无源电磁周期结构及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对无源电磁周期性结构的特性进行了数值仿真,并研究了在隐身材料和微波天线方面中的应用。
     作为工作基础,首先建立了分析周期性结构的理论模型和数值仿真工具,研究对象为以微带基片为载体的周期性结构。利用Floquet定理,无限大周期结构可以简化为一个周期单元来计算。数值仿真方法采用周期格林函数与矩量法相结合,采用谱域导抗法得到微带结构的全三维并矢格林函数,并采用快速[Z]矩阵和[Y]矩阵插值技术来加速计算速度,遗传算法的引入可以优化周期性结构达到要求的指标。
     利用所建立的仿真工具,对两种无源周期型结构进行了计算,包括频率选择表面的谐振特性和光子晶体的带隙特性。各部分的主要研究内容为:
     (1)频率选择表面的周期单元考虑了各种几何结构,包括方形贴片、方形孔径、Eruselum振子、方形环、圆环、单分裂环、双环等,同时也考察了单元尺寸、微带介质和布阵方式等不同参数对谐振特性的影响,提出了一些新型的频率选择表面——紧凑的、加载的和分形频率选择表面。另外还研究了频率选择表面的级联和优化,以满足工程设计需求。
     (2)对光子晶体的带隙特性进行了研究,其中包括—维光子晶体、光子晶体传输系统和多维光子晶体等。其中重点研究了以高阻电磁表面结构为代表的光子晶体的电磁特性,给出了高阻电磁表面的等效媒质模型,并利用该模型比较深入地探讨了高阻电磁表面的表面波带隙形成机理。
     对周期性结构在隐身材料中的应用进行了初步研究。利用周期性结构的同相反射特性作为人工磁导体,代替传统的电损耗Salisbury屏的间隔层,降低了整体厚度,同时又保持电损耗的稳定性能,为吸波材料的发展提供了一个崭新的方向。
     研究了光子晶体在微波天线以及天线阵列中的应用。分别研究了高阻表面在微带天线和波导缝隙天线中的应用、光子晶体覆层在微带天线中的应用和人工磁导体在口径耦合微带天线中的应用,并在研究单元的基础上,还研究了高阻表面在波导缝隙天线阵列中的应用,包括16元单脊波导天线阵和4元非对称单脊波导天线阵。研究表明,光子晶体的引入可以有效地改善天线和天线阵列的特性,主要体现在可以提高天线主瓣增益、降低后向和侧向辐射电平上以及减小天线单元和天线阵列间的耦合。最后利用光子晶体的频率带隙抑制相控阵天线单元的互耦,改善了相控阵天线的宽角阻抗匹配,消除了相控阵天线的扫描盲点问题,从而改善天线的扫描特性。
The research work presented in this dissertation covers both the numerical simulation of passive electromagnetic periodic structures (PEPSs) and their applications in stealth materials and microwave antennas.
     As the basic of the research work, theoretical model and numerical simulation method has been established for the study of PEPSs that are constructed in the microstrip structures. The infinite periodic structure is reduced to one single cell by applying Floquet theorem. The numerical simulations are performed using periodic Green's functions plus method of moments (MOM) and the whole dimensional dyadic Green's functions are obtained by using spectral domain immittance approach (SDI). The [Z] matrix and [Y] matrix interpolation can accelerate the computation, and genetic algorithms can optimize the periodic structures to the aims.
     Using the above simulation tools, two passive electromagnetic periodic structures have been analyzed, including the resonance of frequency selective surfaces (FSSs) and the bandgap characteristics of photonic crystals (PCs). The primary work is as follows:
     (1) In FSSs, periodic cells with various types of geometries have been studied, including square patch, square hole, Eruselum dipole, square loop, circular loop, single split ring, double ring, etc. The effect of the cells' sizes, the microstrip parameters and the array lattice types on the resonance is studied and some new FSSs, such as compact FSSs, loaded FSSs and fractal FSSs, are provided. In addition, the cascading and the optimization of FSSs has been investigated for the designing aims.
     (2) The bandgap characteristics of PCs are studied, including one-dimension PCs, the PCs transmission line and multidimensional PCs, etc. As the representative of PCs, the electromagnetic characteristics of high impedance surface (HIS) have been given emphasis to. The effective medium model of HIS is investigated and used to explain the reason why HIS has frequency bandgaps.
     The applications of periodic structures in stealth materials have been studied. Because of the in-phase characteristics, the periodic structures can be used as artifical magnetic conductor (AMC) and substituted for the spacer of the traditional electric Salisbury screen in order to reduce the entire thickness and preserve the stability of the traditional electric Salisbury screen. This can provide a new direction for absorbing materials.
     The periodic structures have been applied in microwave antennas and antenna arrays. The HIS has been used in microstrip antennas and waveguide aperture antennas separately. The applications of the PCs covers in microstrip antennas and the AMC in an aperture coupled patch antenna have been studied too. Based on the researches of antenna elements, the applications of HIS in waveguide aperture antenna arrays are also
     investigated, including sixteen-element single ridged waveguide antenna array and four-element asymmetric ridged waveguide antenna array. The results show that the PCs can improve the characteristics of antennas and antenna arrays. The gain of main lobe has addition, the radiation levels of back/side lobes decrease and the mutual coupling between the antenna elements or arrays can be reduced. Lastly, the applications of the PCs' frequency bandgaps in phased arrays to suppress the mutual coupling between the phased array elements have been discussed. The PCs can improve the scan characteristics of phased array through ameliorating the wide-angle impedance matching and eliminating the scan blindness.
引文
[1]N.阿米特,V.加林德,C.P.吴著,陆雷译,相控阵天线理论与分析,北京:国防工业出版社,1978.
    [2]H.Y.Yang,R.Diaz and N.G.Alexopoulos.Reflection and transmission of waves from multilayer structures with planar-implanted periodic material blocks.Journal of the Optical Society of America B,1997,14(10):2513-2521.
    [3]Dan Sievenpiper,Lijun Zhang,Romulo F.Jimenez Broas,Nicholas G Alexopolous,and Eli Yablonovitch.High-impedance electromagnetic surfaces with a forbidden frequency band.IEEE Trans.on Microwave Theory and Techniques,1999,47(11):2059-2074.
    [4]Harry Contopanagos,Lijun Zhang and G.Alexopoulos.Thin frequency-selective lattices integrated in novel compact MIC,MMIC and PCA architectures.IEEE trans,on Microwave Theory and Techniques,1998,46(11):1936-1947.
    [5]Lijun Zhang.Numerical characterization of electromagnetic band-gap materials and applications in printed antennas and arrays.Ph.D.Dissertation,University of California at Los Angles,2000.
    [6]H.Y.D.Yang.Finite difference analysis of 2-D photonic crystals.IEEE Trans.on Microwave Theory and Techniques,1996,44(12):2688-2695.
    [7]W.Sun,K.Liu and C.A.Balanis.Analysis of singly and doubly periodic absorbers by frequency-domain finite difference method.IEEE Trans.on Antennas and Propagation,1996,44(6):798-805.
    [8]C.F.Yang,W.D.Burnside and R.C.Rudduck.A doublely periodic moment method solution for the analysis and design of an absorber covered wall.IEEE Trans.on Antennas and Propagation,1993,41(5):600-609.
    [9]H.Y.D.Yang.Characteristics of guided and leaky waves on multilayer thin-film structures with planar material gratings.IEEE Trans.on Microwave Theory and Techniques,1997,45(3):428-435.
    [10]H.Y.D.Yang.Surface waves of printed antennas on planar artificial periodic dielectric structures.IEEE Trans.on Antenna and Propagation,2001,49(3):444-450.
    [11]Yunqi Fu,Chuangming Tong,Cuohua Zhang and Naichang Yuan.Guided and leaky waves characteristics of periodic microstrip structures.Microwave and Optical Technology Letters,2003,35(6):136-138.
    [12]文舸一,徐金平,漆一宏.电磁场数值计算的现代方法,第六章.河南科学技术出版社,1994.
    [13]T.Itoh and W.Menzel.A full wave analysis method for open microstrip structures.IEEE Trans Antenna Propagat.,vol.29,Jan.1981:63-68.
    [14]Lucio Vegui,Renato Cicchetti,and.Pasquale Capece.Spectral dyadic Green's function formulation for planar integrated structures.IEEE Trans Antenna Propagat.,vol.36,Aug.1988:1057-1065.
    [15]凌峰,方大纲.用谱域导抗法推导平面分层介质各林函数的一般表达式.微波学报,vol.12,Jun.1996:83-88.
    [16]方大纲.电磁理论中的谱域方法.安徽,安徽教育出版社,1996.
    [17]李世智,电磁辐射与散射问题的矩量法,电子工业出版社,1985.
    [18]David M.Pozar,and Daniel H.Schaubert.Analysis of infinite array of rectangular microstrip patches with idealized probe feed.IEEE Trans Antennas Propagat.,vol.32,Oct.1984:1101-1107.
    [19]M.A.Jensen and Y.Rahmat-Samii.Performance analysis of antenna for hand-held transceivers using FDTD.IEEE Trans Antennas Propagat.,vol.42,1994:1106-1113.
    [20]G.F.Hermann.Note on interpolational basis functions in the method of moments.IEEE Trans Antennas Propagat.,vol.38,1990:134-137.
    [21]T.W.Nuteson,K.Naishadham,and R.Mittra.Spatial interpolation of the moment matrix in electromagnetie scattering and radiation problems,in IEEE Antenna Propagat.Soc.Int.Symp.Dig.,June 1993,Ann Arbor,MI,860-863.
    [22]G.Veeehi,P.Pirinoli,L.Matekovits,and M.Orefice.Reduction of the filling time of method of moments matrices,in 11th Annu.Rev.Progress Appl.Computat.Eleetromagn.,Mar 1995,Monterey,CA,600-605.
    [23]G.J.Burke,E.K.Miller,S.Chakrebarti,and K.Demarest.Using model-based parameter estimation to increase the efficiency of computing electromagnetic transfer-functions.IEEE Trans Magn.,vol.25,1989:2807-2809.
    [24]K.Kottapalli,T.K.Sarkar,Y.Hua,E.K.Miller,and G.J.Burke.Accurate computation of wide-band information.IEEE Trans Microwave Theory and Tech, vol.39,1991:682-687.
    [25]E.H.Newman,and D.Forrai.Scattering from a microstrip patch.IEEE Trans Antennas Propagat.,vol.35,1987:245-251.
    [26]E.H.Newman.Generation of wide-band data from the method of moments by interpolating the impedance matrix.IEEE Trans Antennas Propagat.,vol.36,1988:1820-1821.
    [27]K.L.Virga,and Y.Rahmat-Samii.Generation of wideband antenna performance by[Z]and[Y]matrix interpolation in the method of moments,in Ultra-Wideband Short Pulse-Electromagnetic Ⅲ,New York:Plenum,1996.
    [28]K.L.Virga,and Y.Rahmat-Samii.Efficient wide-band evaluation of mobile communications antennas using[Z]or[Y]matrix interpolation with the method of moments.IEEE Trans Antennas Propagat.,vol.47,1999:65-76.
    [29]W.C.Chew,J.M.Jian Ming Jin,E.Eric Michielssenn,and J.Jiming Song.Fast and Efficient Algorithms in Computational Electromagnetics.Boston,MA:Artech House,2001.
    [30]M.J.Buckly.linear arrays synthesis using hybrid genetic algorithms,in Proc.IEEE Antennas Propagat Soc.Int.Symp,Baltimore,MD,July 1996:584-587.
    [31]R.L.Haupt and A.S.Ali.Optimized backscattering sidelobes from an array of strips using a genetic algorithm,in Proc.AppI.Computat.Electromagn.Conf,Monterey,CA,Mar.1994:266-270.
    [32]J.M.Johnson and Y.Rahmat-Samii.Genetic algorithm in electromagenetics,in Proc.IEEE Trans.Antennas Propagat.Soc.Int.Symp.,Baltimore.,MD,July 1996:1480-1483.
    [33]D.S.Linden and E.E.Altschuler.The design of Yagi antennas using a genetic algorithms,in Proc.USNC/URSI Radio Sci.Meet,Baltimore.MD.July 1996:283.
    [34]-.Automating wire design using Genetic algorithms.Microwave J.vol.39,1996:74.
    [35]S.Martin,J.Rivory,and M.Shoenauer.Simulated Darwinian evolution of homogeneous multiplayer systems:A new method for optical coatings design.Opt.Communicat.,vol.110,1994:503-506.
    [36]E.Miehielessen,J.M.Sajer,and R.Mittra.Design of multilayered FSS and waveguide filter using genetic algorithms,in Proc.IEEE Antennas Propagat.Soc. Int.Symp,Ml,June 1993:1936-1939.
    [37]E.Michielssen,A.Boag,J.M.Sajer,and R.Mittra.Design of frequency selective surfaces using massively parallel genetic algorithms,in Proc.USRI.Radio Sci.Meet,Seattle,WA,June 1994:441.
    [38]K.Aygun,D.S.Weile,and E.Michielssen.Design of multilayered strip gratings by genetic algorithms.Microwave Opt.Tech.Lett,vol.42,1997:81-85.
    [39]G.F.Uler,O.A.Mohammed,and C.S.Koh.Utilizing genetic algorithms for the optimal design of electromagnetic devices.IEEE Trans Magn.,vol.30,1994:4296-4298,Nov 1994.
    [40]O.A.Mohammed,and G F.Uler.Genetic algorithms for the optimal design of electromagnetic devices,in Proc 11th Annual.Rev.Progress appl.Computat.Electromagn.,Montery,CA,Mar 1995:384-392.
    [41]A.A.Arkadan,T.Sareen,and S.Subramanian.Genetic algorithms for nondestructive testing in crack evaluation.IEEE Trans Magn.,vol.30,1994:4320-4322
    [42]J.M.Johnson,and Y.Rahmat-Samii.Genetic algorithm optimization of wireless communication network.Soc.Int.Symp.,Newport Beach,CA,June 1995:1964-1967.
    [43]J.Huang,T.K.Wu,and S.W.Lee.Tri-band FSS with circular ring elements.IEEE Trans Antennas Propagat.,vol.42,1994:166-175.
    [44]Uchida K.,Nodar T and Matsunga T..Electromagnetic Wave Scattering by an Infinite Patch Array on a Dielectric Slab.Trans.IEICE,vol.74,1991:4165-4171.
    [45]Raj Mittra,Chi H.Chan and Tom Cwik.Techniques for Analyzing Frequency Selective Surfaces-A Review.Proceedings of The IEEE,vol.76,1988:1593-1614.
    [46]C.H.Chan and R.Mittra.Analysis of a Classical Cylindrical Multiconductor Transmission Lines Using an Iterative Approach.IEEE Trans Microwave Theory and Tech,vol.35,1987:415-424.
    [47]C.H.Tsao and R.Mittra.Spectral-Domain Analysis of Frequency Selective Surfaces Comprised of Periodic Arrays of Cross Dipoles and Jerusalem Cross.IEEE Trans Antennas Propagat.,vol.32,1984:478-486.
    [48]Barry J.Rubin and Henry L.Bertonl.Reflection from Periodically Perforated Plane Using a Subsectional Current Approximation.IEEE Trans.Antennas Propagat.,vol.31,1983:829-836.
    [49]C.H.Chan.A numerically efficient technique for the method of moment of electromagnetic problem associated with planar periodic surfaces.Opt.Microwave Techn.Lett.,1988:372-374.
    [50]P.Harms,R.Mittra and W.Ko.Implementation of the periodic boundary condition in the finite-difference time-time domain algorithm for FSS structures.IEEE Trans Antennas Propagat.,vol.42,1994:1317-1324.
    [51]R.Ulrich.Far-infrared properties of metallic mesh and its complementary structure.Infrared Phys,vol.7,1967:37-35.
    [52]M.S.Durschlag and T.A.Detemple.far-IR optical properties of freestanding and dielectrically backed metal meshes.Appl.Opt.,vol.20,1983:37-55.
    [53]Richard C.Hall,R.Mittra and Kenneth M.Mitzner.Analysis of Mutilayered Periodic Structures Using Generalized Scattering Matrix Theory.IEEE Trans.Antennas Propagat.,vol.36,1998:511-517.
    [54]BEN A.MUNK.FREQUENCY SELECTIVE SURFACE Theory and Design.Wiley,New York,2001.
    [55]S.Dey and R.Mittra.Compact microstrip patch antenna.Microwave Opt.Technol.Lett.,vol.13,Sept.1996:12-14.
    [56]J.George,M.Deepukumar,C.K.Aanandan,P.Mohanan,and K.G.Nair.New compact microstrip antenna.Electron.Lett.,vol.32,March 1996:508-509.
    [57]K.L.Wong,C.L.Tang,and H.T.Chen.Acompact meandered circular microstrip antenna with a shorting pin.Microwave Opt.Technol.Lett.,vol.15,June 1997:147-149.
    [58]C.K.Wu,K.L.Wong,and W.S.Chen.Slot-coupled meandered microstrip antenna for compact dual-frequency operation.Electron.Lett.,vol.34,May 1998:1047-1048.
    [59]J.H.Lu and K.L.Wong.Slot-loaded,meandered rectangular microstrip antenna with compact dual-frequency operation.Electron.Lett.,vol.34,May 1998:1048-1050.
    [60]C.Mias.Frequency selective absorption using lumped element frequency selective surface.Electron.Lett.,vol.39,2003:847-849.
    [61]A.Tennant and B Chambers.A Single-Layer Tuneable Microwave Absorber Using an Active FSS.IEEE Microwave and Wireless Components Lett.,vol.14, 2004:46-47.
    [62]Rafael Pous and David M.Pozar.A Frequency-Selective Surface Using Aperture-Coupled Microstrip Patches.IEEE Trans Antennas Propagat.,vol.39,1991:1763-1769.
    [63]AMITAY.N.,GALINDO.Y.,and CHENG PACK WU.Theory and analysis of phased array antennas.Wiley-Interscience,1972.
    [64]H.A.Wheeler.A Survey of the Simulator Techniques for Designing a Radiation Element in a Phased-Array Antenna.In Proc.1970 Symp.Phased Array Antennas:157-172.
    [65]H.Peitgen,H.Jurgens,and D.Saupe.New Frontiers of Scidence.New York:Springer-Verlag,1992.
    [66]C.Puente,J.Romeu,R.Pous,X.Garcia and F.Benitez.Fractal Multiband Antenna Based on the Sierpinski Gasket.Electron.Lett.,vol.32,Jan,1996:1-2.
    [67]J.Romeu and Y.Rahmat-Samii.Dual Band FSS with Fractal Elements.Electron.Lett.,vol.35,Apr,1999:702-703.
    [68]John P.Gianvittorio,Jordi Romeu,Sebastian Blanch and Yahya Rahmat-Samii.Self-Similar Prefractal Frequency Selective Surfaces for Multiband and Dual-Polarized Applications.IEEE Trans Antennas Propagat.,vol.51,November,2003:3088-3096.
    [69]R.J.Langley and E.A.Parker.Equivalent Circuit Model for Arrays of Square Loops.Electron.Lett.,vol.18,April 1982:294-296.
    [70]S.Chakravarty and R.Mittra.Application of the micro-genetic algorithm to the design of spatial filters with frequency-selective surfaces embedded in dielectric media.IEEE Trans.Electromagn.Compat.,vol.44,2002:338-346.
    [71]Daniel S.Weile and Eric Michielssen.Genetic Algorithm Optimization Applied to Electromagneties:A Review.IEEE Trans Antennas Propagat.,vol.45,March,1997:343-353.
    [72]S.Chakravarty,R.Mittra and Neil Rhodes.On the Application of the Microgenetic Algorithm to the Design of Broad-Band Microwave Absorbers Comprising Frequency-Selective Surfaces Embedded in Multilayered Dielectric Media.IEEE Trans Microwave Theory and Tech,vol.49,June,2001:1050-1059.
    [73]S.Chakravarty and R.Mittra.Application of a Microgenetic Algorithm(MGA)to the Design of Broad-Band Microwave Absorbers Using Multiple Frequency-Selective Surface Screens Buried in Dielectrics.IEEE Trans Antennas Propagat.,vol.50,March,2002:284-296.
    [74]Maurizio Bozzi,Giuliano Manara,Agostino Monorchio and Luca Perregrini.Automatic Design of Inductive FSSs Using the Genetic Algorithm and MoM/BI-RME Analysis.IEEE Antennas and Wireless Propagation Lett.,vol.1,2002:196-199.
    [75]E.A.Parker,A.D.Chuprin,J.C.Batchelor and S.B.Savia.GA optimization of crossed dipole FSS array geometry.Electron.Lett.,vol.37,2001:996-997.
    [76]E.Yablonovitch.Inhibited spontaneous emission in solid-state physics and electronics.Physical Review Letters.1987,58(20):2059-2062.
    [77]S.John.Strong localization of photons in certain disordered dielectric superlattices.Physical Review Letters.1987,58(20):2486-2489.
    [78]E.Yablonovitch.Photonic band-gap structures.Journal of the Optical Society of America B,vol 10,no.2,Feb.1993,pp:283-295.
    [79]E.Yablonovitch,T.J.Gmtter.Photonic band structure:the face-centered-cubic case.Phys.Rev.Lett.63(18),1989:1950-1953.
    [80]M.S.Kushwaha,P.Halevi,L.Dobrzynsi,B.Djafari-Rouhani.Acoustic band structure of periodic elastic composites.Physical Review Letters.1993,71(13):2022-2025.
    [81]M.M.Sigalas,C.M.Soukoulis.Elastic-wave propagation through disordered and/or absorptive layered systems.Physical Review B.1995,51(5):2780-2789.
    [82]I.E.Psarobas,N.Stefanou,A.Modinos.Phononic crystals with planar defects.Physical Review B.2000,62(9):5536-5540.
    [83]Chung K.B,Kim SH.Defect modes in a two-dimensional square-lattice photonic crystal.Opt.Commun.209(4-6),Aug.2002:229-235.
    [84]R.A.Shelby,D.R.Smith,S.Schultz.Experimental Verification of a Negative Index of Refraction.Science vol 292 6 Apr.2001:77-79.
    [85]D.R.Smith and D.Schurig.ElectromagneticWave Propagation in Media with Indefinite Permittivity and Permeability Tensors.Physical Review Letters,vol.90,no.7,Feb.2003.
    [86]Taesun Kim,and Chulhum Seo.A novel photonic bandgap structure for low-pass filter of wide stopband.IEEE Microwave Guided Wave Letters,2000,10(1):13-15.
    [87]Ian Rumsey,Melinda Piker-May and P.Keith Kelly.Photonic bandgap structure used as filters in microstfip circuits.IEEE Microwave Guided Wave Lett.,1998,8(10):336-339.
    [88]Kam Man Shum,Quan Xue,and Chi Hou Chan.Novel microstrip ring hybrid incorporating a PBG cell.IEEE Microwave Wireless Compo.Lett.,2001,6:258-260.
    [89]Michael J.Hill,Richard W.Ziolkowski,and John Papapolymerou.A high-Q reconfigurable planar EBG cavity resonator.IEEE Microwave Wireless Compo.Lett.,vol.6,2001:255-257.
    [90]Tae-yeoul Yun and Kai Chang.One-dimensional photonic bandgap resonators and varactor tuned resonators.1999 IEEE MTT-S Digest,1629-1632.
    [91]V.Radisic,Y.Qian and T.Itoh.Broadband power amplifier using dielectric photonic bandgap structure.IEEE Microwave Guided Wave Lett.,vol.8,1998:13-14.
    [92]Fei-Ran Yang,Yongxi Qian,Roberto Coccioli,and Tatsuo Itoh.A novle low-loss slow-wave microstrip structure.IEEE Microwave Guided Wave Lett.,vol.8,1998:372-374.
    [93]Yasushi Horri,and Makoto Tsutsumi.Suppression of the harmonic radiation from the PBG microstrip antenna.1999 IEEE MTT-S,724-727.
    [94]Dan Sievenpiper,Lijun Zhang,Romulo F.Jimenez Broas,Nicholas G.Alexopolous,and Eli Yablonovitch.High-impedance electromagnetic surfaces with a forbidden frequency band.IEEE Trans.On Microwave Theory and Techniques,vol.47,Nov.1999:2059-2074.
    [95]M.P.Kesler,J.G.Maloney and B.L.Shirley.Antenna design with the use of photonic bandgap materials as all dielectric planar reflectors.Microwave Opt.Tech.Lett.,1996,11(3):169-174.
    [96]T.J.Ellis and G.M.Rebeiz.MM-wave tapered slot antennas on micromachined photonic bandgap dielectrics.IEEE MTT-S,Int.Microwave Symp.Dig.1996:1157-1160.
    [97]Y.Qian,R.Coccioli,D.Sievenpiper,V.Radisic,E.Yablonovitch,and T.Itoh.A microstfip patch antenna using novel photonic band-gap structures.Microwave J.,vol.42,no.1,p.66-76,Nov.1999.
    [98]Ramon Gonzalo,Peter de Maagt and Mario Sorolla.Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap structures. IEEE Trans. Microwave Theory Techniq, vol. 47,1999:2131-2138.
    [99] Roberto Coccioli, Fei-Ran Yang, Kuang-Ping Ma, and T. Itoh. Aperture coupled patch antenna on UC-PBG substrate. IEEE trans, on Microwave Theory and Techniques, vol. 47, Nov. 1999:2123-2130.
    [100] G. Poilasne, P. Pouliguen, K. Mahdjoubi, J. Lenormand, C. Terret, and Ph. Gelin. Theoretical study of grating lobes reduction using metallic photonic bandgap materials. Microwave and Optical Technology Letters, vol.18, May 1998:32-41.
    [101] Sailing He. An explicit and efficient method for obtaining the radiation characteristics of wire antenna in metallic photonic bandgap structures. Microwave and Optical Technology Letters, vol.22, July 2000.
    [102] P. Keith Kelly, Leo Diaz, Melinda Piket-May, and Ian Rumsey. Investigation of scan blindness mitigation using photonic bandgap structure in phased arrays. SPIE vol. 3436, July 1998:239-247.
    [103] Balasundaram Elamaran, Iao-Mak Chio, Liang-Yu Chen, and Jung-Chih Chiao. Using reconfigurable PBG structure for phase shifting in a planar phased array. 2000 IEEE International Symp. on Antenna and Propag. And USNC/URSI National Radio Science Meeting, Salt Lake City, Utah, July 2000.
    [104] L. O. McMillan, N. V. Shuley and P. W. Davis. Leaky fields on microstrip, Progress In Electromagnetics Research. PIER 17, 323 - 337,1997.
    [105] Ching-Kuang, C. Tzuang. Leaky mode perspective on printed antenna. Proc. Natl. Sci. Counc. ROC(A) vol. 23, No. 4,1999: 544-549.
    [106] K. M. Leung, and Y. F. Liu. Photo band structures: the plane-wave method. Physical Review B, vol.41, no 11, 1990: 10188-10190.
    [107] M. Plihal, and A. A. Maradudin. Photonic band structure of two-dimensional systems: the triangular lattice. Physical Review B, vol.44, no 16, Oct. 1991: 8565-8571.
    [108] K. M. Leung, and Y. F. Liu. Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media. Physical Review Letters, vol.65, no 21, Nov. 1990: 2646-2649.
    [109] J. B. Pendry, and P. M Bell. Transfer matrix techniques for electromagnetic waves. Photonic band gap materials, edited by Costas M. Soukoulis, Kluwer Academic Publishers/NATO ASI Series, 1996.
    [110]M.Sigalas,C.M.Soukoulis,E.N.Economou,C.T.Chart,and K.M.Ho.Photonie band gaps and defects in two dimensions:studies of the transmission coefficient.Physical Review B,vol.48,no 19,Nov.1993:14121-14126.
    [111]S.Fan,P.R.Villeneuve,J.D.Joasnnopoulos.Large omnidirectional band gaps in metallodielectric photonic crystals.Physical Rieview B,vol.54,no 16,Oct.1996:112454-11251.
    [112]M Thevenot,A.Reineix,and B.Jecko.A new FDTD surface impedance formulism to study PBG structures.Microwave and Optical Technology Letters,vol.18,no.3,June 1998:203-206.
    [113]Hung Yu David Yang.Finite different analysis of 2-D photonic crystals.IEEE trans,on Microwave Theory and Techniques,vol.44,Dec.1996:2688-2695.
    [114]Harry Contopanagos,Lijun Zhang,and G.Alexopoulos.Thin frequency-selective lattices integrated in novel compact MIC,MMIC and PCA architectures.IEEE trans,on Microwave Theory and Techniques,vol.46,Nov.1998:1936-1947.
    [115]Lijun Zhang.Numerical characterization of electromagnetic band-gap materials and applications in printed antennas and arrays.Ph.D.Dissertation,University of California at Los Angles,2000.
    [116]Huang Yu David Yang.Characteristics of guided and leaky waves on multilayer thin-film structures with planar material gratings.IEEE Trans.on Microwave Theory and Techniques,vol.45,Mar.1997:428-435.
    [117]Huang Yu David Yang.Surface waves of printed antennas on planar artificial periodic dielectric structures.IEEE trans,on Antenna and Propagation,vol.49,Mar.2001:444-450.
    [118]Hung-Yu David Yang,Rodolfo Diaz,and Nicolaos G.Alexopoulos.Reflection and transmission of waves from multilayer structures with planar-implanted periodic material blocks.Journal of the Optical Society of America B,vol.14,no.10,Oct.1997:2513-2521.
    [119]Yee K S.Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropie Media.IEEE Trans.AP,1966,14(2):302-307.
    [120]Taflove A.Advances in computational electromagnetics:the finite difference time-domain method.Artech House,Boston London,1998:396.
    [121]P.H.Harms,R.Mittra,W.Ko.Implementatino of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures.IEEE Trans.on Antenna and Propagation,vol.42,1994:1317-1324.
    [122]J.A.Roden,S.D.Gedney,M.P.Kesler,etc..Time-domain analysis of periodic structures at oblique incidence:orthogonal and nonorthogonal FDTD implementations.IEEE Trans.on Microwave Theory and Techniques,vol.46,no.4,1998:420-426.
    [123]P.Keith Kelly,Leo Diaz,Melinda Pikct-May,and Ian Rumsey.Investigation of scan blindness mitigation using photonic bandgap structure in phased arrays.SPIE vol.3436,July 1998:239-247.
    [124]Roberto Coccioli,Fei-Ran Yang,Kuang-Ping Ma,and T.Itch.Aperture coupled patch antenna on UC-PBG substrate.IEEE trans,on Microwave Theory and Techniques,vol.47,Nov.1999:2123-2130.
    [125]李世智,电磁辐射与散射问题的矩量法,电子工业出版社,1985.
    [126]方俊鑫,陆栋.固体物理.上海科学技术出版社,1981.
    [127]王辉,李永平.用特征矩阵法计算光子晶体的带隙结构.物理学报,vol.50,2001:2172-2178.
    [128]欧阳征标,朱俊,李景镇.两端有慢变结构的光子晶体的能带特性研究.光学学报,vol.22,May 2002:612-615.
    [129]Yong-Hong Ye,Georges Bader,and Vo-Van Truong.Low-loss one-dimensional metallodielectric phonotic crystals fabricated by metallic insertions in a multilayer dielectric structure.Applied Physics Letters,2000,77(3):235-237.
    [130]M.J.Bloomer,A.S.Pethel,J.P.Dowling,etc..Transparent metallo- dielectric one-dimensional photonic band-gap structures.Journal Of Applied Physics,1998,83(5):2377-2383.
    [131]E.D.Palik.Handbook of Optical Constants of Solids.(Academic,New York,1985).
    [132]J.Sor,Y.Qian,and T.Itoh.A novel low-loss slow-wave CPW periodic structure for filter application.2001 IEEE MTT-S Digest.
    [133]Dusan Nesie.ANew Type of Slow-Wave 1-D PBG Microstrip Structure without Etching in the Ground Plane for Filter and other Applications.Microwave and Optical Technology Letters,vol.33,2002:440-443.
    [134]C.P.Wen.Coplanar waveguide,a surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,in IEEE G-MTT Symp.Dig.Dallas,TX 1969,110-115.
    [135]K.C.Gupta,R.Garg,I.Bahl,and P.Bhartia.Microstrip Lines and Slotlines.Norwood.MA:Artech House.1996.
    [136]付云起.微波光子晶体及其应用研究.国防科学技术大学博士学位论文,2004.
    [137]Huang Yu David Yang.Characteristics of guided and leaky waves on multilayer thin-film structures with planar material gratings.IEEE Trans.on Microwave Theory and Techniques,vol.45,Mar.1997:428-435.
    [138]H.Y.D.Yang.Surface-wave Elimination in Integrated Circuits with Periodic Substrates.Electromagnetics,vol.20,2000:188-193.
    [139]D.Sievenpiper.High-impedance electromagnetic surfaces.Ph.D.Dissertation,University of California at Los Angles,1999.
    [140]黎滨洪编,表面电磁波和介质波导,上海:上海交通大学出版社,1990.
    [141]张克潜,李德杰编著,微波与光电子学中的电磁理论,北京:电子工业出版社,1994.
    [142]F.R.Yang,K.P.Ma,Y.X.Qian and T.Itoh.A novel TEM waveguide using uniplanar compact photonic-bandgap(UC-PBG)structure.IEEE Trans.on Microwave Theory and Techniques,vol.47,1999:2092-2098.
    [143](美)琼斯著,洪旗等译.隐身技术--黑色魔力的艺术.北京:航空工业出版社,1991
    [144](英)理查森著,魏志祥等译.现代隐身飞机.北京:科学出版社,1991
    [145](美)克拉特著,阮颍铮译.雷达散射截面--预估,测量和缩减.北京:电子工业出版社,1988
    [146]阮颖铮编著.雷达散射截面与隐身技术.北京:国防工业出版社,1998
    [147]夏新仁.隐身技术发展现状与趋势.中国航天,2002,(1):40-44
    [148]黄培康.隐身威胁与雷达反隐身.雷达四抗技术研讨会论文集,1991
    [149]刘志文,柯有安.雷达反隐身的若干问题与技术途径.现代雷达,1992,14(3):1-9
    [150]倪养华,薛麒麟.隐身目标的频率特性分析及其频域对抗技术探讨.上海交通大学科技交流室,1987
    [151]周文瑜,张长爱.天波超视距雷达反隐身技术.反隐身技术文集,1990,102-108
    [152]赵尚弘,杨晓铁,谢小平.宽带冲击雷达与反隐形技术.空军工程大学学报(自然科学版),2000,1(2):82-85
    [153]何建国,陆仲良,刘克成.超宽带雷达反隐身机理研究.国防科技大学学报,1997,19(1):70-76
    [154]W.B.Scott,L.Calif.UWB radar have potential to dectect stealth aircraft.Aviation Week Slots.IEEE trans,on Antenna and Propagation,vol.31,Jan.1983:48-53.
    [168]J.P.Montgomery.On the Complete Eigenvalue Solution of Ridge Waveguide.IEEE Trans.On Microwave Theory and Techniques,vol.19,Jun.1971:547-555.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.