贵州中部喀斯特山区不同植被下土壤养分与微生物功能变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国西南喀斯特是受地质条件严重制约的特殊的生态系统,该地区的生态治理和恢复是当今生态学界研究的热点之一。土壤是生态系统内最重要的养分和水分资源的调控者,在维持和稳定生态系统结构和功能的过程中发挥核心作用。研究植被因素对土壤养分含量与空间分布的影响及土壤养分循环中的微生物过程,可为喀斯特生态恢复和治理提供科学理论依据。本文以贵州中部喀斯特生态系统不同植被条件下的土壤为研究对象,分析了植被因素对土壤厚度、碳、氮、磷养分元素含量、空间分布及与之相关的微生物功能特点的影响,主要研究结论如下:
     (1)不同植被下土壤厚度变化特点表现为:乔木林演替为灌木林后,土壤厚度并未发生显著变化,由于植被类型和覆盖率的变化,灌草丛下土壤厚度较灌木林显著降低;
     (2)各养分元素在不同植被下表现为:土壤有机碳、全量氮、磷养分含量变化表现为:乔木林>灌木林≈灌草丛;有效态养分的变化表现为:乔木林>灌木林>灌草丛。显示有效态养分变化对植被演替的响应较全量养分更灵敏;土壤养分空间变异大,灌木林系统下的土壤养分空间变异性显著高于乔木林和灌草丛;土壤磷素尤其是有效态磷素在各系统中表现出含量低且空间变异性大的特点;因子分析的结果显示:土壤有机质和土壤全氮属同一因子,有效养分及全磷因素归一因子,碳素和氮素间关系紧密且受植被显著影响,有效态养分的变化主要受土壤生化活性的影响;
     (3)在微生物量上,不同植被条件下的土壤微生物碳量不存在显著差异,但土壤微生物氮量及土壤微生物量碳氮比在各系统间差异显著,显示在土壤微生物群落区系在不同植被下发生显著变化;
     (4)不同土壤酶活性对于植被演替的响应程度不同,植被条件改变后土壤蔗糖酶活性变化最为显著,而脲酶表现为乔木林>灌木林≈灌草丛,碱性磷酸酶表现为乔木林>灌草丛>灌木林,在低磷条件下,植物和微生物可能通过提高磷酸酶活性的方式以适应之。
     总之,由以上结果可以发现,土壤养分含量在植被演替后不断下降,特别是有效养分含量下降较全量养分含量更为显著,土壤养分的空间异质性随之增加,而同时,与土壤养分含量与活性相关的土壤微生物区系和土壤酶活性也发生改变。在植被条件改变后,土壤养分循环过程发生改变,生态系统对土壤养分的调控能力下降。
Karst ecosystem of southwest China is seriously constrained by geological settings. The restoration and reconstruction of degraded karst ecosystem has been one of the most focused problems of modern ecology. Soil is considered as the main nutrient and water provider, which plays key role in maintaining and stabilizing the structure and functions of ecosystem. Based on understanding the effect of vegetation on the quantity and distribution of soil nutrient, and the microbial process will provide us scientific and practice theory in karst ecosystem reconstructing. In this study, based on the soil under three different karst vegetations in central Guizhou province, the effect of vegetation on the contents and distribution of soil depth, carbon, nitrogen and phosphorus, and microbial functions were analyzed.
     The following conclusions were drawn from the analysis:
     (1) By comparing the soil depth under three secession sequences, it was found that three has no significantly different between forest and shrubs, but soil depth decreased significantly when the shrub degraded to grassland.
     (2) Under three different vegetation conditions, Soil available nutrient content followed such order:forest>shrub>grassland. At the same time, the total nutrient content followed the order:forest> shrub≈grassland. Available nutrient was more sensitive to the vegetation succession than the total nutrient. The highest spatial heterogeneity of soil nutrient pools was found under shrub associated with soil P. Moreover, according to the factor analyze result, we found that soil organic carbon and total nitrogen belong to one factor, soil available nutrient and total phosphorus belong to the other factor; carbon and nitrogen closely related in ecosystem which mainly affected by plant, soil biochemical activities affected the content of available nutrient significantly.
     (3) The soil micro biomass carbon had no significant difference among three different vegetations, while the soil micro biomass nitrogen changed significantly. Soil micro biomass carbon/nitrogen changed significantly indicated that the micro flora changed accordingly with the vegetation conditions.
     (4) The response of each type of soil enzyme activity to the change of vegetation was different. Among them, invertase was found the most sensitive. Urease activity followed the order:forest>shrub≈grassland. But alkaline phosphatase activity followed the order: forest> grassland>shrub, which showed that plant and microbial may increase phosphatase activity to adapt to the low phosphorus environment.
     As a whole, we can find that soil nutrient content decreased with the vegetation succession, especially for the available nutrient, and the soil nutrient spatial heterogeneity became higher as well. The micro-flora and enzyme related with the nutrient cycle changed indicated that when the vegetation changed, the process of soil nutrient cycle and the ability of regulation and control over soil nutrient of ecosystem decreased.
引文
[1]Chapin F S, Matson P A, Mooney H A.陆地生态系统生态原理[M].北京:高等教育出版社.2005:168~176
    [2]龙健,江新荣,邓启琼,等.贵州喀斯特地区土壤石漠化的本质特征研究[J].土壤学报,2005,42(3):419~427
    [3]Odum E P.生态学基础[M].北京:高等教育出版社,2008.160-172
    [4]Porazniska D L, Bardgett R D, Blaauw M B, et al. Relationships at the aboveground-belowground interface:Plants soil biota, and soil Processes [J]. Ecology,2003,73:377-395
    [5]Aerts R, Chapin F S. The mineral nutrient of wild plants revisited:a re-evaluation of processes and patterns [J]. Advances in ecological research.2000,30:1-67
    [6]Fitter, A H. Darkness visible:reflections on underground ecology [J]. Journal of ecology.2005,93: 231-243
    [7]Chapma S K, Langley J A, Hart S C, et al. Plants actively control nitrogen cycling:unlocking the microbial bottleneck [J]. New phytologist.2006,169:27-34
    [8]Temple P H, Lovett G M, Weathers K C, et al. Influence of tree species on forest nitrogen retention in the Catskill mountains, New York, USA [J]. Ecosystem,2005,8:1-16
    [9]阎恩荣,王希华,周武.天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系[J].植物生态学报,2008,32(1):1-12
    [10]Bonnaomi G, Giannl D, Rochon P. Negative Plant-soil feedback and species coexistence [J]. Oikos. 2005,111:311-321
    [11]Nilsson C, Xiong S, Johansson M E, et al. Effects of leaf-litter accumulation on riparian plant diversity across Europe [J]. Ecology,1999,80 (5):1770-1775
    [12]Adams M A, Attiwill P M. Nutrient balance in forests of northern Tasmania. Alteration of nutrient availability and soil water chemistry as a result of logging, slash burning and fertilizer application [J]. Forest ecology and management.1991,44:115-131
    [13]Gloria R L, Miren O, Ibone A, et al. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests [J]. Soil Biology & Biochemistry 2008,40:49-60
    [14]Dupouey J L, Dambrine E, Laffite J D. Irreversible impact of past land use on forest soils and biodiversity [J]. Ecology,2002,83:2978-2984
    [15]Grunzweig J M, Sparrow S D, Yakir D. Impact of agricultural land-use change on carbon storage in boreal Alaska [J]. Global change biology.2004,10:452-472
    [16]Fynn R W S, Morrls C D, Kirkman K P. Plant strategies and trait trade-offs influences trends in
    competitive ability along gradients of soil fertility and disturbance [J]. Journal of ecology.2005,93: 384-394
    [17]Dechert G, Veldkamp E, Anas I. Is soil degradation unrelated to deforestation? Examining soil parameters of land use systems in upland central Sulawesi, Indonesia [J]. Plant and soil.2004,265: 197-209
    [18]王希华,黄建军,闫恩荣.天童国家森林公园常见植物凋落叶分解的研究[J].植物生态学报,2004,28:457~467
    [19]张庆费,宋水昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报,1999,19(2):174~178
    [20]袁道先.中国岩溶学[M].北京:地质出版杜,1993:1~100
    [21]袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展,2001,16:461-466
    [22]曹建华,袁道先等.受地质条件制约的中国西南岩溶生态系统[M].北京:地质出版社,2005,50~51
    [23]韩兴国,李凌浩,黄建辉主编.生物地球化学概论[M].高教出版社,施普林格出版社,1999
    [24]袁道先.论岩溶环境系统[J].中国岩溶.1988,7(3):178~186
    [25]杨明德.喀斯特流域水文地貌系统[M].北京:地质出版社,1988 1-88
    [26]郭纯青.岩溶多重介质环境与岩溶灾害[J].地球与环境,2005,33(4):8-12
    [27]郭纯青,王莉,王洪涛.中国岩溶生态地质研究[J].生态环境2005,14(2):275~281
    [28]张殿发,王世杰,李瑞玲.贵州省喀斯特山区生态环境脆弱性研究[J].地理学与国土研究,2002,18(1):77~79
    [29]杨明德.论喀斯特环境的脆弱性[J].云南地理环境研究,1990,2(1):21~29
    [30]苏维词,朱文孝.贵州喀斯特山区生态脆弱性分析[J].山地学报,2000,18(5):429~434.
    [31]黄昌勇.土壤学[M].北京:农业出版社,16~35
    [32]喻理飞.贵州喀斯特台原区常绿落叶阔叶林多样性研究[J].贵州科学,2002,20(2):37~41.
    [33]陈朝辉,方国祥.岩溶山区土壤形成机制与石山改造利用[J].中国岩溶,1997,16(4):393~396
    [34]李阳兵,王世杰,李瑞玲.岩溶生态系统的土壤[J].生态环境,2004,13(3):434~438
    [35]曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37~44
    [36]李景阳,王朝富,樊廷章.试论碳酸盐岩与喀斯特成土作用[J].中国岩溶,1991,10(1):29~38
    [37]潘根兴,曹建华.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程[J].中国岩溶,1999,18(4):287~296
    [38]孙承兴,王世杰,周德全.碳酸盐岩酸不溶物作为贵州岩溶区红色风化壳主要物质来源的证
    据[J].矿物学报,2002,22(3):235~242
    [39]王世杰,季宏军,欧阳自远等.碳酸盐岩风化成土的初步研究[J].中国科学(D辑),1999,29(5):441~449
    [40]廖德平,龙启德.贵州林业土壤[J].贵州林业科技,1997,25(4):1-66
    [41]龙健,李娟,黄昌勇.我国西南地区的喀斯特环境与土壤退化及其恢复[J].水土保持学报,2002,16(5):5-8
    [42]Tisdall J M, Smith S E, Rengasamy P. Journal of soil Research [M],1997,35:55-60
    [43]周游游,霍建光,刘德深.岩溶化山地土地退化的等级划分与植被恢复初步研究-以湘西洛塔河流域坡耕地为例明[J].中国岩溶,2000,19(3):268~274
    [44]屠玉麟.岩溶生态环境异质性特征分析-以贵州岩溶生境为例[J].贵州科学,1997,15(3):176~181
    [45]王德炉,朱守谦,黄宝龙.贵州喀斯特石漠化类型及程度评价[J].生态学报,2005,25(5):1057~1063
    [46]聂跃平.碳酸盐岩性因素控制下喀斯特发育特征-以黔中南为例[J].中国岩溶,1994,13(1):31~36
    [47]张雅梅,熊康宁,安裕伦.应用TM影像进行大比例尺土地利用类型划分探讨-以花江喀斯特峡谷示范区为例[J].中国岩溶,2003,22(2):150~155
    [48]熊小刚,韩兴国.内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、氮资源空间异质性分布[J].生态学报,2005,25(7):1678~1683
    [49]屠玉麟.贵州喀斯特森林的初步研究[J].中国岩溶,1989,8(4):282~290
    [50]屠玉麟,杨军.贵州喀斯特灌丛群落类型研究[J].贵州师范大学学报(自然科学版).1995,13(3):27~43
    [51]熊康宁,黎平,周忠发,等.喀斯特石漠化的遥感-GIS典型研究-以贵州省为例[M].北京:地质出版社,2002:131-167
    [52]王世杰.喀斯特石漠化概念演绎及其科学内涵的探讨[J].中国岩溶,2002,21(2):101~105.
    [53]格日乐,姚云峰.土地退化防治综述[J].内蒙古林学院学报,1998,20(2):47~52
    [54]朱震达.中国荒漠化问题研究的现状与展望[J].地理学报,1994,49:650-655
    [55]程水英,李团胜.土地退化的研究进展[J].干早区资源与环境,2004,18(3):38~43
    [56]李瑞玲,王世杰,周德全,等.贵州岩溶地区岩性与土地石漠化的空间相关分析[J].地理学报,2003,58(2):314~320
    [57]喻理飞.退化喀斯特森林自然恢复过程中群落动态研究[J].林业科学,2002,38(1):1-7
    [58]王德炉,朱守谦,黄宝龙.石漠化的概念及其内涵[J].南京林业大学学报(自然科学版),2004,28(6):87~90
    [59]张全发,郑重,金义兴.植物群落演替与土壤发展之间的关系[J],武汉植物学研究,1990,8.(4):230~233
    [60]李阳兵,高明,魏朝富,等.土地利用对岩溶山地土壤质量性状的影响[J].山地学报,2003,21(1):40~49
    [61]龙健,李娟,江新荣.贵州茂兰喀斯特森林土壤微生物活性的研究[J].土壤学报,2004,41(4):597~602
    [62]任京辰,张平究,潘根兴,等.岩溶土壤的生态地球化学特征及其指示意义-以贵州贞丰-关岭岩溶石山地区为例[J].地球科学进展.2006,21(5):504~512
    [63]Aerts R. Interspecific competition in natural plant communities:mechanisms, trades-offs and plant-soil feedbacks. Journal of experimental botany.1999,50:29-37
    [64]刘鸿雁,黄建国.缙云山森林群落次生演替中土壤理化性质的动态变化[J].应用生态学报.2005(11):2043~2044
    [65]丁圣彦.常绿阔叶林演替系列群落下土壤性质的比较[J].河南大学学报(白然科学版),1999,6(3):94~99
    [66]杨万勤,李瑞智,韩玉萍.缙云山天然次生林土壤酶活性的分布特征生态学研究论文集(董鸣编著)[M].重庆:西南师范大学出版社,1999a:171-179
    [67]李为,余龙江,袁道先.西南岩溶生态系统土壤微生物的初步研究[J].生态学杂志.2004,23(2):136~140
    [1]司彬,姚小华,任华东,等.黔中喀斯特植被自然演替过程中物种组成及多样性研究—以贵州省普定县为例[J].林业科学研究.2008,21(5):669~674.
    [2]鲁如坤.土壤农业化学分析[M].北京:中国农业科技出版社,1999:106-185
    [3]林震岩.多变量分析:SPSS的操作与应用[M].北京:北京大学出版社,2007:100-147
    [1]王志强,刘宝元,海春兴.土壤厚度对天然草地植被盖度和生物量的影响[J].水土保持学报.2007,21(4):164~167
    [2]杨喜田,董惠英,刘明强,等.太行山荒废地土壤厚度与植被类型关系的研究[J].河南农业大学学报.1999,33增刊.8-11
    [3]Rhoton F E, Lindbo D L. A soil depth approach to soil quality assessment [J]. Journal of Soil and Water Conservation; 1997,52 (1):66-72
    [4]张颖,牛健植,谢宝元,等.森林植被对坡面土壤水蚀作用的动力学机理[J].生态学报.2008,21(10):5084~5094
    [5]陈奇伯,张洪江,谢明曙.森林枯落物及其苔藓层阻延径流速度研究[J].北京林业大学学报,1996,18(1):1-5
    [6]吴长文.水土保持林中枯落物的作用[J].中国水土保持,1993,4(11):28~30
    [1]Orazinska D L, Bardgett R D, Blauw M.B, et al. Relationships at the aboveground below-ground interface:plants, soil biota, and soil processes [J]. Ecological Monographs,2003,3:377-395
    [2]Pablo L P, Veronica G, Guillermo M P. Above and belowground nutrients storage and biomass accumulation in marginal Nothofagus antarctica forests in Southern Patagonia [J]. Forest Ecology and Management,2008,55:2502-2511
    [3]Ponette Q, Ranger J, Ottorini J M. Aboveground biomass and nutrient content of five Douglas-fir stands in France [J]. Forest Ecology Management,2001,142:109-127
    [4]Gang W, Jing W, Hong B D, Jing Z Z. Nutrient cycling in an Alpine tundra ecosystem on Changbai Mountain, Northeast China [J]. Applied Soil Ecology,2006,32:199-209
    [5]Brosofske K D, Chen J, Crow T R. Understory vegetation and site factors:Implications for a managed Wisconsin landscape [J]. Forest Ecological Management,2001,146:75-87
    [6]袁道先.中国岩溶学[M].北京:地质出版社,1993.1~100
    [7]李景阳,王朝富,樊廷章.试论碳酸盐岩风化壳与喀斯特成土作用[J].中国岩溶,1991,10(1):29~38
    [8]单洋天.我国西南岩溶石漠化及其地质影响因素分析[J].中国岩溶,2006,25(2):163~167
    [9]王世杰.喀斯特石漠化概念演绎及其科学内涵的探讨[J].中国岩溶,2002,21(2):101~105
    [10]闫恩荣,王希华,陈小勇.浙江天童地区常绿阔叶林退化对土壤养分库和碳库的影响[J].生态学报,2007,27(4):1646~1655
    [11]Latty E F, Canham C D, Marks P L. The effects of land use history on soil properties and nutrient dynamics in northern hardwood forest of the Adirondack Mountains [J]. Ecosystems,2004,7: 193-207
    [12]王凯博,陈美玲,秦娟,等.子午岭植被自然演替中植物多样性变化及其与土壤理化性质的关系[J].西北植物学报,2007,27(10):2089~2096
    [13]刘方,王世杰,刘元生,等.喀斯特石漠化过程土壤质量变化及生态环境影响评价[J].生态学报,2005,25(3):639~644
    [14]吴海勇;彭晚霞;宋同清,等.桂西北喀斯特人为干扰区植被自然恢复与土壤养分变化[J].水土保持学报,2008,22(4):143~147
    [15]鲁如坤.土壤农业化学分析[M].北京:中国农业科技出版社,1999.50-121
    [16]Tilman D. Plant dominance along an experimental nutrient gradient [J]. Ecology,1984,65: 1445-1453
    [17]Jian Chen, John M. Stark. Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil [J]. Soil Biology & Biochemistry,2000 (32) 47-57
    [18]曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37~44
    [19]杨成,刘丛强,宋照亮,等.贵州喀斯特山区植物土壤C、N、S的分布特征[J].北京林业大学学报,2008,(30)1:45~51
    [20]Tanner E J, Kapos V, Franco W. Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litter fall [J]. Ecology,1992,73:78-86
    [21]Huttl R F, Schaa F W. Nutrient supply of forest soils in relation to management and site history [J]. Plant & Soil,1995,169:31-41
    [22]Deluca T H, Nilsson M C, Zackrisson O. Nitrogen mineralization and phenol accumulation along a fire chronosequence northern Sweden [J]. Oecologia,2002,133:206-214
    [23]陈伏生,曾德慧,何兴元.森林土壤氮素的转化与循环[J].生态学杂志,2004,23(5):126~133
    [24]苏波,韩兴国,渠春梅.森林土壤氮素可利用性的影响因素研究综述[J].生态学杂志,2002,21(2):40~46
    [25]赵琼,曾德慧.陆地生态系统磷素循环及其影响因素[J].植物生态学报,2005,29(1):153~163
    [26]Maria B T, Olga L, Francisco L R, Cesar R, Alberto P. Soil phosphorus forms as quality indicators of soils under different vegetation covers [J]. Science of the Total Environment,2007, (37)8:195-198
    [27]张伟,陈洪松,王克林,等.桂西北喀斯特洼地土壤有机碳和有效磷的空间变异[J].生态学报,2007,27(12):5169~5175
    [28]程晓莉,安树青,李远,等.鄂尔多斯草地退化过程中个体分布格局与土壤元素异质性[J].植物生态学报,2003,27(4):503~509
    [29]熊小刚,韩兴国.内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、氮资源空间异质性分布[J].生态学报,2005,25(7):1678~1683
    [31]王克林,苏以荣,曾馥平,等.西南喀斯特典型生态系统土壤特征与植被适应性恢复研究[J].农业现代化研究,2008,29(6):641~645
    [32]彭琴,董云社,齐玉春.氮输入对陆地生态系统碳循环关键过程的影响[J].地球科学进展,2008,23(8):874~882
    [33]Mari a C. R J, T. Mitchell A. Vegetation structure, species diversity, and ecosystem processes as measures of restoration success [J]. Forest Ecology and Management,2005,21 (8):159-173
    [34]阎恩荣,王希华,周武.天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系[J].植物生态学报,2008,32(1):1-12
    [35]刘鹄,赵文智,何志斌,等祁连山浅山区不同植被类型土壤水分时间异质性[J].生态学报,2008,28(5):2389~2394
    [36]Cleveland C C, Townsend A R, Schmidt S K. Phosphorus limitation on microbial process in moist tropical forests:evidence from short-term laboratory incubation and field studies [J]. Ecosystems, 2002,5:680-691
    [37]Sundareshwar P V, Morris J T, Koepfler E K, et al. Phosphorus limitation of coastal ecosystem process [J]. Science,2003,299:563-565
    [1]GuPta V, Roper M M, Kikegard J A. Changes in microbial biomass and organic matter levels during the first year of modified tillage and stubble management practices on a red earth [J]. Austrian soil Research,1994,34:1339-1354
    [2]韩晓日,邹德乙,郭鹏程,等.长期施肥条件下土壤生物量氮的动态及其调控氮素营养的作用[J].植物营养与肥料学报,1996,2(1).16~22
    [3]杨万勤,王开运.森林土壤酶研究进展[J].林业科学,2004,40(2):152~159
    [4]张萍.西双版纳次生林土壤微生物生态分布及其生化特性的研究[J].生态学杂志,1995,14(1):21~26
    [5]Kelting D L, Burger J A, Patterson C. Soil quality assessment in domestieated forests-southern pine example [J]. Forest Ecology & Management,1999,122:167-178
    [6]胡斌,段昌群,王震洪,等.植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报,2002,39(4):604~608
    [7]Aikio S, Vare H, Strommer R. Soil microbial activity and biomass in the Primary sueeession of a dry heath forest [J]. Soil Biol Biochem,2000,32:1091-1100
    [8]Bums R Q, Diek R P. Enzymes in the Environment:Ecology, Activity and Applications. Enzymology of Disturbed soils [M]. Elsevier, Amsterdam.1998:1-340
    [9]Bruce A C. Enzyme activities as a component of soil biodiversity:A review [J]. Pedobiologia,2005, (49):637-644
    [10]吴金水等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:36-88
    [11]关松荫,张德生,张志明.土壤酶及其研究法[M].北京:农业出版社,1986:260-330
    [12]周礼恺.土壤酶学[M].北京:科学出版社,1987:263-278
    [13]Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil [J]. Biol, Rev,1992,67:321-358.
    [14]高英志,汪诗平,韩兴国,等.退化草地恢复过程中土壤氮素状况以及与植被地上绿色生物量形成关系的研究[J].植物生态学报,2004,28(3):285~293
    [15]Schimel, J P, Weintraub, M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil:a theoretical model [J]. Soil. Biol. Biochem,2003,35:549-563
    [16]杜伟文,欧阳中万.土壤酶研究进展[J]..湖南林业科技,2005,32(5):76~82
    [17]周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性,2007,15(2):162~171
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.