蚯蚓对土壤中疏水性有机污染物的动态积累
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了土壤和蚯蚓中菲和3-PCB的提取、纯化、分析检测方法。在10天和30天两个时间段内,研究了4种土壤中赤子爱胜蚓(Eisenia fetida)对菲和3-PCB的动态累积过程,并与分配理论的预测值进行比较。上述研究为土壤环境生态安全评价提供了基础数据。
     用100ml丙酮/正己烷(1:3,v/v)索氏提取土壤中的菲和3-PCB,100ml正己烷/二氯甲烷(1:1,v/v)索氏提取蚯蚓中的菲和3-PCB;然后以100~200目的三氧化二铝和无水硫酸钠为填料,用层析柱来净化样品,最后用气相色谱质谱联用仪检测分析样品中的菲和3-PCB。测得土壤中菲和3-PCB的回收率分别为99.1%,98.6%,蚯蚓中菲和3-PCB的回收率分别为98.0%,95.1%。
     通过4种土壤和干蚯蚓对水中菲和3-PCB的吸附实验,证实了吸附过程由分配作用控制。菲和3-PCB在土壤有机质的平均分配系数对数值(log Koc)分别是3.92和4.08,干蚯蚓吸附经脂质含量标化后对菲和3-PCB的分配系数对数值(log Klipd)分别为4.63和4.96。由以上数据计算得到菲和3-PCB的平衡BSAF(biota-soil accumulation factors)值分别是5.18和7.41。
     本文还考察了在10天和30天两个时间段内,蚯蚓在4种土壤中对菲和3-PCB的动态累积量,并分别计算了其实验BSAF值。将实验BSAF值与平衡BSAF值比较,发现经10天积累,菲和3-PCB在土壤有机碳和蚯蚓类脂(lipid)之间的分配远未达到平衡,而经30天积累后,分配接近或基本达到平衡状态。蚯蚓对菲比对3-PCB有更高的利用性。
This thesis first established the methods of extracting phenanthrene and 3-polychlorinated biphenyl (3-PCB) from soils and earthworm, sample purification and analyses. The 10-day and 30-day accumulations of the two hydrophobic compounds in earthworm (Eisenia fetida) from four soils were determined. The obtained accumulations were compared to those predicted based on the partition theory. The results provide valuable information for evaluation of soil environmental quality and ecological safety.
     Phenanthrene and 3-PCB were extracted by Soxhlet from soils using 100 ml of acetone/hexane (1:3, v/v) and from earthworm using 100 ml of methylene dichloride/hexane (1:1, v/v). The extracts were purified by eluting the samples through a column packed with 6 g of alumina (100-200 meshes) and anhydrous sodium sulfate using 25 ml of methylene dichloride/hexane (1:1, v/v). Phenanthrene and 3-PCB were then analyzed by GC-MS. The recoveries of phenanthrene and 3-PCB were 98.0% and 95.1% in earthworm and 99.1% and 98.6% in soils, respectively.
     Sorption of phenanthrene and 3-PCB to earthworm and four soils occurred by a partitioning process. The logarithmic partition coefficients of phenanthrene and 3-PCB in soils normalized to soil organic matter (log Koc) were 3.91 and 4.06, respectively, and those in earthworm normalized to earthworm lipids (log Klipid) were 4.63 and 4.96 for phenanthrene and 3-PCB. From these partition coefficients, the calculated biota-soil accumulation factors, i.e., equilibrium BSAF values, of phenanthrene and 3-PCB were 17.6 and 12.8, respectively.
     The accumulations of phenanthrene and 3-PCB in earthworm from four soils for 10 and 30 days were determined. The concentrations of both compounds in soils and earthworm were analyzed and used to calculate the BSAF at given exposure times. Compared to the respective equilibrium values, the BSAF of phenanthrene and 3-PCB after a 10-d accumulation were much smaller, whereas those following a 30-d exposure approached the equilibrium values. The availability of phenanthrene to earthworm relative to 3-PCB appeared higher, due presumably to a higher structural comparability of the former compound to earthworm lipids.
引文
[1] Rachel Carson.寂静的春天[M].北京:科学出版社, 1997.235-241
    [2] Manirakiza P, Covaci A, Nizigiymana L, et al. Persistent chlorinated pesticides and polychlorinated biphenyls in selected fish species from Lake Tanganyika, Burundi, Africa [J]. Environmental Pollution, 2002, (117):447-455
    [3]余刚,黄俊,张彭义.持久性有机污染物:倍受关注的全球性环境问题[J].环境保护, 2001, 4:37-39
    [4]王焕校,污染生态学[M].北京:高等教育出版社, 2001.120-122
    [5] Kinlochd, Kuhnlein H, Muir Dgg. Inuit foods and diet: a preliminary assesment of benefit and risks [J]. Sci. Tot. Environ. 1992, (122):247-278
    [6]孟海涛,王丽君,由京周,等.环境激素类污染物的危害及监测技术[J].环境激素类农药的危害, 2003, 21(3):125-127
    [7]姚子伟,江桂斌,蔡亚歧,等.北极地区表层海水中持久性有机污染物和重金属污染的现状[J].科学通报,2002,47(15):1197-1200
    [8]孙晶.农业积压的防范——全球操作是防止危险的关键[J].农药译丛, 1996, 18(1):57-58
    [9] Iwata H, Tanabe S, Sakai N, et al. Geographical-distribution of persistent organochlorines in air, water and sediments from Asia and Oceania and their implications for global redistribution from lower latitudes [J]. Environmental pollution, 1994, 85:15-33
    [10] Preston MR.The interchange of pollutants between the atmosphere and ocean [J]. Mar pollut Bull, 1992, 24:477-483
    [11] Petz W, Foissner W. The effects of mancoceb and lindane on the soil microfauna of a spruce forest: a field study using a completely randomized block design [J]. Biol.Fertil.Soils, 1989, 7:225-231
    [12] Tavares TM, Beretta M, Costa MC. Ratio of DDT/DDE in the all Saints Bay, Brazil and its use in environmental management [J]. Chemosphere, 1999, 38: 1445-1452
    [13] Wu W. Z, Xu Y, Schramm, et al. Study of sorption, biodegradation and isom- erization of HCH in simulated sediment/water system [J]. Chemosphere, 1997, 35:1887-1894
    [14] NRC. Science and judgment in risk assessment [M]. Washington, D.C.:National Academy Press. 1994. 384
    [15] Zhang Z. L, Hong H. S, Zhou J. L, et al. Contamination by organ chlorine pesticides in the estuaries of southeast China [J]. Chemical research in Chinese universities, 2002, 18(2):153-160
    [16] Hutzinger O, et al. The chemistry of PCBs [M]. Cleveland, OH, USA :CRC press, 1974. 119-, 181309-193
    [17] Sawhney B, L. PCBs and environment [M]. Cleveland, OH, USA :CRC press, 1986. 47-64
    [18] Judd N. L, Criffith W. C, Ylitalo G. M, et al. Alternative Strategies for PCB Risk Reduction from contaminated Seafood: Options for children as Susceptible Populations [J]. Bull. Environ. Contam. Toxicol, 2002, 69:847-854
    [19]仲维科,郝戬,孙梅心,等.我国食品的农药污染问题[J].农药, 2000, 39(7):1-4
    [20]王明娣.杭州市60例人奶中有机氯化合物蓄积水平调查[J].浙江省卫生防疫站汇编,1988 207:13-14
    [21]华小梅,单正军.我国农药生产、使用状况及其影响因子分析[J].环境科学发展, 1996, 4(2):33-45
    [22]崔玉川,傅涛.我国水污染及饮用水源中有机污染物的危害[J].城市环境与省城市生态, 1998, 11(3):23-25
    [23]康跃惠,刘培斌,王子健,等.北京官厅水库-永定河水系水体中持久性有机氯农药污染[J]/湖泊科学, 2003, 15(2):125-131
    [24]袁旭音,王禹,陈骏,等.太湖沉积物中有机氯农药的残留特征及风险评估[J].环境科学, 2003, 24(1):121-1125
    [25]秦梅枝,雍世鹏. BHC、DDT和B(a)P在内蒙古草地中污染现状的初步调查[J].内蒙古大学学报(自然科学版). 1994, 25(1):99-103
    [26]董赛金,潘玉钦,延希鹏.福州郊区茶叶有机氯农药残留量调查[J].预防医学文献信息, 1998, 4(2):171
    [27]谭代荣,胡彬,罗彦,等.成都市人奶中有机氯化合物监测[J].预防医学情报杂志, 2001, 17(2):70-71
    [28]窦薇,赵忠宪.白洋淀水体、底泥及及鲫鱼体内DDT、BHC污染状况研究[J].环境科学学报, 998, 18(3):308-312
    [29]李延红,郭常义,汪国权,等.上海地区人乳中六六六、滴滴涕蓄积水平的动态研究[J].环境与职业医学, 2003, 20(3):181-185
    [30]金重阳,郑玉峰,黄相国,等.国内持久性有机污染物的污染现状与对策建议[J].环境保护科学, 2002, 28(111):30-31
    [31]陈来国,蔡信德,黄玉妹,等.废弃电容器封存点多氯联苯的含量和分布特征[J].中国环境科学, 2008, 28(9):833-837
    [32]张国民.有关POPs公约涉及产品、生产过程及在中国的使用情况[A].中国氯碱工业协会.持久性有机污染物控制研讨会论文集[C],北京:国家环保局, 2001.167-200
    [33] Muskegon MI. Solvent Guide. Burdick and Jackson laboratories [M]. Michigan U.S.A. CRC press, 1980.145-146
    [34] Chiou C. T. et al. Partition of organic compounds in octanol-water systems [J]. Environ. Sci. Technol. 1982, 16 (1) 4-10
    [35] Chiou C. T, Peters. L. J. Freed V. H. A physical concept of soil-water equilibria for nonionic organic compounds [J]. Science 1979 206 (16):831-832
    [36]中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社, 1989.87-100
    [37]朱浪奇等.分析仪器手册[M].北京:化学工业出版社, 1997. 45-18
    [38]金相灿等.有机化合物污染化学-有毒有机物污染化学[M].北京,清华大学出版社, 1990. 131-143
    [39] Waverly A, Thorsen, Gregory Cope W, et al. Bioavailability of PAHs: Effects of Soot Carbon and PAH Source [J]. Environ. Sci. Technol, 2004, 38:2029-2037
    [40] Lanno R, Wells J, Conder J, et al. The bioavailability of chemicals in soil for earthworms [J]. Ecotoxicology and Environmental Safety, 2004, 57(10):39-47
    [41] Khan S. U. Bound pesticide residues in soil and plant [J]. Residue Reviews, 1982, 84:1-25.
    [42] Alexander M. Aging, Bioavailability and overestimation of risk from environ-mental pollutants [J]. Environ. Sci. Technol, 2000, 34:4259-4265
    [43] GB 15618-1995土壤环境质量标准[S]
    [44]李文影,满秀玲.小兴安岭林区云冷杉林生长状况与土壤性质[J].东北林业学报, 2009, 06:21-23
    [45]罗明,潘贤章,孙波,等.江西省余江县土壤有机质含量的时空变异规律研究[J].土壤, 2008, 03:18-19
    [46] Eijsackers H. Earthworms in environmental research [A] Edwards C. A. Earth-worms ecology [C] Boca Raton:CRC Press, 2004.321-342
    [47] Edwards CA, Lofty JR. Biology of earthworms [M] London: Chapman and Hall, 1977.213-220
    [48] OECD No. 207, Guideline for testing of chemicals. Earthworm, acute toxicity tests [S]
    [49] OECD No. 222, Guideline for testing of chemicals. Earthworm reproduction test (Eiseniafetida and Eisenia andrei) [S]
    [50] ISO 11268-1:1993, Soil quality-effects of pollutant on earthworms (Eisenia fetida) (I): determination of acute toxicity using artificial soil substrate [S]
    [51] ISO 11268-2:1998, Soil quality-effects of pollutant on earthworms (Eisenia fetida) (II): determination of effects on reproduction [S]
    [52] ISO 11268-3:1999, Soil quality-effects of pollutant on earthworms (III): guida-nce on the determination of effects in field situations [S]
    [53] ISO/CD 17512-1, Soil quality-avoidance test for testing the quality of soils and effects of chemicals on behavior (I): tests with earthworms (Eisenia fetida and Eisenia andrei) [S]
    [54] ISO 23611-1: 2006. Soil quality-sampling of s oil invertebrates (I): hand- sorting and formalin extraction of earthworms [S]
    [55] ASTM E 1676-97, Standard guide for conducting a laboratory soil toxicity test with Lumbricid earthworm Eisenia foetida. [S]
    [56] Juan R.S. Toxicity for earthworms: artificial soil test. http://ecb.jrc.it/ testing-methods, 2006, 09-10
    [57] Jager T, Van der Wal, Fleuren L RHLJ, et al. Bioaccumulation of organic chemicals in contaminated soils:evaluation of bioassays with earthworms [J]. Environ Sci Technol, 2005, 39:293-298
    [58] Saxe JK, Impellitteri CA, Peijnenburg WJGM, et al. Novel model describing trace metal concentrations in the earthworm, Eisenia andrei [J]. Environ Sci Technol, 2001, 35:4522 -4529
    [59] Rauss K., Wilcke W. Biomimetic extraction of paths and PCBs from soil with octadecyl-modified silica disks to predict their availability to earthworms [J]. Environ Sci Technol, 2001, 35:3931-3935
    [60] Ma WC. Estimating heavy metal accumulation in oligochaete earthworms: a meta-analysis of field data [J]. Bull Environ Contam Toxicol, 2004, 72:663-670
    [61] Veltman K, Huijbregts MAJ, Vijver MG, et al. Metal accumulation in the earthworm Lumbricus rubellus: model predictions compared to field data [J] Environ Pollut, 2007, 146:428-436
    [62] ASTM 1676:1-26. Standard guide for conducting laboratory soil toxicity or bioaccum-ulation tests with the lumbricid earthworm Eisenia fetida and the enchytraeid potworm Enchytraeus albidus. [S]
    [63] Rombke J. Tools and techniques for the assessment of ecotoxicological impacts of contaminants in the terrestrial environment [J]. Human Ecol Risk Assess, 2006, 12:84-101
    [64] Parrish Z D, White JC, Isleyen M, et al. Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species [J]. Chemosphere, 2006, 64:609-618
    [65] Terhivuo J, Pankakoski E, Hyvarinen H, et al. Pb uptake by ecologically dissimilar earthworm (Lumbricidae) species near a lead smelter in south Finland [J]. Environ Pollut, 1994, 85:87-96
    [66] Ernst G, Frey B. The effect of feeding behavior on Hg accumulation in the ecophysiologically different earthworms Lumbricus terrestris and Octolaseoncyane-um: a microcosm experiment [J]. Soil Biol Biochem, 2006, 39:386-90
    [67] Hobbelen PHF, Oolhaas JE, van Gestel CAM, Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils [J]. Environ Pollut, 2006, 144:63-46
    [68] Depledge M. H, Fossil M. C. The role of biomarkers in environmental assessment (2) invertebrates [J]. Ecotoxicology, 1994, 3:161-172
    [69] Sijm, Kraaij D, Belfroid A. C. Bioavailability in soil or sediment: exposure of different organisms and approaches to study it [J]. Environ Pollut, 2000, 108:113-119
    [70] Tracey G. A, Hansen D. J. Use of biota-sediment accumulation factors to assess similarity of nonionic organic chemical exposure to benthically-coupled organisms of differing trophic mode [J]. Environ. Contam. Toxicol, 1996, 30, 467-475
    [71] Susan L, Klosterhaus P, Lee Ferguson, et al. Polycyclic Aromatic Hydocarbon Bioaccumulation By Meiobenthic Copepods Inhabiting a Superfund Site:Techniques for Micromass body burden and total lipid analysis [J]. Environ Toxicol Chem, 2002, 21:2331-2337
    [72] Hui Li, GuangYao Sheng, Chiou C. T, et. al. Relation of Organic Contaminant Equilibrium Sorption and Kinetic Uptake in Plants [J]. Environ. Sci. Technol. 2005, 39:4864-4870
    [73] Di Toro D. M, Zarba C. S, Hansen D. J, et al. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning [J]. Environ Toxicol Chem, 1991, 10:1541-1583
    [74] Krauss M, Wilcke W, Zech W. Availability of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls to earthworms in urban soil [J]. Environ. Sci. Technol. 2000, 34:4335-4340
    [75] Robert Randall C., David Young R., Henry Lee, et al. Lipid methodology and pollutant normalization relationships for neutral nonpolar organicpollutants [J]. Environ. Toxicol. Chem, 1998(17):788-791
    [76] Randall C. R, Lee H, Ozretich J. Robert. Evaluation of selected lipid methods for normalizing pollutant bioaccumulation [J]. Environ. Toxicol. Chem, 1991, 91:0730-7268
    [77] Takuya Kondo, Hiroshi Yamamoto, Norihisa Tatarazako. Bioconcentration factor of relatively low concentrations [J]. Chemosphere, 2005. 61:1299-1304
    [78] Chiou C. T. Partition and adsorption of organic contaminants in environmental system [M]. Hoboken, New Jersey: A John Wiley and Sons, Inc., Publication, 2002, 136-139
    [79] Chiou C. T. Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors [J]. Environ Sci Technol, 1985.19:57-62
    [80] Belfroid A. C., Sijm DTHM, van Gestel CAM. Bioavailability and terrestrial invertebrates [J]. Environ. Rev. 1996, 4:276-299
    [81] Yun Long Yu, Xiao Mao Wu, Shao Nan Li, er. al. An exploration of the relationship between adsorption and bioavailability of pesticides in soil to earthworm [J]. Environmental Pollution, 2006(141):428-433
    [82] Jager T, Fleuren RHLJ, Hogendoorn EA, et.al. Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei(Oligochaeta) [J]. Environ. Sci. Technol, 2003(37):3399-3404
    [83] Matscheko N, Lundstedt S, Svensson L, Harju M, Tysklind M. Accumulation and elimination of 16 polycyclic aromatic compounds in the earthworm (Eisenia fetida) [J]. Environ. Toxicol. Chem, 2002(21):1724-1729
    [84] Runhui KE, Sun Liwei,Chen Shan, et. al. Measuring the bioavailability of organochlorine pesticides in water using trioleim bedded cellulose acetatemembrane [J]. Acta Scientiae Circumstantia,2007(27):2019-2013
    [85] Lee H. Aclam’s eye view of the bioavailability of sediment-associated pollutants. In Baker Red, Organic Substances and Sediment in Water[M]. FL, USA:Boca Raton, 1991:73-93
    [86] Nadja Matscheko, Staffan Lundstedt, Linda Svensson. Accumulation and elimin- ation of 16 polycyclic aromatic compounds [J]. Environ. Toxicol. Chem,2002(21):1724-1729
    [87] Paoletti GM. The role of earthworms for assessment of sustainability and as bioindicators [J]. Agriculture, Ecosystems and Environment, 1999, (74):137-155
    [88] Moustafa Aly, Abdel Salam, Schroeder, Peter. Effect of herbicides on glutathione s-transferases in the earthworm, Eisenia fetida [J]. Environmental Science and Pollution Research.Mar, 2008(15):143-149
    [89] Jager T, Van der Wal L, Fleuren RHLJ, et al. Bioaccumulation of organic chemicals in contaminated soils: Evaluation of bioassays with earthworms [J]. Environ. Sci. Technol, 2005(39):293-298
    [90] Schelton D.R, Sadeghi A.M, Karn JS. Effect of wetting and drying of soil on sorption and biodegradation of atrazine [J]. Weed Sci, 1995 43:298-305
    [91] Caroline T.A, Moermond, Roessink Ivo, et. Al. Impact of Polychlorinated biphenyl and Polycyclic aromatic hydrocarbon sequestration in sediment on bioaccumulation in aquatic food webs [J]. Environ. Toxicol. Chem, 2007(26):607-615
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.