含噻咯的炔基芳香聚合物的合成及其光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以咔唑为原料,经碘化和N烷基化形成N-已基-3.6-二碘咔唑,再以丁炔醇为炔基化试剂发生Sonogashira偶联,碱促进下裂解生成N-己基-3,6-二乙炔基咔唑,总产率45%。同时,以类似的方法还合成了2,7-二乙炔基-9.9'-二己基咔唑,总产率为39%。并经1H NMR、13C NMR和HRMS确认了反应产物及其中间体的分子结构。
     利用Tamao-Yamaguchi法合成了2,5-二溴-1,1-二甲基-3.4-二苯基噻咯,并通过解析1H和13C谱,确认了其结构。利用Sonogashira偶联反应合成了噻咯-二乙炔基咔唑PS-DyCz和噻咯-二乙炔基芴聚合物PS-DyF,总产率分别为37%和40%。聚合物PS-DyCz和PS-DyF分子量分别为Mn=4562 Da,Mw=12045 Da;Mn=14277 Da,Mw=38266 Da,聚合度分别为8,22。PS-DyCz和PS-DyF对热都很稳定,分解温度分别是319°C和341℃。PS-DyCz和PS-DyF的最大吸收峰分别为380、467 nm和391、418 nm;最大发射峰分别为542、569 nm和429、460 nm;基于紫外吸收边缘估算光学能带隙分别是2.25和2.70 eV。在B3LYP/6-31G*水平上的DFM计算表明HOMO轨道上电子确实主要分布在乙炔芳香环和噻咯环,而LUMO轨道上电子主要离域在噻咯环和乙炔基。
     以对二溴苯为原料和三甲基硅基乙炔为炔基化试剂,经Sonogashira偶联并脱三甲基硅基合成了对二乙炔基苯。控制原料的摩尔比合成了单取代的芴和咔唑。利用硅胶催化法高效地合成了二溴咔唑,产率高达97%。通过四步合成了低能带隙的4,7-二噻吩苯并噻二唑,并用NBS单溴化得到4-(5-溴-2-噻吩)-7-(2-噻吩)-2,1,3-苯并噻二唑。以上化合物的结构均通过1H和13C谱确认了化学结构。
N-Hexyl-3,6-diiodocarbazole was prepared from carbazole by diiodonation reaction and N-alkylation reaction. Subsequently, N-Hexyl-3.6-diethynylcarbazole was synthesized by Sonogashira coupling with 3-methyl-1-butyn-3-ol and base-promoted cracking reaction with an overall yield of 45% based on carbazole. The synthetic procedure of 2,7-diethynyl-9,9'-dihexylfluorene is analogous to that described for N-Hexyl-3,6-diethynylcarbazole with an overall yield of 39% based on fluorene. Their chemical structures were confirmed by 1H NMR.13CNMR and HRMS.
     2,5-dibromosilole was synthesized by Tamao-Yamaguchi's endo-endo intramolecular reductive cyclization, with diphenylethynylsilane as the starting material, and the results of 1H and 13C NMR spectra confirmed the molecular structure. Poly(silole-diethynylcarbazole) (PS-DyCz) and poly(silole-diethynylfluorene) (PS-DyF) were then successfully synthesized by Sonogashira coupling reaction in 37% and 40% yield, respectively. The molecuar weights are Mn=4562 Da, Mw=12045 Da for PS-DyCz, and Mn=14277 Da, Mw=38266 Da for PS-DyF. The degree of polymerization is 8 for PS-DyCz and 22 for PS-DyF, respectively. PS-DyCz and PS-DyF are thermally stable with decomposition temperatures of 319℃and 341℃, respectively. The maximum absorption and emission wavelength of PS-DyCz and PS-DyF are 380/467 nm,391/418 nm and 542/569 nm.429/460 nm. The optical band gaps are 2.25 eV for PS-DyCz and 2.70 eV for PS-DyF based on the absorption onset. DFT calculations were performed at B3LYP/6-31G* level, and the results suggest that the HOMOs are distributed over both acetenyl aromatics and Silole rings, but the LUMOs are mainly localized in the Silole ring and ethynyl spacer.
     Finally,1,4-diethynylbenzene were synthesized by Sonogashira coupling with two steps. The monosubstituent fluorene/carbazole was synthesized by controlling the molar ratio of reactors. Dibomocarbazole was efficiently synthesized by silica gel catalyzation in 97% yield. 4,7-dithienyl-2,1,3-benzothiadiazole was synthesized through four steps, then monobrominated with NBS to give 4-(5-bromo-2-thienyl)-7-(2-thienyl)-2,1,3-benzothiadi-azole, their chemical structures were confirmed by 1H NMR and 13CNMR.
引文
[1]Tamao K, Uchida M, Izumizawa T, Furukawa K. Yamaguchi S. Silole derivatives as efficient electron transporting materials [J]. J. Am. Chem. Soc.1996,118 (47): 11974-11975.
    [2]Uchida M, Izumizawa T, Nakano T. Yamaguchi S. Tamao K, Furukawa K. Structural optimization of 2,5-diarylsiloles as excellent electron-transporting materials for organic electroluminescent devices [J]. Chem. Mater.2001.13 (8):2680-2683.
    [3]Zhan X W, Risko C, Amy F, Chan C, Zhao W. Barlow S, Kahn A, Bredas J L, Marder S R. Electron affinities of 1,1-diaryl-2.3.4,5-tetraphenyisiloles:Direct measurements and comparison with experimental and theoretical estimates [J]. J. Am. Chem. Soc. 2005,127 (25):9021-9029.
    [4]Luo J D, Xie Z L, Lam J W Y, Cheng L, Chen H Y, Qiu C F, Kwok H S, Zhan X W, Liu Y Q, Zhu D B, Tang B Z. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chem. Commun.2001, (18):1740-1741.
    [5]Chen J W, Law C C W, Lam J W Y, Dong Y P, Lo S M F. Williams I D, Zhu D B, Tang B Z. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles [J]. Chem. Mater.2003,15 (7): 1535-1546.
    [6]Sartin M M, Boydston A J, Pagenkopf B L, Bard A J. Electrochemistry, spectroscopy, and electrogenerated chemiluminescence of silole-based chromophores [J]. J. Am. Chem. Soc.2006,128 (31):10163-10170.
    [7]Sohn H, Sailor M J, Magde D, Trogler W C. Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles [J]. J. Am. Chem. Soc. 2003,125 (13):3821-3830.
    [8]Toal S J, Jones K A, Magde D, Trogler W C. Luminescent Silole Nanoparticles as Chemoselective Sensors for Cr(VI) [J]. J. Am. Chem. Soc.2005,127 (33): 11661-11665.
    [9]Toal S J, Trogler W C. Polymer sensors for nitroaromatic explosives detection [J]. J. Mater. Chem.2006,16 (28):2871-2883.
    [10]Sanchez J C, DiPasquale A G, Rheingold A L, Trogler W C. Synthesis, Luminescence Properties, and Explosives Sensing with 1,1-Tctraphenylsilole-and 1,1-Silafluorene-vinylene Polymers [J]. Chem. Mater.2007,19 (26):6459-6470.
    [11]Sanchez J C, Urbas S A, Toal S J, DiPasquale A G, Rheingold A L, Trogler W C. Catalytic hydrosilylation routes to divinylbenzene bridged silole and silafluorene polymers. Applications to surface imaging of explosive particulates [J]. Macromolecules.2008,41 (4):1237-1245.
    [12]Wang M, Zhang D, Zhang G, Tang Y, Wang S, Zhu D. Fluorescence Turn-On Detection of DNA and Label-Free Fluorescence Nuclease Assay Based on the Aggregation-Induced Emission of Silole [J]. Anal. Chem.2008,80 (16):6443-6448.
    [13]Dong Y, Lam J W Y, Qin A, Li Z, Liu J, Sun J, Dong Y, Tang B Z. Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core [J]. Chem. Phys. Lett.2007.446 (1-3):124-127.
    [14]Pui-yee Chan C, Haeussler M, Zhong Tang B, Dong Y. Sin K-k, Mak W-c, Trau D, Seydack M, Renneberg R. Silole nanocrystals as novel biolabels [J]. J. Immunol. Methods.2004,295(1-2):111-118.
    [15]Mi B X, Dong Y Q, Li Z, Lam J W Y, Haussler M, Sung H H Y, Kwok H S, Dong Y P, Williams I D. Liu Y Q, Luo Y, Shuai Z G, Zhu D B. Tang B Z. Making silole photovoltaically active by attaching carbazolyl donor groups to the silolyl acceptor core [J]. Chem. Commun.2005, (28):3583-3585.
    [16]Liao L, Dai L M, Smith A, Durstock M, Lu J P. Ding J F. Tao Y. Photovoltaic-active dithienosilole-containing polymers [J]. Macromolecules.2007,40 (26):9406-9412.
    [17]Tamao K, Ohno S, Yamaguchi S. Silole-pyrrole co-oligomers:Their synthesis, structure and UV-VIS absorption spectral [J]. Chem. Commun.1996, (16):1873-1874.
    [18]Yamaguchi S, Jin R Z, Tamao K. Modification of the electronic structure of silole by the substituents on the ring silicon [J]. J. Organomet. Chem.1998,559 (1-2):73-80.
    [19]Boydston A J, Pagenkopf B L. Improving quantum efficiencies of siloles and silole-derived butadiene chromophores through structural tuning [J]. Angew. Chem., Int. Ed.2004,43 (46):6336-6338.
    [20]Yamaguchi S, Endo T, Uchida M, Izumizawa T, Furukawa K, Tamao K. Toward new materials for organic electroluminescent devices:Synthesis, structures, and properties of a series of 2,5-diaryl-3,4-diphenylsiloles [J]. Chem. Eur. J.2000,6 (9):1683-1692.
    [21]Yamaguchi S, Endo T, Uchida M, Izumizawa T. Furukawa K, Tamao K. Diphenylamino-substituted 2,5-diarylsiloles for single-layer organic electroluminescent devices [J]. Chem. Lett.2001, (2):98-99.
    [22]Boydston A J, Yin Y, Pagenkopf B L. Synthesis and electronic properties of donor-acceptor pi-conjugated siloles [J]. J. Am. Chem. Soc.2004,126 (12): 3724-3725.
    [23]Anastasia L, Negishi E. Highly satisfactory procedures for the Pd-catalyzed cross coupling of aryl electrophiles with in situ generated alkynylzinc derivatives [J]. Org. Lett.2001,3 (20):3111-3113.
    [24]Fan X, Sun J, Wang F, Chu Z, Wang P, Dong Y. Hu R, Tang B Z, Zou D. Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state [J]. Chem. Commun.2008, (26):2989-2991.
    [25]Tong H, Hong Y, Dong Y, Ren Y, Haussler M, Lam J W Y, Wong K S, Tang B Z. Color-Tunable, Aggregation-Induced Emission of a Butterfly-Shaped Molecule Comprising a Pyran Skeleton and Two Cholesteryl Wings [J]. J. Phys. Chem. B.2007, 111 (8):2000-2007.
    [26]Tamao K, Yamaguchi S, Shiro M. Oligosiloles:First Synthesis Based on a Novel Endo-Endo Mode Intramolecular Reductive Cyclization of Diethynylsilanes [J]. J. Am. Chem. Soc.1994,116(26):11715-11722.
    [27]Luo Q, Gu L, Wang C, Liu J H, Zhang W X, Xi Z F. Synthesis of functionalized siloles from Si-tethered diynes [J]. Tetrahedron Lett.2009,50 (26):3213-3215.
    [28]Luo Q, Wang C, Gu L, Zhang W-X, Xi Z. Formation of-Lithio Siloles from Silylated 1,4-Dilithio-1,3-Butadienes:Mechanism and Applications [J]. Chem. Asian J.2009,5 (5):1120-1128.
    [29]Li Z, Dong Y, Mi B X. Tang Y H. Haussler M. Tong H. Dong Y P. Lam J W Y, Ren Y, Sung H H Y, Wong K S, Gao P. Williams I D. Kwok H S, Tang B Z. Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials [J]. J. Phys. Chem. B.2005.109 (20):10061-10066.
    [30]Booker C, Wang X. Haroun S. Zhou J G. Jennings M, Pagenkopf B L, Ding Z F. Tuning of electrogenerated silole chemiluminescence [J]. Angew. Chem., Int. Ed.2008, 47 (40):7731-7735.
    [31]王妍,罗洁,陈军武,汪锋,曹铺.新型Silole与窄带隙单体的交替共聚物的合成、荧光光谱及光伏性能[J]. Chin. J. Lumin.2005,26 (4):455-459.
    [32]Liao L, Dai L, Smith A, Durstock M. Lu J. Ding J, Tao Y. Photovoltaic-Active Dithienosilole-Containing Polymers [J]. Macromolecules.2007,40 (26):9406-9412.
    [33]Collins B A, Li Z, McNeill C R, Ade H. Fullerene-Dependent Miscibility in the Silole-Containing Copolymer PSBTBT-08 [J]. Macromolecules.2011.
    [34]Sohn H, Calhoun R M, Sailor M J, Trogler W C. Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles [J]. Angew. Chem., Int. Ed.2001,40 (11):2104-2105.
    [35]Liu J, Lam J W Y, Tang B Z. Aggregation-induced Emission of Silole Molecules and Polymers:Fundamental and Applications [J]. J. Inorg. Organomet. Polym..2009,19 (3):249-285.
    [36]Zhang Q, Chen J, Cheng Y, Wang L, Ma D, Jing X, Wang F. Novel hole-transporting materials based on 1,4-bis(carbazolyl)benzene for organic light-emitting devices [J]. J. Mater. Chem.2004,14 (5):895-900.
    [37]Li Z a, Liu Y, Yu G, Wen Y. Guo Y, Ji L. Qin J. Li Z. A New Carbazole-Constructed Hyperbranched Polymer:Convenient One-Pot Synthesis, Hole-Transporting Ability, and Field-Effect Transistor Properties [J]. Adv. Funct. Mater.2009,19 (16): 2677-2683.
    [38]Wang Y, Hou L T, Yang K X, Chen J W, Wang F, Cao Y. Conjugated silole and carbazole copolymers:Synthesis, characterization, single-layer light-emitting diode, and field effect carrier mobility [J]. Macromol. Chem. Phys.2005,206 (21): 2190-2198.
    [39]Wang F, Wang L, Chen J W, Cao Y. Simple silole-containing polyfluorene for white electroluminescence with simultaneous blue, green, and red emission [J]. Macromol. Rapid Commun.2007,28 (20):2012-2018.
    [40]Wang F, Luo J, Yang K X, Chen J W, Huang F, Cao Y. Conjugated fluorene and silole copolymers:Synthesis, characterization, electronic transition, light emission, photovoltaic cell, and field effect hole mobility [J]. Macromolecules.2005,38 (6): 2253-2260.
    [41]Zhao D, Tang W, Ke L, Tan S T, Sun X W. Efficient Bulk Heterojunction Solar Cells with Poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and 6,6-Phenyl C61 Butyric Acid Methyl Ester Blends and Their Application in Tandem Cells [J]. ACS Appl. Mater. Inter.2010,2 (3):829-837.
    [42]钟汉斌.芴核和硅杂环戊二烯核苯乙炔树枝状化合物的合成及光谱性能研究[S].华东理工大学.2010.
    [43]束伟夫.芳香炔基硅杂环戊二烯聚合物的合成以及光谱性能研究[S].华东理工大学.2011.
    [44]李珊珊.树枝状Silole化合物的合成及光电性能研究[S].华东理工大学.2011.
    [45]Xia C, Advincula R C. Decreased Aggregation Phenomena in Polyfluorenes by Introducing Carbazole Copolymer Units [J]. Macromolecules.2001,34 (17): 5854-5859.
    [46]Takihana Y, Shiotsuki M, Sanda F. Masuda T. Synthesis and Properties of Carbazole-Containing Poly(aryleneethynylenes) and Poly(aryleneimines) [J]. Macromolecules.2004,37 (20):7578-7583.
    [47]Chinchilla R, Najera C. The Sonogashira Reaction:A Booming Methodology in Synthetic Organic Chemistry [J]. Chem. Rev.2007,107 (3):874-922.
    [48]Zeng W, Liu S, Zou H, Wang L, Beuerman R, Cao D. Synthesis of cationic diacetylene-co-carbazole-co-fluorene polymers and their sensitive fluorescent quenching properties with DNA [J]. J. Polym. Sci., Part A:Polym. Chem.2010,48 (19):4168-4177.
    [49]Chu T-Y, Lu J, Beaupre S, Zhang Y, Pouliot J-R m, Wakim S, Zhou J, Leclerc M, Li Z, Ding J, Tao Y. Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:2',3'-d]silole Copolymer with a Power Conversion Efficiency of 7.3%[J]. J. Am. Chem. Soc.2011,133 (12):4250-4253.
    [50]Horst S, Evans N R, Bronstein H A, Williams C K. Synthesis of fluoro-substituted silole-containing conjugated materials [J]. J. Polym. Sci., Part A:Polym. Chem.2009, 47 (19):5116-5125.
    [51]Morra N A, Pagenkopf B L. Direct Synthesis of 2,5-Dihalosiloles [J]. Org. Synth. 2008,85:53-63.
    [52]Lu P, Zhao Z J, Xu X J, Chen X P, Wang X M, Yu G, Liu Y Q. Synthesis and characterization of deep blue emitters from starburst carbazole/fluorene compounds [J]. Tetrahedron.2008,64 (11):2658-2668.
    [53]Ashraf R S, Shahid M, Klemm E, Al-Ibrahim M, Sensfuss S. Thienopyrazine-based low-bandgap poly(heteroaryleneethynylene)s for photovoltaic devices [J]. Macromol. Rapid Commun.2006,27 (17):1454-1459.
    [54]Hou J, Chen H-Y, Zhang S, Yang Y. Synthesis and Photovoltaic Properties of Two Benzo[1,2-b:3,4-b']dithiophene-Based Conjugated Polymers [J]. J. Phys. Chem. C. 2009,113 (50):21202-21207.
    [55]Gaussian 03, Revision B.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T V, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma. G. A. Voth. P. Salvador. J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels. M. C. Strain. O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman. J. V. Ortiz. Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski. B. B. Stefanov. G. Liu. A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith. M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill. B. Johnson. W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh PA.2003. [J].
    [56]Yu G, Yin S W, Liu Y Q. Chen J S. Xu X J. Sun X B, Ma D G, Zhan X W, Peng Q, Shuai Z G, Tang B Z. Zhu D B. Fang W H, Luo Y. Structures, electronic states, photoluminescence, and carrier transport properties of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles [J]. J. Am. Chem. Soc.2005,127 (17):6335-6346.
    [57]Chen J W, Cao Y. Silole-containing polymers:Chemistry and optoelectronic properties [J]. Macromol. Rapid Commun.2007,28 (17):1714-1742.
    [58]Liu J, Zhong Y Lam J W Y. Lu P. Hong Y, Yu Y, Yue Y, Faisal M, Sung H H Y, Williams I D, Wong K S. Tang B Z. Hyperbranched Conjugated Polysiloles:Synthesis, Structure, Aggregation-Enhanced Emission, Multicolor Fluorescent Photopatterning, and Superamplified Detection of Explosives [J]. Macromolecules.2010,43 (11): 4921-4936.
    [59]Toal S J, Magde D, Trogler W C. Luminescent oligo(tetraphenyl) silole nanoparticles as chemical sensors for aqueous TNT [J]. Chem. Commun.2005, (43):5465-5467.
    [60]Yang J, Aschemeyer S. Martinez H P, Trogler W C. Hollow silica nanospheres containing a silafluorene-fluorene conjugated polymer for aqueous TNT and RDX detection [J]. Chem. Commun.2010,46 (36):6804-6806.
    [61]Shu W, Guan C, Guo W. Wang C, Shen Y. Conjugated Poly(aryleneethynylenesiloles) and Their Application in Detecting Explosives [J]. J. Mater. Chem.2011, DOI:10.1039/C1JM15535K.
    [62]Lee J-I, Klaerner G, Miller R D. Oxidative Stability and Its Effect on the Photoluminescence of Poly(Fluorene) Derivatives:□End Group Effects [J]. Chem. Mater.1999,11 (4):1083-1088.
    [63]Lee S H, Nakamura T, Tsutsui T. Synthesis and characterization of oligo(9,9-dihexyl-2,7-fluorene ethynylene)s:For application as blue light-emitting diode [J]. Org. Lett.2001,3 (13):2005-2007.
    [64]Yamaguchi S, Iimura K, Tamao K. Silole-acetylene pi-electronic systems with low bandgaps:Synthesis, structure, and UV-vis absorption spectra of 2,5-diethynylsiloles derivatives and their polymers [J]. Chem. Lett.1998, (1):89-90.
    [65]Hissler M, Dyer P W, Reau R. Linear organic pi-conjugated systems featuring the heavy Group 14 and 15 elements [J]. Coord. Chem. Rev.2003,244 (1-2):1-44.
    [66]Boydston A J, Yin Y S, Pagenkopf B L. A controlled, iterative synthesis and the electronic properties of oligo (p-phenyleneethynylene)-alt-(2,5-slioleneethynylene)s [J]. J. Am. Chem. Soc.2004,126 (33):10350-10354.
    [67]Demessence A, Long J R. Selective Gas Adsorption in the Flexible Metal-Organic Frameworks Cu(BDTri)L (L=DMF, DEF) [J]. Chem. Eur. J.2010,16 (20): 5902-5908.
    [68]Sonogashira K, Tohda Y. Hagihara N. A convenient synthesis of acetylenes:catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines [J]. Tetrahedron Lett.1975.16 (50):4467-4470.
    [69]Thorand S, Krause N. Improved Procedures for the Palladium-Catalyzed Coupling of Terminal Alkynes with Aryl Bromides (Sonogashira Coupling) [J]. J. Org. Chem.1998, 63 (23):8551-8553.
    [70]Wang C Y, Zhong H B. Li S S. Shu W F. Shen Y J. Phenylacetylene Dendrimers Containing a Fluorene Core:Synthesis and Spectroscopic Studies [J]. Chin. J. Chem. 2010,28 (5):699-704.
    [71]Jiang Z, Yao H, Zhang Z. Yang C. Liu Z, Tao Y, Qin J, Ma D. Novel Oligo-9,9'-spirobifluorenes through ortho-Linkage as Full Hydrocarbon Host for Highly Efficient Phosphorescent OLEDs [J]. Org. Lett.2009,11 (12):2607-2610.
    [72]Plater M J, Sinclair J P, Aiken S, Gelbrich T, Hursthouse M B. The CA.M lattice revisited. Gel formation from a linear bis-isocyanuric acid and 2-amino-4,6-bis-(4-tert-butylphenylamino)-1.3,5-triazine [J]. Tetrahedron.2004,60 (30):6385-6394.
    [73]Tucker S H. LXXIV.-Iodination in the carbazole series [J]. J. Chem. Soc..1926: 546-553.
    [74]Berton N, Fabre-Francke I, Bourrat D, Chandezon F d r, Sadki S. Poly(bisthiophene-carbazole-fullerene) Double-Cable Polymer As New Donor-acceptor Material:Preparation and Electrochemical and Spectroscopic Characterization [J]. J. Phys. Chem. B.2009.113 (43):14087-14093.
    [75]李丽荣,崔建兰,蔡留青,邵徽旺.硅胶催化合成3,6-二溴咔唑[J].应用化工2008,37(6):664-666.
    [76]Hong D J, Lee E, Jeong H, Lee J k. Zin W C, Nguyen T D, Glotzer S C, Lee M. Solid-State Scrolls from Hierarchical Self-Assembly of T-Shaped Rod-Coil Molecules [J]. Angew. Chem. Int. Ed.2009,48 (9):1664-1668.
    [77]Mancilha F S, DaSilveira Neto B A, Lopes A S, Moreira P F, Quina F H, Goncalves R S, Dupont J. Are Molecular 5.8-π-Extended Quinoxaline Derivatives Good Chromophores for Photoluminescence Applications? [J]. Eur. J. Org. Chem.2006, 2006 (21):4924-4933.
    [78]Dienes Y, Durben S, Karpati T, Neumann T, Englert U, Nyulaszi L, Baumgartner T. Selective Tuning of the Band Gap of π-Conjugated Dithieno[3,2-b:2',3'-d]phospholes toward Different Emission Colors [J]. Chem. Eur. J.2007,13 (26):7487-7500.
    [79]Kim J J, Choi H, Lee J W, Kang M S. Song K, Kang S O, Ko J. A polymer gel electrolyte to achieve≥6% power conversion efficiency with a novel organic dye incorporating a low-band-gap chromophore [J]. J. Mater. Chem.2008,18 (43): 5223-5229.
    [80]Wang J L, Tang Z M, Xiao Q, Ma Y, Pei J. Star-Shaped D-π-A Conjugated Molecules: Synthesis and Broad Absorption Bands [J]. Org. Lett.2009,11 (4):863-866.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.