土与结构相互作用体系随机地震反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土与结构相互作用体系随机反应分析是地震工程领域中的前沿课题之一,地震动的三要素(持时、强度和频谱)都具有明显的随机性,把随机振动理论应用于土与结构相互作用体系地震反应分析的合理性是显而易见的。目前,关于土与结构相互作用体系随机反应分析的研究成果较少,与这一理论的先进性是很不相称的。本文详细地研究了土与结构相互作用体系随机地震反应分析方法,并对该方法的实际应用中的一些问题提出了作者的一些见解和处理方法。随机振动分析具有如下的特点:(1)随机振动反应得出的是响应的均值,它包含了大量时程曲线统计信息,比单一的时程曲线分析得出的结果更具有代表性和普遍性,(2)求出的最大值的均值较为直观,而不象时程分析那样繁琐。(3)随机振动反应输入的是功率谱,这实际上是从能量的角度来分析问题。
     在结构动力时程分析方法和以随机振动理论为基础的概率设计理论日臻完善的现阶段,了解地震作用下结构体系动力反应全过程和具有概率统计意义上的土与结构相互作用体系地震响应不仅是可行的,而且也是非常必要的。开展这方面的研究对结构抗震设计及动力可靠度的研究都具有重要意义。
     本文的研究内容如下:
     为了对所研究的问题有一个全面的了解,第一章对土与结构相互作用问题作了简要概括,并确定了本文研究的内容,包括土与结构相互作用体系动力特性研究;基于反应谱的随机地震反应分析;基于地震动模型的随机响应分析;上部结构非线性对相互作用体系影响分析;地基二土分层特性和非线性特性以及基础埋深对相互作用体系随机响应影响分析。
     土与结构相互作用体系随机地震反应分析首先考虑的是地震动的输入问题。第二章简要地介绍了随机地震动模型的几种表达方式,结合前人的研究成果和规范GB50011-2001对应的不同场地和烈度的有关数据,计算得到所需要的有关参数,并以此参数作为随机地震动输入为后续研究相互作用体系的随机反应分析提供依据。
     土与结构相互作用体系随机反应分析要考虑的第二个问题是关于地基阻抗的确定,它是土与结构相互作用体系随机反应分析的基础性工作。第三章,据前人的研究成果,推导了计算地基阻抗的表达式,考虑了基础埋深、地基土分层特性以及地基土的非线性特性,并对地基阻抗表达式中的参数进行了确定。
    
     土与结构相互作用体系自振特性是相互作用的基本问题,它是进行动力相互作用分析的基
     础。结构体系的固有频率和阻尼对体系响应具有重要的影响。第四章建立了1--与结构相互作用体
     系随机地震反应分析的方法—频响函数法。对土与结构相互作用体系的自振特性进行了系统的
    研究。研究表明随着场地的变软,土与结构相互作用体系的周期与刚性地基假定计算的周期相比
    变长;场地十二非线性特性和分层特性使相互作用体系的周期变长;基础的埋深对相互作用体系的
    周期影响较小。
     反应谱分析方法是目前抗震设计的一种重要方法,抗震设计者普遍接受了反应谱概念,认为
    反应谱法可以更好地描述地震动及结构特性。迄今为止世界上大多数国家仍然把反应谱法作为抗
    震设计的主要方法。第五章基于反应谱方法,根据反应谱与功率谱之间的关系,建立了土与结构
    相互作用体系随机地震反应分析的反应谱方法,分别考虑地震动平稳过程和非平稳过程对相互作
    用体系影响进行了随机地震反应分析。该方法与目前抗震规范的反应谱分析方法相协调。
     地面运动具有明显的随机性,把地面运动作为随机过程描述是科学、合理的。第六章进行了
    基于随机地震动模型的土与结构相互作用体系随机反应分析,地面输入运动为功率谱密度函数,
    考虑地震动强度非平稳性和频谱非平稳性对相互作用系统的影响,根据线性时不变系统的动力特
    性,利用脉冲响应函数与频响函数之间的关系,得到体系响应的统计量和随机响应演变谱,并对
    地震动谱参数取不同值时对相互作用体系影响进行了详细的分析,迄今为止还没有人对此做过研
    究。关于地震动频谱的非平稳性对土与结构相互作用体系的影响迄今为止也没有人做过研究。
     在强震作用下,土与结构相互作用体系一般不再保持低频时的线弹性状态,也就是说结构体
    系大都要进入非线性状态。第七章对土与结构相互作用非线性体系进行了随机地震反应分析,考
    虑上部结构的非线性情况,把非线性结构系统等效线性化进行随机反应分析。
     在强震作用下,不仅上部结构可能进入非线性状态,而地基土也可能进入非线性状态。第八
    章同时考虑结构和地基土的非线性,对土与结构相互作用体系进行随机反应分析,同时还考虑基
    础理置深度对相互作用体系的影响。通过分析表明,考虑土与结构相互作用体系的非线性特性,
    体系的响应量明显增大,并通过实际结构震灾算例说明相互作用体系的非线性效应。第九章为结
    论与展望。通过前面系统的研究,在对土与结构相互作用体系进行随机分析时,应考虑地震动强
    度非平稳、频率非平稳和持时的影响。尽管本文对土与结构相互作用体系随机地震反应进行了系
    统研究,由于土与结构相互作用体系问题的复杂性、地震动参数统计的局限性、地基阻抗函数确
    定的困难性以及分析方法的
The stochastic response analysis of the soil-structure interaction system is one of advancing front subject. The three element factors (endurance time, intensity, frequency spectrum) of earthquake motion have obvious random characteristics, and the random vibration theory applied the stochastic response analysis of soil-structure interaction system is obvious ration. At the present time, the research achievement is few for random response analysis of soil-structure interaction system, and it is not matching about advancing of random vibration theory. The random response method for soil-structure interaction system is studied systematically at this dissertation, and the suggestions and treating methods about the practice application are proposed. The random seismic response analysis has characteristics: (1) it obtains mean value for random seismic response and includes large-tonnage time-dependent curve statistic information; (2) it is intuitive manner for mean value and not inconvenient as time-dependent met
    hod; (3) it inputs power spectrum and analysis for the problem from power.
    The time-dependent analysis method and random vibration theory method is gradual perfection and it is feasible and necessary to knows whole process for soil-structure interaction system and seismic response with statistic significance. It has important significance for seismic design and probability analysis.
    Some main achievements of this dissertation are described as follows:
    At chapter 1, a brief summary and a primary introduction is given to soil-structure interaction system and contents of research is given.
    The first consideration is input problem of the earthquake motion for soil-structure interaction system. Some expresses of earthquake motion model are introduced, and calculation parameters for earthquake motion model using data of code GB0051-2001 are obtained at the chapter2, and it is base for the analysis of interaction system.
    The second consideration is the compliance functions of foundation, and it is a basis work for soil-structure interaction system random response analysis. The chapter3 is a primary description of some foundation models, and deduces calculation formula of the compliance functions of foundation based on achievement of predecessors and the paramters of the compliance functions of foundation is determined.
    The free vibration characteristics of soil-structure interaction system is basic problem of interaction system. It is the base of the dynamic interaction system analysis. The natural frequency and damping of interaction system has important effect to system response. At
    
    
    
    the chapter4, the free vibration characteristics of soil-structure interaction system are studied, and the effects and some useful results are obtained.
    The response spectrum method is a important method for seismic design, and seismic designers accepted the method generally, and they think that response spectrum method can describe characteristics of earthquake motion and structural system. At the chapter5, based on spectrum method, and the relation of power spectrum and response spectrum, the stochastic analysis method of soil-structure interaction system is established, and the effects of the stationary random process and the evolutionary random process of soil-structure interaction system response is considered. The method can match code GB0051-2001.
    The ground motion has obviously stochastic, and it is described with the stochastic process method is science and ration. At the chapter6, based on random earthquake motion model, soil-structure interaction system stochastic response is studied, and input motion is power spectrum density function, and effects of frequency non-stationary characteristics and intensity non-stationary characteristics is considered. According to the time-invariant system with the hysteretic material damping and the transfer behavior of influence function and response function, the stationary and non-stationary mean square response and their spectral parameters are obtained. The effects of the spectr
引文
[1] 张楚汉.结构—地基动力相互作用问题.结构与介质相互作用理论及应用[M],1993,河海大学出版社
    [2] 熊建国,土与结构相互作用问题的新进展(Ⅰ),世界地震工程[J],1992(3)
    [3] 熊建国,土与结构相互作用问题的新进展(Ⅱ),世界地震工程[J],1992(4)
    [4] 门玉明,土与结构相互作用问题的研究现状及展望,力学与实践[J],2000,Vol.22,No.4
    [5] 李辉,土与结构相互作用研究综述,重庆建筑大学学报[J],2000,Vol.22,No.1
    [6] J P wolf.土与结构相互作用[M],1989,地震出版社
    [7] 窦立军,土与结构相互作用几个实际应用问题,世界地震工程[J],1999,Vol.15,No.4
    [8] 孙树民,土与结构相互作用研究进展,中国海洋平台[J],2001,Vol.16,No.5~6
    [9] 土与结构相互作用地震反应研究及实用计算,建筑结构学报[J],1986,Vol.7,No.2
    [10] Parmelee R A. Building-foundation interaction effects, J. Soil Mech. Div., ASCE, 1966,92(1):65-91
    [11] Lamb H. On the propagations of tremor over the surface an elastic solid [J], Philos. Trans. Roy Soc. Ser. A, 1904, 203:1-42
    [12] Reissner E. Station are axial symmetrische durch eine Schuttelnde Massee rregte Schwingungen eines homogenen Halbraumes [J]. Ingenieur-Arch in. 1936,7(6): 381-396.
    [13] Bycroft G.N. Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum [J]. Philo. Trans. Roy. Soc.ser. 248:327-368.
    [14] Lysmer J. Richart F E. Dynamic response of footings to vertical loading [J]. J. Soil Mech Found Div. ASCE, 1966,92(1) 65-91.
    [15] Artur Pais. Approximate formulas for dynamic stiffness of rigid foundations. Soil dynamics and Earthquake Engineering. 7(4), 1988.
    [16] Wolf J P. Song C M. Dynamic stiffness of unbounded soil by finite element multi-cell cloning. Proceedings of the 5th international conference on soil dynamic and earthquake engineering. Karlsrule, 1991
    [17] 陈键云,多点输入随机地震动拱坝—地基体系反应分析,世界地震工程,2000,Vol.16,No.3
    [18] Housner, G, W. characteristics of strong motion earthquake. Bulletin of the seismogical society of America. 1947.37(1). 19-31
    [19] Kanai. K. semi-empirical formula for the seismic characteristics of ground. Bull. Seims. Earthq. Res. Inst.,Tokyo University, 1957,35, 306-325
    [20] Vanmarcke. E. H. properties of moments with applications to random vibration, ASCE,Vol98, April, 1972.
    
    
    [21] A. Derkiureghian, A Response Spectrum Method of random vibrations, EERL Report, U. C. B.1980.
    [22] M. P. Singn. Structural response under multicompont earthquake, ASCE, EM5, 1984.
    [23] Clong, R.W. and Penzien, J., dynamics of structures, McGraw Hill Inc, 1983,王光远译,结构动力学[M],1983,科学技术出版社
    [24] 欧进萍,设计用随机地震动的模型及其参数确定,地震工程与工程振动[J],1991,Vol.11.No.3
    [25] Housner.G.W and Jeannings. P.C, Generation of artificial earthquakes, J. Eng. Mech. Div, ASCE, Vol.90, EM1, 1964
    [26] M.Amin and A.H-S.Ang, non-stationary stochastic model of earthquake motions, ASCE, J Eng. Mech. Div, EM2,1968, 94(2):559-583
    [27] 周锡元,弹性体系在忽然平稳化地面运动下的反应.地震工程研究报告集[M].第一集,1982,科学出版社
    [28] 江近仁,多层砖房的地震可靠性分析[J],地震工程与工程振动[J],1985,Vol.5.No.3
    [29] Lai P. S-S. statistical characterization of strong ground motions using power spectral density function[J]. Bullet of the seismological society of American. 1982, 72(1):259-273
    [30] 杜修力,强震地面运动随机过程模拟,地震学报[J],1995,Vol.17,No.1
    [31] 牛荻涛,设计用随机地震动模型与参数的改进,西安冶金建筑学院学报[J],1994,Vol.26,No.1
    [32] Vanmarcke E H, Lai P S-S. strong ground motion duration and RMS amplitude of earthquake records[J], Bullet of the seismological society of American. 1980, 70(4):1293-1307
    [33] 欧进萍,基于随机地震动模型的结构随机地震反应谱方法及其应用,地震工程与工程振动[J],1994,Vol.14.No.1
    [34] Sues. R. E, Wen. Y. K, Ancahs, stochastic evaluation of seismic structural performance[J]. J Seism Struct Eng ASCE, 1985, 111(6): 1204-1218
    [35] 李小军,不同类别场地地震动参数的计算分析,地震工程与工程振动[J],2001,Vol.21,No.1
    [36] 江近仁,以反应谱和功率谱密度函数表征的强震运动的统计特性,中国地震[J],1994,Vol.10,No.4
    [37] 孙景江,与规范反应谱相对的金井清谱的谱参数,地震工程与工程振动[J],1985,Vol.5,No.3
    [38] Derkiureghian, A.D., Structural response to stationary excitation, ASCE, Vol. 106, No.EM6, 1980
    [39] Priestley M B. Power spectral analysis of non-stationary random responses. J Sound Vib, 1967, 6(1):86-97
    [40] Shinozuka M, Sato Y. Simulation of non-stationary random process. J Engr. Mech. ASCE, 1967, 93(1): 11-40
    [41] 建筑抗震设计规范GB50011-2001,1999,建筑工业出版社
    [42] 刘季等,土—高层建筑、高耸结构相互作用地震反应分析,哈尔滨建筑工程学院学报[J],1988(4)
    
    
    [43] A.S.Veletsos and Y.T.Wei, Lateral and rocking vibration of footings, J. Soil Mech. Found, div. ASCE97, 1971, 1227-1248
    [44] Veletsos A S, Verbic B. Vibration of viscoelastic foundations, Earthquake engineering and structural dynamics, Vol.2, No. 1, July-Sept. 1973,87-102
    [45] Mansour, Frequency-independent impedances of soil-structure system in horizontal and rocking modes, EESD, 1983, Vol. 11,523-540
    [46] Building seismic safety council, NEHRP recommended provision for seismic regulation for new buildings, part(1) provision and part(2) commentary[R], Rpt. FEMA302&303, federal emergency management agency, Washington D.C, 1997
    [47] F.E. Richart, J.R.Hall and R.D.Woods, vibration of soil and foundations, Prentice-Hall, Englewood Cliffs, NJ,1970
    [48] Wen-yu Jean, Tsung-wu Lin and Joseph Penzien: System Parameters of Soil Foundation for Time Domain Dynamic Analysis, earthquake engineering and structural dynamics, Vol. 19, 1990
    [49] Tajimi, H., "dynamic analysis of a structure embedded in a elastic stratum", proceedings 4 th world conference on earthquake engineering Santiago. Chile (1969) session A-6, pp, 53-69.
    [50] Bereduo, Y. O., Novak, M., "coupled horizontal and rocking vibration of embedded footings", Canadian geotechnical J., November, 1972, pp. 477-497
    [51] Yasui Y., Nakagawa, K., "sway-rocking vibration of rigid structure of embedded in a elastic stratum", Proceeding 5 th world conference on earthquake engineering, Rome, 1973,vol. 2, pp, 2662-2665
    [52] Harada. T., Kubo. K., "Dynamic(complex) stiffness and vibration of embedded cylinder rigid foundation", proceedings of the 5 th Japan earthquake engineering sympsium, 1978,pp. 401-408.
    [53] R.V.Whitman, Analysis of soil-structure interaction, a state of the art review, applications of experimental and theoretical structural dynamics, 1972,pp123-142
    [54] Novak. M., "vibration of embedded footings and structures", ASCE, National structural engineering meeting, 1973, Vol. 3. meeting preprint 2029
    [55] Novak, M., Sachs. K., "Tortional and coupled vibrations of embedded footings", 1st, J. of earthquake engineering and structural dynamics, vol. 2, 1973, pp
    [56] Pramelee, R., Kuddder, R. J., "Seismic soil-structure interaction of embedded buildings", Proceedings 5 th world conference on earthquake engineering, Rome, 1973, vol. 2, pp, 1941-1947.
    [57] Bielak, J., "Dynamic behaviour of structure with embedded foundations", earthquake engineering and structural dynamics, 1975, Vol. 3. pp. 259-274.
    [58] Veletsos, A. S. and B. Varbic, "vibration of viscoelastic foundations," EESD, Vol.2, 87-102,1973
    [59] Baranov, V. A., on the calculation of excited vibrations of embedded foundations, dynamic prochnosti, poletech inst, No. 14, 195-209, 1967
    
    
    [60] Beredugo, Y. O. and M. Novak, coupled horizontal and rocking vibration of embedded footings, Canadian geotechnical J. Vol 9,477-497, 1972
    [61] ACT with the SEAOC, Tentative provision for the development of seismic regulation for buildings,1978
    [62] Richart, F. E. et al., "vibration of soil and foundations, prentice-hall, inc. Englewood cliffs, new jersey, 1970
    [63] Wolf JP. Somaimi DR. approximate dynamic model of embedded foundation in time domain. EESD, 1986,14:683-703
    [64] Wolf JP. Song C. Doubly asymptotic muti-direction transmitting boundary for dynamic unbounded medium structure-interaction analysis, EESD, 1995,24:175-188
    [65] Kausel E. Local transmitting boundary. Journal of Engineering Mechanics, ASCE, 1988,144(6): 1011-1027
    [66] De Barros FCP, Luco JE. Discrete model for vertical vibrations of surface and embedded foundations. EESD, 1990, 19:289-303
    [67] Veletsos A S, Verbic B. vibration of visco-elastic foundation[J], EESD, Vol.2, No.l, July-Sept, 1973,87-102
    [68] B. O. Hardin and V. P. Drnevich, shear modulus and damping in soils. Measurement and parameter effects, ASCE, Vo198. SM6. pp603-624, 1972.
    [79] WEN-HWA WU and H. ALLISON SMITH. Efficient model analysis for structures with soil-structure interaction. EESD, 1995, Vol.24, 283-299
    [70] Hadjian AH. Discussion of soil-structure interaction analysis for seismic response by seed, et al. JGT, ASCE, 1976,102(4): 380-384
    [71] 王松涛,现代抗震设计方法[M],中国建筑工业出版社,1997
    [72] A. S. Veletsos, dynamics of structure-foundation system,. structures and geotechnical, pp333-361,1977
    [73] Erik H. Vanmarcke, Structural response to earthquakes[M]. Seismic risk and engineering decisions, Chapter8, 1976, 287-337
    [74] 尹之潜,在地震荷载作用下多层框架结构的弹塑性分析,地震工程与工程振动[J],1981(2)
    [75] Maharaj Kaul: stochastic characterization of earthquakes through their response spectrum, earthquake Eng. Struco Dyn., Vol.6, No.5, Sept. Oct. 1978:497-509
    [76] 欧进萍,基于随机地震动模型的结构随机地震反应谱及应用,地震工程与工程振动[J],1994,Vol.14.No.1
    [78] 江近仁,功率谱与反应谱的转换和人造地震波,地震工程与工程振动[J],1984,4(3)
    [79] 张治勇,新抗震规范地震动功率谱模型参数的确定,世界地震工程[J],2000,Vol.16,No.3
    [80] 陈永祁,拟和标准反应谱的人工地震波,建筑结构学报[J],1981,2(4)
    
    
    [81] Shinozuka M. Engineering modeling of ground motion. Proc. of the 9th WCEE, Tokyo-Kyoto, Japan, 1988, 8:51-62
    [82] Kung Shyh-Yuan, Pecknold D A. Effect of ground motion characteristics on the seismic response of torsionally coupled elastic systems, 1982. 11-15
    [83] 霍俊荣,地面运动时程强度包线函数研究,地震工程与工程振动[J],1991,Vol.11,No.1
    [84] 马东辉,阻尼比对设计反应谱的影响分析,工程抗震[J],1995,Vol.17,No.4
    [85] 苏经宇,场地划分规范方法的比较分析,工程抗震[J],1995,Vol.17,No.2
    [86] 朱国祥,新旧抗震设计反应谱在地震作用计算上的比较,工程抗震[J],2002,Vol.22,No.4
    [87] Armen Der Kiureghian, structural response to stationary excitation, journal of the engineering mechanics division 1980 EM6
    [88] 俞载道等,随机振动理论及应用[M],1988,同济大学出版社
    [89] 张景绘,工程随机振动理论[M],p266
    [90] 星谷田胜著,常宝崎译,随机振动分析[M],1978,地震出版社
    [91] 萧鹤鳞,剪切型高层建筑结构对地震的随机响应分析,土木工程学报[J],1993,Vol.26,No.3
    [92] ANIL K. CHOPRA and JORGE A. GUTIEREZ, Earthquake response analysis of multistory buildings including foundation interaction. EESD, 1974, Vol.3, 65-77
    [93] 林家浩,受非平稳均匀调制随机演变激励结构响应快速精确算法,计算力学学报[J],1997,14(1)
    [94] 张亚辉,多点非均匀调制演变激励下结构地震响应,力学学报[J],2001,Vol33,No1
    [95] 曾德斌,单自由度系统的爆炸地震演变响应,爆炸与冲击[J],2002,Vol.22,No.1
    [96] 王君杰,线性系统在非平稳随机激励下的响应,地震工程与工程振动[J],1992,Vol.12,No.1
    [97] 陈国兴,高层建筑随机地震反应分析,南京建筑工程学院学报[J],1999,No.48
    [98] 陈国兴,非均匀土坝—维随机地震反应分析方法,工程抗震[J],1995,Vol.17,No.1
    [99] Spanos, P-T. D., Iwan, W. D., On the existence and uniqueness of solutions generated by equivalent linearization, nonlinear mechanics, Vol. 13, No.2, 1978
    [100] lwan, W.D., estimating inelastic response spectra from elastic spectra, EESD, Vol.8,No.4, 1980.
    [101] Gulkan.P., and Sozen, M.A., inelastic response of reinforced concrete structure to earthquake motions. J. ACI, Vol.71, No.12, 1974
    [102] 克老夫等著,王光远译,结构动力学[M]。1981,科技出版社
    [103] 江近仁,多自由度滞变结构随机地震反应分析的均值反应谱方法,地震工程与工程振动[J],1984,Vol.4,No.4
    [104] 杨柏坡,剪切梁式结构与弹性半空间的相互作用,地震工程与工程振动[J],1984,vol.4,No.3
    [105] M.I. Todorovska. Effect of the depth of the embedment on the system response during building-soil interaction. Soil Dynamics and earthquake engineering, 1992, 111-123
    [106] Akira Mita. Dynamic response of a square foundation embedded in an elastic half-space. Soil
    
    Dynamics and earthquake engineering, 1989, Vol.8, No.2
    [107] Luco, J. E. and Wang, H. L. Dynamic response of a hemispherical foundation embedded in a viscoelastic half-space. Journal of Engineering Mechanics. 1986,112,1363-1374
    [108] JAVIER AVILES and LUIS E. PEREZ-ROCHA. Effects of foundation embedment during building-soil interaction. EESD, 1998, 27, 1523-1540
    [109] 吕西林,结构—地基动力相互作用体系的振动台模型试验研究,地震工程与工程振动[J],2000,Vol.20,No.4
    [110] 方同,两类演变激励下的响应问题,西北工业大学学报[J],1997,Vol15,No.4
    [111] 庄表中,结构随机振动[M],1993,国防工业出版社
    [112] 王开顺,地基阻抗与结构地震反应,地震工程与工程振动[J],1985,Vol.5,No.2
    [113] 甘幼堔,随机振动的基本理论与应用[M],1981,湖南科学技术出版社
    [114] 庄表中,非线性随机振动理论及应用[M],1986,浙江大学出版社
    [115] 薛定宇,科学运算语言Matlab程序设计与应用[M],2000,清华大学出版社
    [116] 中国振动工程学报、土动力学专业委员会编著,土动力学工程应用实例与分析[M],1998,中国建筑工业出版社
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.