旺秋,杨小兵,李泰辉.广东省草菇栽培菌株RAPD多态性分析.食用菌学报[J],2004,1(3):1-6.
    [34]侯义龙,曹同.苔藓植物与分子生物学标记技术.生态学杂志[J],2005,24(1):83~87.
    [35]吕长武,吕杰,陈恒雷,曾宪贤.RAPD分子标记在食用菌研究中的应用.中国生物工程杂志 [J],2006,26(1):77-80.
    [36]贾建航,李传友,金德敏等.香菇空间诱变子实体的分子生物学鉴定研究.菌物系统[J],1999,18(1):20-24.
    [37]李荣春.双孢蘑菇遗传多样性分析.云南植物研究[J],2001,23(4):444-450.
    [38]Chen Q, Liao DC, Li DY. Preliminary analysis of genetic characteristic of edible fungus Tricholoma matsutake isolated from Yajiang in China by AFLP technique. Agricultural Sciences in China [J], 2003,2(2):229-236.
    [39]Kazuhisa T, Teruyuki M. Strain typing of shiitake (Lentinula edodes) cultivars by AFLP analysis focusing on a heat-dried fruiting body. Mycoscience [J],2004,45:79-82.
    [40]孙庆磊,梁月荣,丁兆堂,陆建良.AFLP分子标记及其在茶树遗传育种中的应用.茶叶[J],2004,30(4):203-206.
    [41]余仲东,张星耀,曹支敏.真菌核糖体基因间隔区研究概况.西北林学院学报[J].2000,15(2):107-112.
    [42]林晓民,李振歧,候军.大型真菌的遗传多样性[M].北京:中国农业出版社,2005.
    [43]潘欣.四川省松树散斑壳菌的种类及其rRNA基因ITS区的PCR克隆和序列分析.[硕士学位论文].四川:四川农业大学硕士论文,2004.
    [44]Walker W, Doolittle W. Redividing the basidiomycetes on the basis of 5S rRNA sequence. Nature [J],1982,299:723-724.
    [45]Huysmans E, Dams E, Vandenberghe A, Wachter RD. The Nucleotide sequences of the 5S rDNAs of four mushrooms and their use in studying the phylogenetic position of basidiomycetes among the eukaryotes. Nucleic Acids Res [J],1983,11:2871-2880.
    [46]Mishler B, Bremer K, Humphries CJ, Churchill SP. The use of nucleic acid sequence data in Phylogenetic reconstruction. Taxon [J],1988,37:391-395.
    [47]Michot B, Hassouna N, Bachellerie J. Secondary structure of mouse 28S rRNA and a general model for the folding of the large rDNA in eucaryotes. Nucl Acids Res [J],1984,12:4259-4279.
    [48]Iwen PC, Hinrichs SH, Rupp ME. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal Pathogens. Med Mycol [J],2002,40:87-109.
    [49]凌建亚,彭俊峰.核糖体rDNA ITS区应用于虫草属无性型鉴定的初步研究.山东农业大学学报[J],2003,38(3):113-117.
    [50]Bunyard BA, Chaichuchote S, Nicholson MS, Royse DJ. Ribosomal DNA analysis for resolution of genotypic classes of Pleurotus. Mycol Res [J],1996a,100:143-150.
    [51]Dunham SM, O'Dell TE, Molina R. Analysis of nrDNA sequences and microsatellite allele frequencies reveals a cryptic chanterelle species Cantharellus cascadensis sp. nov. from the
    American Pacific Northwest. Mycol Res [J],2003,107:1163-1177.
    [52]Vilgalys R, Sun B. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by Phylogenetic analysis of the ribosomal DNA sequence. Proc Natl Acad Sci [J], USA,1994,91:4599-4603.
    [53]Karen WH, Laura LM, Andrew SM. Patterns of geographic speciation in the genus Flammulina based on sequences of the ribosomal ITS1-5.8S-ITS2 area. Mycologia [J],1999,91 (6):978-986.
    [54]徐学锋,林范学,程水明,李安政,林芳灿.中国香菇自然种质的rDNA遗传多样性分析.菌物学报[J].2005,24(1):29-35.
    [55]郑和斌.核rDNA ITS序列在侧耳属分子分类学上的应用.[硕士学位论文].华中农业大学,2005.
    [56]Bunyard BA, Nicholson MS, Royse DJ. Phylogeny of the genus Agaricus inferred from restriction analysis of enzymatically amplified ribosomal DNA. Fungal Genet Biol [J],1996b,20:243-253.
    [57]James TY, Moncalvo JM, Li S, Vilgalys R. Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom schizophyllum commune. Genetics [J], 2001,157:149-161.
    [58]Saito T, Tanaka N, Shinozawa T. Characterization of subrepeat regions with rDNA intergenic spacers of the edible basidiomycete Lentinula edodes. Biosci Biotechnol Biochem [J],2002,66 (10): 2125-2133.
    [59]Zhang JX, Huang CY, Ng TB, Wang HX. Genetic polymorphism of ferula mushroom growing on Ferula sinkiangensis. Appl Microbiol Biotechnol [J],2006,71:304-309.
    [60]Godwin ID, Aitken EAB, Smith, LW. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis [J],1997,18:1524-1528.
    [61]孙洪,程静,詹克慧,张相武,杨艳会.ISSR标记技术及其在作物遗传育种中的应用.分子植物育种[J],2005,3(1):123-127.
    [62]孙立夫,杨国亭,秦国夫.用ISSR标记研究高卢蜜环菌系统发生学的尝试.植物研究[J],2003,23(3):317-322.
    [63]马志刚,吕作舟,郑和斌,王卓仁.ISSR标记在侧耳属菌株分类学中的初步应用.华中农业大学学报[J],2006,25(1):55-59.
    [64]张金霞,黄晨阳,管桂萍,李辉平,张瑞颖,胡清秀.白黄侧耳(Pleurotus cornucopiae)微卫星间区(ISSR)分析.菌物学报[J],2007,26(1):115-121.
    [65]宿红艳,王磊,明永飞,刘林德.ISSR分子标记技术在金针菇菌株鉴别中的应用.生态学杂志[J],2008,27(10):1725-1728.
    [66]侯娅丽,刘文忠.ISSR分子标记及其在动物遗传育种中的应用.上海畜牧兽医通讯[J],2004,
    (4):8-9.
    [67]边银丙,宋小亚.几种新型DNA分子标记及其在食用菌研究中的应用.食用菌学报[J],2006,13(1):78-81.
    [68]Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet [J],2001,103:455-461.
    [69]Sun SJ, Gao W, Lin SQ, Zhu J, Xie BG, Lin ZB. Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP. Appl Microbiol Biotechnol [J],2006,13:1-7.
    [70]王守现,刘宇,耿小丽,孟莉莉,谢宝贵.应用SRAP标记对六个鸡腿菇菌株的多态性分析.江西农业大学学报[J],2006,28(5):753-757.
    [71]朱坚,高巍,林伯德,孙淑静,郑昭,杨洁,谢宝贵.金针菇种质资源的SRAP分析.福建农林大学学报[J],2007,36(2):154-158.
    [72]Partrick CH, David JJ, Nick DR, Glass NL. Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genetics and Biology [J],2002,37:109-119.
    [73]Aimi T, Yotsutani Y, Morinaga T. Cytological analysis of anastomosis and vegetative incompatibility reactions in Helicobasidum monpa. Current Microbiology [J],2002a,44:148-152.
    [74]Aimi T, Yotsutani Y, Morinaga T. Vegetative incompatibility in the ascomycete Rosellinia necatrlx studied by fluorescence microscopy. Jounal of Basic Microbiology [J],2002b,42:147-155.
    [75]Leslie JF. Fungal vegetive compatibility. Annual Review of Phytopathology [J],1993,31:127-150.
    [76]Stenlid J, Vasiliausakes R. Genetic diversity within and among vegetative compatibility groups of Stereum sanguinolentum determined by arbitrary primed PCR. Molecular Ecology [J],1998,7: 1265-1274.
    [77]Coates D, Rayner ADM, Todd NK. Mating behaviour, mycelial antagonism and the establishment of individuals in Stereum hirsutum. Transactions of the British Mycological Society [J],1981,76: 41-51.
    [78]Barrett DK, Uscuplic M. The field distribution of interacting strains of Polyporus schweinitzii and their origin. The New Phytologist [J],1971,70:581-598.
    [79]Dowson CG, Rayner DW, Boddy L. Spatial dynamics and interactions of the woodland fariry ring fugus, Clitocybe nebularis. The New Phytologist [J],1989,111:699-705.
    [80]Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6a2. Dept of Genetics [J], Univ. of Washington, Seattle,1993.
    [81]Hillis DM, and Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol [J],1993,42:182-192.
    [82]Saitou N, Nei M. The neighbor-joining method:A new method for reconstructing phylogenetic tree. Mol Biol Evol [J],1987,4:406-425.
    [83]Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc Natl Acad Sci [J], USA,1979,76:5269-5273.
    [84]Baldwin B G, Michael J, Sanderson J, et al. The ITS region of nuclear ribosomal DNA:A voluable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard [J],1995,82:247-277.
    [85]De Gioia T, Sisto D, Rana G L, et al. Genetic structure of the Pleurotus eryngii species-complex. Mycol Res [J],2005,109 (1):71-80.
    [86]Urbanelli S, Della Rosal V, Fanelli C, et al. Genetic diversity and population structure of the Italian fungi belonging to the taxa Pleurotus eryngii (DC.:Fr.) Quel and P. ferulae (DC.:Fr.) Quel. Heredity [J],2003,90:253-259.
    [87]张金霞,黄晨阳,张瑞颖,管桂萍.中国栽培白灵侧耳的RAPD和IGS分析.菌物学报[J],2004,23(4):514-519.
    [88]Buchko J, Klassen GR. Detection of length heterogeneity in the ribosomal DNA of Pythium ultimum by PCR amplification of the intergenic region. Curr genet [J],1990,18:203-205.
    [89]Klassen GR, Buchko J. Subrepeat structure of the intergenic region in the ribosomal DNA of the oomycetous fungus Pythium ultimum. Curr Genel [J],1990,17:125-127.
    [90]Hibbett DS, Vilgalys R. Evolutionary relationships of Lentinus to the Polyporaccac:evidence from restriction analysis of enzymatically amplified ribosomal DNA. Mycologia [J],1991,83:425-439.
    [91]Herion B, Chevalier G, Martin F. Typing truffle species by PCR amplification of the ribosomal DNA spacers. Mycol Res [J],1994,98:37-43.
    [92]Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riordan TP, Dweikat I. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet [J],2004,108:328-334.
    [93]刘新育,郑姣等.白灵菇栽培品种的分类研究.中国食用菌[J],2005,24(6):21-23.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.