高活性氧化物可见光催化剂的设计合成及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术是近年来兴起的一种新型环境治理技术,得到人们的广泛关注。发展高效的可见光催化剂是实现该技术实用化的关键。针对非金属离子掺杂TiO_2制备工艺条件复杂和普适性差以及BiVO_4粒径尺寸大、活性差的问题,本论文分别开展了发展非金属离子掺杂TiO_2和小粒子BiVO_4光催化剂新方法的研究。
     在结合水解法和溶剂热法优点的基础上,通过发展相分离的水解‐溶剂热法,可控合成氮、硫、硅等非金属离子掺杂的TiO_2,重点研究合成过程中各合成条件对样品可见光催化活性的影响。研究结果表明:与传统的溶胶‐水热法相比,本方法合成的TiO_2样品表现出了高的光催化活性,这主要是由于其具备了高的晶化度和好的分散性。通过在水相中引入氨水等物质,可控的实现了对TiO_2的氮等非金属离子的掺杂,显著拓宽了样品的光响应范围,样品表现出了高的可见光催化活性,明显要高于高温氮化法制得的样品。此外,通过在有机相中引入正硅酸乙酯也简单的实现了紫外光活性超过P25的高热稳定性硅掺杂TiO_2的合成。
     针对BiVO_4在生成过程中晶核生长速度快、粒子易生长过大的问题,通过发展EDTA调制的水热法方法可控合成了纳米BiVO_4,重点研究了反应温度等因素对样品粒径尺寸的影响。研究结果表明,降低反应温度、缩短反应时间和增大EDTA的用量,有利于获得小尺寸的BiVO_4,可以得到粒径尺寸为20nm的BiVO_4粒子。基于红外分析的结果,反应过程中EDTA与Bi~(3+)反应形成稳定的螯合物,降低了Bi~(3+)的浓度,从而抑制了BiVO_4粒子的生长。所获得小粒子BiVO_4表现出了高的可见光催化活性,这主要与其具有小的粒径尺寸和大的比表面积有关。
Photocatalytic technology which is developed in recent years is a new environmental control technology, and has caught people's attention widely. Preparing the visible-light photocatalyst is the key for making this technology practical. To the problems of complicated technology and poor wide suitability in preparing nonmetal doped TiO_2 and large particle size and poor photocatalytic activity of BiVO_4 samples prepared by normal methods, we carried out the study of developing new methods to prepare non-metal doped TiO_2 and nano-sized BiVO_4 photocatalysts.
     O_n the basis of combining the advantages of hydrolysis process and solvothermal process, we developed the phase-separated hydrolysis-solvothermal process, and through it we prepared the TiO_2 which doped with N, S, Si et al controllable, the effects of reaction temperature et al on the photocatalytic activity of samples were mainly investigated. The results show that, comparing to the TiO_2 prepared by hydrolysis-hydrothermal process, the TiO_2 we prepared has better UV-photocataltic activity due to the higher crystalline degree and dispersibility. By introducing the ammonia et al into the water phase, we obtain the N et al non-metal doped TiO_2 simply. The non-metal doping enhances the visible light absorption of TiO_2 effectively, and the sample exhibits a good Vis-photocatalytic activity, it is worth noting to that the N-doped TiO_2 exhibits better photocatalysis activity than the sample prepared by high-temperature nitriding. In addition, the Si-doped TiO_2 with high thermal stability and photocatalytic activity which is better than the photocatalytic activity of P25 also can be obtained by introducing the C8H20O_4Si into the organic phase.
     To the problems the BiVO_4 particle is easy to grow too large in synthesis process, we developed a new method to prepare nano-sized BiVO_4 by introducing EDTA. And the effects of reaction temperature et al on the particle size of samples were mainly investigated. The results show that reducing the reaction temperature and time and increasing the addition of EDTA are benign to the controlling the particle size of BiVO_4, the BiVO_4 samples with an average particle size of 20 nm can be obtained. Based on the IR spectra, it is confirmed that the introduction of EDTA can be coordinate with Bi~(3+) to form a stable compound, consequently keeping a low-content free Bi~(3+) in the reaction system and then inhibiting the growth of BiVO_4 crystallites during the hydrothermal processes. The nano-sized BiVO_4 particles show a high Vis-photocatalytic activity, that is mainly due to its small particle size and large surface area.
引文
[1] Zhou X.M., Yang H.C., Wang C.X., Mao X.B., Wang Y.S., Yang Y.L., Liu G. Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-Dimensional Iron Oxide Particles[J]. J. Phys. Chem. C, 2010, 114: 17051-17061.
    [2] Merka O., Yarovyi V., Bahnemann D.W., Wark M. pH-Control of the Photocatalytic Degradation Mechanism of Rhodamine B over Pb3Nb4O13[J]. J. Phys. Chem. C, 2011, 115: 8014-8023.
    [3] Li W.J., Li D.Z., Xian J.J., Chen W., Hu Y., Shao Y., Fu X.Z. Specific Analyses of the Active Species on Zn0.28Cd0.72S and TiO2 Photocatalysts in the Degradation of Methyl Orange[J]. J. Phys. Chem. C, 2010, 114: 21482-21492.
    [4] Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode[J].Nature, 1972, 238(7): 37-38.
    [5] Frank S. N., Bard A. J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. Phys. Chem., 1977, 81(15): 1484-1486.
    [6] Litter M.I. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems[J]. Appl. Catal. B, 1999, 23: 89-114.
    [7] Guo Y.H., Hu C.W. Heterogeneous photocatalysis by solid polyoxometalates[J]. Journal of Molecular Catalysis A: Chemical, 2007, 262: 136-148.
    [8] Miranda C., Yanez J., Contreras D., et al. Photocatalytic removal of methylmercury assisted by UV-A irradiation[J]. Applied Catalysis B: Environmental, 2009, 90(1-2): 115-119.
    [9] Bae E., Choi W. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light[J]. Environmental Science&Technology, 2003, 37(1):147-152.
    [10]柳丽芬,董晓艳,杨凤林等。Ag/TiO2:光催化还原硝酸氮[J]。无机化学学报, 2008, 24(2): 211-217。
    [11] Linsebigler A.L., Lu G.Q., Yates J.T. Photocatalysis on TiO2Surface: Principles,Mechanisms, and Selected Results[J]. Chem. Rev., 1995, 95(3): 735-758.
    [12]颜世博,张成亮,郑传柯.光催化材料发展概论[J]。山东陶瓷, 2008, 31(5): 28。
    [13] Nakaoka Y., Nosaka Y. ESR Investigation into the effects of heat treatment and crystal structure on radicals produced over irradiated TiO2 powder[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110(3): 299-305.
    [14] Wu T.X., Liu G.M., Zhao J.C., et al. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions[J]. Journal of Physical Chemistry B, 1998, 102(30): 5845-5851.
    [15] Rajeswari R., Kanmani S. A study on synergistic effect of photocatalytic ozonation for carbaryl degradation[J]. Desalination, 2009, 242(1-3): 277-285.
    [16] Sun Q., Xu Y.M. Evaluating Intrinsic Photocatalytic Activities of Anatase and Rutile TiO2 for Organic Degradation in Water[J]. J. Phys. Chem. C, 2010, 114: 18911-18918.
    [17] Zumeta I., Daz D., Santiago P. Synthesis of TiO2 Nanoparticles with Narrow Size Distribution and Their Evaluation in the Photocatalytic Oxidative Degradation of Bis(4-nitrophenyl) Phosphate[J]. J. Phys. Chem. C, 2010, 114: 11381-11389.
    [18] Sangpour P., Hashemi F., Moshfegh A.Z. Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M =Au, Ag, Cu) Nanocomposite Systems: A Comparative Study[J]. J. Phys. Chem. C, 2010, 114: 13955-13961.
    [19] Srinivasan S.S., Wade J., Stefanakos E.K. Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2[J]. Journal of Alloys and Compounds, 2006, 424: 322-326.
    [20] Rodolfo E., Inti Z., Santana I.L. Nanocrystalline TiO2 photosensitized with natural polymers with enhanced efficiency from 400 to 600nm[J]. Solar Energy Materials & Solar Cells, 2005, 85: 359-369.
    [21]刘守新,孙承林.光催化剂TiO2改性的研究进展[J]。东北林业大学学报,2003,31(1):53-56。
    [22]陈裕哲,张彭义,祝万鹏.可见光响应光催化剂研究进展[J]。化学进展,2004,16(4):613-619。
    [23]毛立群,杨建军,李庆霖。多孔纳晶TiO2薄膜光催化剂的研制及其催化性能[J]。催化学报,2003,24(7):553-557。
    [24]吴遵义,姚兰英。氮铂共掺杂纳米二氧化钦的制备及表征[J]。化学研究,2006,17(1):24-27。
    [25] Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271.
    [26] Irie H., Watanabe Y., Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. J. Phys. Chem. B, 2003, 107(23): 5483-5486.
    [27] Horikawa T., Katoh M., Tomida T. Preparation and characterization of nitrogen-doped mesoporous titania with high specific surface area[J]. Microporous Mesoporous Mater, 2008, 110: 397-404.
    [28] Diwald O., Thompson T.L., Zubkov T., et al. Photochemical activity of nitrogen-doped ruble TiO2(110) in visible light [J]. Journal of Physical Chemistry B, 2004, 108: 6004-6008.
    [29] Ohno T., Mitsui T., Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J]. Chem. Lett., 2003, 32(4): 364-365.
    [30] Ohno T., Akiyoshi M., Umebayashi T., et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Appl. Catal. A, 2004, 265(1): 115-121.
    [31] Yu J.C., Ho W.K., Yu J.G., et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania[J]. Environ. Sci. Technol., 2005, 39: 1175-1179.
    [32] Wu G.S., Tomohiro N., Bunsho O., et al. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response[J]. Chem. Mater., 2007, 19: 4530-4537.
    [33] Korosi L., Papp S., Bertoti I., et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2[J] .Chem. Mater., 2007, 19:4811-4819.
    [34] Hong X.T., Wang Z.P., Cai W.M., et al. Visible-Light-Activated nanoparticle photocatalyst of iodine-doped titanium dioxide[J]. Chemistry of Materials, 2005, 17(6): 1548-1552.
    [35] Kim, H.G.; Hwang, D.W.; Lee, J.S. An Undoped, Single-Phase Oxide Photocatalyst Working under Visible Light[J]. J. Am. Chem. Soc. 2004, 126, 8912–8913.
    [36] Zou Z.Q., Ye J.H., Sayama K., et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu) photocatalysts[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002 148: 65-69.
    [37] Ye J.H., Zou Z.Q. Arakawa H., et al. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+,Nb5+, Ta5+)[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148: 79-83.
    [38]?桑丽霞,傅希贤,白树林。ABO3钙钛矿型复合氧化物光催化活性与B离子d电子结构的关系[J]。感光科学与光化学,2001,19(2):109-115。
    [39]杨秋华,傅希贤,桑丽霞等。钙钛矿型LaFeO3和SrFeO3的光催化性能[J]。硅酸盐通报,2003,3:15-17。
    [40] Zhou L., Wang W.Z., Liu S.W., et al. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst[J]. Journal of Molecular Catalysis A: Chemical,2006, 252: 120-124.
    [41] Kudo A., Omori K., Kato H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties[J]. J. Am. Chem. Soc., 1999, 121: 11459-11467.
    [42] Kohtani S., Makino S., Kudo A. Photocatalytic Degradation of 4-n-Nonylphenol under Irradiation from Solar Simulator: Comparison between BiVO4 and TiO2 Photocatalystst[J]. Chem. Lett., 2002, 6: 660-661.
    [43] Shigeru K., Masaya K., Akihiko K., Kunihiro T., Yasuhito L., Akira T., Kazuichi H.,Ryoichi N. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator[J]. Applied Catalysis B: Environmental, 2003, 46: 573-586.
    [44] Keiichi T., Mario F.V.C., Teruaki H. Effect of crystallinity of TiO2 on its photocatalytic action[J]. Chemical Physics Letters, 1991, 94: 73-76.
    [45]宁艳春,蒲文晶。纳米二氧化钛的制备及其光催化应用进展[J]。化工环保,2004,24:117-119。
    [46]苏燕。溶胶-凝胶法制备TiO2纳米薄膜及其在太阳能电池中的应用[D]。硕士论文,河北工业大学,2008。
    [47] Arakawa H., Yamaguchi T., Takeuchi A, et al. 16th International Conference of Photochemical Conversion and Solar Storage[D]. Uppsala, Sweden, 2006, W4 P10.
    [48] Asahi R., Morikawa T., Ohwaki T., et al. Visible-light photocatalysis in Nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269-271.
    [49] Khan S., Al-Shahry M., Ingler W. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science, 2002, 297: 2243-2244.
    [50] Wu N.L., Lee M.S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution[J]. Int. J. Hydrogen Energy, 2004, 29: 1601-1605.
    [51] Varghese O.K., Paulose M., Shankar K.,et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134μm in length[J]. J. Nanosci. Nanotechnol., 2005, 5(47): 1158-1165.
    [52]张泽生,张硕生,冯良荣等。纳米材料在环境保护中的应用与发展[J]。四川环境,2004,23(2):1-5。
    [53]赵洁,邱克辉,董宏伟。TiO2光催化降解与环保应用研究进展[J]。中国非金属矿工业导刊,2005,56(4):50-55。
    [54]?徐瑞芬,许秀艳,付国柱。纳米TiO2在涂料中的抗菌性能研究[J]。北京化工大学学报,2002,29(5):45-48。
    [55]许莹。无机抗菌剂的制备及在建筑用杀菌涂料中的应用[J]。新型建筑材料,2003,2:47-49。
    [56]曾令可,张海文,王慧等。抗菌杀菌功能陶瓷[J]。江苏陶瓷,2001,34(4):8-10。
    [57]王兆波,张志焜。纳米TiO2在抗菌解内毒素塑料中的应用。塑料,2004,33(1):12-15。
    [58]曹云娜。光触媒TiO2的抗菌研究进展[J]。染整技术,2007,29(9):7-9。
    [59]魏宏斌,严煦世,徐迪民。二氧化钛膜固定相光催化氧化法深度处理自来水[J]。中国给排水,1990,12(6):10-13。
    [60] Rizzo L. Inactivation and injury of total coliform bacteria afterprimary disinfection of drinking water by TiO2 photocatalysis[J]. Journal of Hazardous Materials, 2009, 165(1-3): 48-51.
    [61] Robertson N. Optimizing dyes for dye-sensitized solar cells[J]. Angew. Chem. Int. Ed., 2006, 45: 2-10.
    [62] Rodolfo E., Inti Z., Santana I.L. Nanocrystalline TiO2 photosensitized with natural polymers with enhanced efficiency from 400 to 600nm[J]. Solar Energy Materials & Solar Cells, 2005, 85: 359-369.
    [63] Tengl V., Bakardjieva S. Molybdenum-Doped Anatase and Its Extraordinary Photocatalytic Activity in the Degradation of Orange II in the UV and vis Regions[J]. J. Phys. Chem. C, 2010, 114: 19308-19317.
    [64] Liu J.W., Han R., Zhao Y., Wang H.T., Lu W.J., Yu T.F., Zhang Y.X. Enhanced Photoactivity of V?N Codoped TiO2 Derived from a Two-Step Hydrothermal Procedure for the Degradation of PCP?Na under Visible Light Irradiation[J]. J. Phys. Chem. C, 2011, 115: 4507-4515.
    [65] Ou H.H., Lo S.L., Liao C.H. N-Doped TiO2 Prepared from Microwave-Assisted Titanate Nanotubes (NaxH2?xTi3O7): The Effect of Microwave Irradiation during TNT Synthesis on the Visible Light Photoactivity of N-Doped TiO2[J]. J. Phys. Chem. C, 2011, 115: 4000-4007.
    [66] Spadavecchia F., Cappelletti G., Ardizzone S., Ceotto M., Falciola L. ElectronicStructure of Pure and N-Doped TiO2 Nanocrystals by Electrochemical Experiments and First Principles Calculations[J]. J. Phys. Chem. C, 2011, 115: 6381-6391.
    [67] Katoh R., Furube A., Yamanaka K., Morikawa T. Charge Separation and Trapping in N-Doped TiO2 Photocatalysts: A Time-Resolved Microwave Conductivity Study[J]. J. Phys. Chem. Lett., 2010, 1: 3261-3265.
    [68] Simon P., Pignon B., Miao B.J., et al. N-Doped Titanium Monoxide Nanoparticles with TiO Rock-Salt Structure, Low Energy Band Gap, and Visible Light Activity[J]. Chem. Mater., 2010, 22: 3704-3711.
    [69] Huo Y.N., Bian Z.F. Zhang. X.Y., Jin Y., Zhu J., Li H.X. Highly active TiO2-XNX visible photocatalyst prepared by N-doping in Et3N/EtOH fluid under supercritical conditions[J]. J. Phys. Chem. C, 2008, 112: 6546-6550.
    [70] Ohno T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T., Matsumura M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Applied Catalysis A: General, 2004, 265: 115-121.
    [71] Michael H.B., Stefan P.P., Tang J., et al. Cubic mesoporous frameworks with a mixed semiconductor nanocrystalline wall structure and enhanced sensitivity to visible light[J]. Angew. Chem. Int. Ed., 2004, 43: 3037-3040.
    [72] Fang J.H., Lu X.M., Zhang X.F. CdSe/TiO2 nanocrystalline solar cells[J]. Supramolecular Science, 1998, 5(5-6): 709-711.
    [73] Pan J.H., Lee W.I. Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties[J]. Chem. Mater., 2006, 18: 847-853.
    [74] Berglund S.P., Flaherty D.W., Hahn N.T., Bard A.J., Mullins C.B. Photoelectrochemical Oxidation of Water Using Nanostructured BiVO4 Films[J]. J. Phys. Chem. C, 2011, 115: 3794-3802.
    [75] Guan M.L., Ma D.K., Hu S.W., Chen Y.J., Huang S.M. From Hollow Olive-Shaped BiVO4 to n?p Core?Shell BiVO4@Bi2O3 Microspheres: Controlled Synthesis and Enhanced Visible-Light-Responsive Photocatalytic Properties[J]. Inorg. Chem., 2011, 50: 800-805.
    [76] Myung N., Ham S., Choi S., Chae Y., Kim W.G., Jeon Y.J., Paeng K.J., ChanmaneeW., Tacconi N.R., Rajeshwar K. Tailoring Interfaces for Electrochemical Synthesis of Semiconductor Films: BiVO4, Bi2O3, or Composites[J]. J. Phys. Chem. C, 2011, 115: 7793-7800.
    [77] Su J., Zou X.X., Li G.D., Wei X., Yan C., Wang Y.N., Zhao J., Zhou L.J., Chen J.S. Macroporous V2O5-BiVO4 Composites: Effect of Heterojunction on the Behavior of Photogenerated Charges[J]. J. Phys. Chem. C, 2011, 115: 8064-8071.
    [78] Saison T., Chemin N., Chanac C., Durupthy O., Ruaux V., Mariey L., Maug F., Beaunier P., Jolivet J.P. Bi2O3, BiVO4, and Bi2WO6: Impact of Surface Properties on Photocatalytic Activity under Visible Light[J]. J. Phys. Chem. C, 2011, 115: 5657-5666.
    [79] Ng Y.H., Iwase A., Kudo A., Amal R. Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting[J]. J. Phys. Chem. Lett., 2010, 1: 2607-2612.
    [80] Sayama K., Nomura A., Arai T., et al. Photoelectrochemical Decomposition of into H2 and O2 on Porous BiVO4 Thin-Film Electrodes under Visible Light and Significant Effect of Ag Ion Treatment[J]. Journal of Physics and Chemistry B, 2006, 110: 11352-11360. ?
    [81]龙明策。新型光催化剂的制备、表征及其光催化活性的调控机制[D]。硕士论文,上海交通大学,2007。
    [82] Yu J.Q., Zhang Y., Kudo A. Synthesis and photocatalytic performances of BiVO4 by ammonia co-precipitation process. Journal of Solid State Chemistry, 2009, 182: 223-228.
    [83]沈艳玲。BiVO4的制备及其光催化性能研究[D]。硕士论文,吉林大学,2009。
    [84]李伟洲,李月巧,梁天权,赖武铨,胡治流。铋钒氧系颜料的研究进展[J]。材料导报,2006,20(6):49-51。
    [85]杨宗志。新型无机黄色颜料-秘黄[J]。化工新型材料,1996,8:23-25。
    [86] Shigeru K., Misa T., Kunihiro T., Ryoiehi N. Photooxidation reaetions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 Photocatalysts[J]. Applied Catalysis B: Environmental, 2005, 58(3-4): 265-272.
    [87] Guan M.L., Ma D.K., Hu S.W., Chen Y.J., Huang S.M.From Hollow Olive-ShapedBiVO4 to n?p Core?Shell BiVO4@Bi2O3 Microspheres: Controlled Synthesis and Enhanced Visible-Light-Responsive Photocatalytic Properties[J]. Inorg. Chem., 2011, 50 (3): 800-805.
    [88] Zhao Y., Xie Y., Zhu X., Yan S., Wang S. Surfactant-free synthesis of hyperbranched monoclinic bismuth vanadate and its applications in photocatalysis, gas sensing, and lithium-ion batteries[J]. Chem. Eur. J., 2008, 14:1601-1606.
    [89] D.N. Ke,T.Y. Peng, L. Ma, P. Cai, K. Dai. Effects of Hydrothermal Temperature on the Microstructures of BiVO4 and Its Photocatalytic O2 Evolution Activity under Visible Light[J]. Inorg. Chem., 2009, 48: 4685–4691.
    [90] Li K., Wang D., Wu F., et al. Surface electronic states and photovoltage gas-sensitive characters of nanocrystalline LaFeO3[J]. Materials Chemistry and Physics, 2000, 64: 269-272
    [91] Qian X., Qin D., Son Q.g, et al. Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO2 electrodes[J]. Thin Solid Films, 2001, 385: 152-161.
    [92] Wang X.C., Yu J.C., Chen Y.L., Wu L., Fu X.Z. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts[J]. Environ. Sci. Technol., 2006, 40: 2369-2374.
    [93] Overbury S.H., Mullins D.R., Huntley D.R., Kundakovic L. Chemisorption and reaction of NO and N2O on oxidized and reduced ceria surfaces studied by soft X-ray photoemission spectroscopy and desorption spectroscopy[J]. J. Catal., 1999, 186: 296-309.
    [94] Rodriguez J.A., Jirsak T., Liu G., Hrbek J., Dvorak J., Maiti A. Chemistry of NO2 on Oxide Surfaces: Formation of NO3 on TiO2 (110) and NO2?O Vacancy Interactions[J]. J. Am. Chem. Soc., 2001, 123: 9597-9605.
    [95] Wang J.W., Zhu W., Zhang Y.Q., Liu S.X. An Efficient Two-Step Technique for Nitrogen-Doped Titanium Dioxide Synthesizing: Visible-Light-Induced Photodecomposition of Methylene Blue[J]. J. Phys. Chem. C, 2007, 111: 1010-1014.
    [96] Yin S., Ihara K., Aita Y., Komatsu M., Sato T. Visible-light induced photocatalyticactivity of TiO2-xAy (A=N, S) prepared by precipitation route[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179: 105-114.
    [97] Tian G.H., Chen Y.J., Pan K., Wang D.J., Zhou W., Ren Z.Y., Fu H.G. Efficient visible light-induced degradation of phenol on N-doped anatase TiO2 with large surface area and high crystallinity[J]. Applied Surface Science, 2010, 256: 3740-3745.
    [98] Jing L.Q., Fu H.G., Wang B.Q., Wang D.J., Xin B.F., Li S.D., Sun J.Z. Effects of Sn-dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles[J]. Appl. Catal. B, 2006, 62: 282-291.
    [99] Ding Z., Lu G.Q., Greenfield P.F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water[J]. J. Phys. Chem. B, 2000, 104: 4815-4820.
    [100] Gordymova T.A., Budneva A.A., Davydov A.A. IR spectra of toluene adsorbed on r-Al2O3[J]. React. Kinet. Catal. Lett., 1982, 20: 113-117.
    [101] Jung K.Y., Park. S.B. Enhanced photoactivity of silica-embedded titania particles prepared by sol-gel process for the decomposition of trichloroethylene, Appl. Catal. B, 2000, 25: 249-256.
    [102] Jing L.Q., Sun X.J., Shang J., Cai W.M., Xu Z.L., Du Y.G., Fu H.G. Review of surface photo-voltage spectra of nano-sized semiconductor and its application in heterogeneous photocatalysis[J]. Solar Energy Materials & Solar Cell, 2003, 79: 133-151.
    [103] Fitch A., Dragan S. Infrared Spectroscopy Determination of Lead Binding to Ethylenediaminotetraacetic Acid Alanah Fitch and Simona Dragan[J]. J. Chem. Educ., 1998, 75: 1018-1021.
    [104] Lanigan K.C., Pidsosny K. Reflectance FTIR spectroscopic analysis of metal complexation to EDTA and EDDS[J]. Vibrational Spectroscopy, 2007, 45: 2-9.
    [105] Nore′n K., Loring J. S., Bargar J.R., Persson P. Adsorption Mechanisms of EDTA at the Water-Iron Oxide Interface: Implications for Dissolution[J]. J. Phys. Chem. C, 2009, 113: 7762-7771.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.