A/O工艺结合高效菌技术处理武钢焦化废水的中试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焦化废水含有大量氮杂环化合物和多环芳烃等难降解有机毒物,传统生物方法对其处理效果不佳,往往使系统出水难以稳定达标,向原有系统中投加针对性强的高效菌作为一种常用的生物强化手段,可以有效解决这一难题,已经开始应用于各大焦化厂废水处理系统。本课题组根据武钢焦化废水的水质特点,将课题组筛选的高效菌应用于武钢焦化公司A/O中试装置,进行生物强化研究。
     研究结果表明:结合了高效菌技术的A/O工艺对有机物和氨氮去除效果良好,在中试系统稳定运行期间,当系统进水COD浓度为1000~1700mg/L时,系统对COD的总去除率最高可达到95%,出水COD浓度可以控制在150mg/L以内,多数情况下可低于100mg/L;当进水氨氮浓度为100~300mg/L时,氨氮脱除率可超过97%,出水氨氮可低于10mg/L,出水混凝后COD和氨氮均达到国家一级排放标准(GB8978-1996)。
     系统稳定运行期间,缺氧池反硝化运行效果良好,在没有外加碳源的情况下,反硝化率达到50%~74%,缺氧池的COD脱除率占到20%~42%,反硝化脱氮效果越好,越有利于COD在缺氧池中的去除。系统回流比为3时较为适宜,回流比超过3时,缺氧池溶解氧上升较快,不利于反硝化的正常运行。缺氧池进水NO_3~--N/C小于0.147时,缺氧池反硝化率与NO_3~--N/C比值呈正相关关系,当NO_3~--N/C大于0.2时,反硝化碳源相对不足,此时硝酸氮浓度越高,缺氧池反硝化率越低。缺氧池适宜pH范围为7.2~7.8。
     好氧池进水COD/NH3-N低于4时,硝化反应运行效果较好,氨氮去除率高于95%,好氧池硝化反应对高负荷有机物适应性强,当好氧池进水COD高达1100mg/L左右,COD/NH3-N超过5.7时,氨氮去除率仍可达到90%左右。好氧池水力停留时间不应低于36h,进水中氨氮浓度低于260mg/L时,氨氮和亚硝酸盐去除效果均较好,硝化反应可处于较高的运行水平。当pH值为6.8~7.8范围内变化时,可满足氨氧化反应对pH值的要求。好氧池溶解氧不足会导致亚硝酸氮积累现象的出现,中试装置的曝气量低于25m3/h时,系统出水亚硝酸氮累积率最高可以达到50%以上,当曝气量恢复至60m3/h时,亚硝酸氮积累现象消失,好氧池稳定运行期间,氨氮主要转化为硝酸盐,亚硝酸盐的积累并不持久。
Coking wastewater contains abundant refractory organic toxicants, such as heterocyclic compounds、PAHs and so on, which was unable to disposed effectively by conventional biological methods, thereby making the quality of effluent substandard. Dosing pertinent and efficient bacterium as a kind of common biological reinforcement can solve the aforementioned problem viably, which has been widely applied to various coking wastewater treatment plant. According to the quality and characteristics of WISCO coking wastewater , our research group used high effective bacteria which had been isolated in lab to purify coking wastewater within Anoxic/Oxic pilot plant on the site of WISCO coking factory. This paper focus on the study of biological strengthening in this pilot plant.
     Research results show that: organic pollutants and ammonia nitrogen can be removed availably by A/O process which combined with efficient bacterial technology. On the condition of stable running, total removal percentage of COD reach 95% while the influent’s COD concentration was within the range of 1000~ 1700mg/L, the effluent’s COD concentration was controlled under 150mg/L, in most cases, which was lower than 100mg/L. The removal percentage of ammonia nitrogen exceeded 97% during its influent concentration fluctuated between 100mg/L and 300mg/L, the concertration in effluent was less than 10mg/L. The effuent concertration of COD and ammonia nitrogen can reach the discharge standard (GB8978-1996).
     During the stable running of systerm, the result of denitrification was excellent in anoxic tank. Without additional carbon source, denitrifying rate reached within 50%~74% as well as the removal rate of COD undulated between 20% and 42%, the more denitrifying rate increased, the more COD removed. The reflux ratio of anoxic tank at 3 was suitable, dissolved oxygen concentration was mounting if the reflux ratio outnumber 3, which means denitrification suffer adverse impacts. Denitrifying rate was positive correlated with NO_3~--N/C while the ratio of NO_3~--N/C below 0.147, on the contrary, denirtrifying rate descended if NO_3~--N/C surpassed 0.2, in other words, carbon sources was insufficient. The suitable value of pH in anoxic tank was within the range of 7.2~7.8.
     Nitrification of aerobic tank was robust while COD/NH3-N below 4, ammonia nitrogen removal efficiency outstriped 95%, meanwhile the removal rate of NH3-N attained 90% when influent concertration of COD reached 1100mg/L and COD/NH3-N beyond 5.7, which means nitrification can bear high load organic pollutants. The optimal condition of nitrification was at HRT>36h, NH3-N<260mg/L, pH=6.8~7.8. Dissolved oxygen deficiency make phenomenon of the nitrite accumulation emerged, when the aeration volume under 25m3/h, the nitrite accumulated rate reached to 50%, but nitrite accumulation vanished finally due to the aeration volume recovered at 60 m3/h. During the stable running of aerobic tank, ammonia nitrogen was oxidized to nitrate, and nitrite accumulation was not durable.
引文
[1]韦朝海,贺明和,任源等.焦化废水污染特征及其控制过程与策略分析[J].环境科学学报,2007,27(7):1083~1093
    [2]刘廷志,田胜艳.高效微生物/O-A-O工艺处理焦化[J].中国给水排水,2005,21(4) :79~81
    [3]赵波,赵洪林,徐代平.重钢焦化废水处理系统技术改造[J].工业安全与环保,2006,32(12) :17~20
    [4]张伟,韦朝海,彭平安,任曼.A/O/O生物流化床处理焦化废水中酚类组成及降解特性分析[J].环境工程学报,2010,4(2) :253~258
    [5] Haibo Li,Hongbin Cao,Yuping Li,Yi Zhang,and Hanrui Liu.Innovative Biological Process for Treatment of Coking Wastewater[J].Environmental Engineering Science,2010,27(4): 313~322
    [6]邹士洋,杨腊梅.难降解废水的生物强化处理技术[J].中国给水排水,2005,21(7) :26~28
    [7]王建芳,赵庆良,林佶侃,金文标.生物强化技术及其在废水生物处理中的应用[J].环境工程学报,2007,1(9) :40~45
    [8]解宏瑞,马溪平.生物强化技术提高焦化废水处理效果的研究[J].中国给水排水,2007,23(15) :90~93
    [9]李济吾,蔡晶晶.链霉菌(streptomyces sp.)对吡啶的降解特性[J].化工环保,2008,28(1) :8~11
    [10]吴立波,王建龙,黄霞,刘恒,钱易.自固定化高效菌种强化处理焦化废水研究[J].中国给水排水,1999,15(5)
    [11]凌海波,张敬东,李捍东.投加高效菌种处理难降解焦化废水的实验研究[J].能源环境保护,2005,19(5) :16~19
    [12]李立敏,黎刚,李柳,徐军富,康彦芳.高效降解菌处理高浓度焦化废水[J].化工保护,2006,26(5) :409~412
    [13]郝鑫,蔡建安,彭永丽.高效菌种的厌氧—缺氧—膜生物反应器处理焦化废水[J].水处理技术,2009,35(12) :81~83
    [14]包焕忠,曹国强,王丽.高效生物强化技术处理焦化废水的中试研究[J].环境工程,2009,27(2) :42~48
    [15]潘碌亭,吴锦峰,束玉保,罗华飞.基于HSB的A2/O2—强化絮凝工艺在焦化废水处理中的应用[J].工业给排水,2010,36(1) :52~55
    [16]杨天旺,张清明,吴洪英.基于HSB微生物技术的焦化废水处理中试[J].清华大学学报(自然科学版),2008,48(3) :362~365
    [17]任源,韦朝海,吴超飞,李国宝.焦化废水水质组成及其环境学与生物学特性分析[J].环境科学学报,2007,27(7) :1094~1100
    [18]蒋家超,万田英,张艳秋.亚硝化过程影响因素分析和讨论[J].工业安全与环保,2006,32(3):26~27
    [19]雒怀庆,胡勇有.影响亚硝化过程和硝化过程因素的动力学模型分析[J].环境科学学报,2006,26(4):561~566
    [20]李咏梅,顾国维,赵建夫.焦化废水中几种含氮杂环化合物缺氧降解机理[J].同济大学学报,2001,29(6):720~723
    [21] Rockne K J,Strand S E.Anaerobic biodegradation of naphthalene,phenanthrene,and biphenyl by a denitrifying enrichment culture[J].Wat Res,2001,35(1):291~299
    [22] Shan Xie,Peng Liang,Yang Chen ,Xue Xia,Xia Huang.Simultaneous carbon and nitrogen removal using an oxic/anoxic-biocathode microbial fuel cells coupled system[J].Bioresource Technology,2011(102):348~354
    [23]尹承龙.焦化废水处理存在的问题及其解决对策[J].给水排水,2000,26(6):35~37
    [24]赵建夫.焦化废水中难降解有机物经厌氧酸化后对好氧生物处理过程中的降解机理研究[J].中国环境科学,1991,11(4):261~265
    [25] Manahan S E. Environmental Chemistry Fourth[M]. (3rd Ed) Boston: Willard Grant Press, 1984, 62~64
    [26]国家环保局.钢铁工业废水处理[J].北京:中国环境科学出版社,1992,74~78
    [27]唐光临.铁屑法预处理焦化废水[J],重庆大学学报,2001,24 (5) :93~95
    [28]姚君.焦化废水中难降解有机物经厌氧酸化后对好氧生物降解性能的影响[J].环境科学,1990,11(3):30~33
    [29]赵建夫.用厌氧酸化预处理焦化废水的研究[J].环境科学,1999,11(3):30~33
    [30]李长征,李捍东,王婉华,等.优势菌对焦化废水中几种有机物降解特性的实验研究[J].环境科学研究,2007,20(1):100~103
    [31]刘超翔,胡洪营,彭党聪,等.短程硝化反硝化工艺处理焦化高氨废水[J].中国给水排水,2003,19(8):315~317
    [32] Logan B. E. Adsorption and removal of pentachlorophenoo by white rot fungi in bactch culture[J]. Water Research, 1994, 128(7): 1533~1539
    [33]何苗,张晓健,霍福平等.杂环化合物好氧生物降解性能与其化学结构相关性的研究[J].中国环境科学,1997,17(3):199~202
    [34] kai-chee Loh. Immobilized-cell Membrane Bioreactor for High-strength Phenol Wastewater[J]. journal of environmental Engineering, 2000, 1: 75~79
    [35]钱易.焦化废水中难降解有机物去除的研究[J].环境科学研究,1992,5(5):1~8
    [36] Lyubov Yotova, Irene Tzibranska, Filadia Tileva. Kinetics of the biodegradation of phenol in wastewaters from the chemical industry by covalently immobilized Trichosporoncutaneum cells [J]. Microbiol Biotechnol, 2009, 36(2): 367~372
    [37]柏耀辉,孙庆华,赵翠.焦化废水处理系统中喹啉降解菌的种群特征[J].中国环境科学,2008,28(5):449~455
    [43] Lim B R, HuHY, HuangX, et al. Effect of seawater on treatment performance andmicrobial population in a biofilter treating coke-oven wastewater[J]. Process Biochemistry, 2002, 37: 943~948
    [44] Banat F A, Al-Bashir B, Al-Asheh S, et al. Adsorption of phenol by bentonite[J]. Environ Pollut, 2000, 107: 391~394
    [45] Monteiro A, Boaventura R A, Rodrigues A E. Phenol biodegradation by pseudomonas putida DSM548 in a batch reactor[J]. Biochem Engineer, 2000, 6(1): 45~47
    [46]金文杰,齐猛,张琪,左宇.焦化废水亚硝化阶段的微生物作用机理探讨[J].环境工程,2008,26(2):76~78
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.