野苋菜凝集素基因的克隆及转基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚜虫属同翅目昆虫,种类繁多,侵害目标广泛。它通过口器深入植物的韧皮部吸收营养,并携带和传播病毒,造成农作物的产量和品质的下降。植物抗虫基因工程为控制害虫的危害提供了新的途径。随着越来越多的抗虫基因被导入植物以提高植物的抗虫能力,人们发现:寻找新的高效抗虫基因,仍是现阶段抗虫基因工程的关键;对植物抗虫能力的提高不能单单依靠某个抗虫基因的转入就能实现;抗虫基因在转基因植物体内表达不稳定甚至出现转基因沉默;等等。基因融合可以使多个抗虫基因协同作用,提高植物的抗虫能力和抗虫谱并实现基因同步表达,并以完全独立的不同的杀虫蛋白的形式发挥活性,因此在植物抗虫基因工程中有很高的利用价值。此外,利用MARs序列(Matrix attachment regios,MARs)是在染色体水平克服外源基因失活的一种有效策略。
     本研究采用同源扩增PCR技术,从苋属的野苋菜中分离和克隆新的苋菜凝集素家族基因,并对这个基因的结构与功能进行研究,阐明在现代分子遗传育种中引入该基因的可能途径和重要意义。通过构建杀虫融合蛋白基因,即将两个抗虫基因编码序列通过接头连接在一起,构成可同时表达两种抗虫活性的融合蛋白,以期能延缓昆虫抗性的发生,而且也增强了杀虫活性。另外,在减少基因沉默的措施上,在目的基因的两侧增加基质结合序列(MARs),以增强基因的表达能力。本研究取得的主要结果如下:
     1.利用同源克隆的方法从野苋菜Amaranthus viridis L.中克隆到野苋菜凝集素基因(Amaranthus viridis aggllutinin,AVA)。转基因烟草植株的抗蚜分析表明,表达野苋莱凝集素的转基因烟草植株都不同程度地抑制了蚜虫群体发展的速度,转AVA和AVAc基因植株平均抑蚜率分别约为60.181%和50.63%。转含有内含子的AVA基因比不含内含子的编码区基因AVAc有更好的抗蚜性。AVA基因是苋菜凝集素基因家族的新成员,是一个有应用前景的新的抗虫基因。
     2.本研究从三个不同品种的豌豆中分离到3个具有MARs序列特征的DNA片段MMAR.DMAR,HMAR。利用GenBank同源性搜寻发现它们是新的未注册的DNA序列。经转化烟草对GUS活性测定发现,两侧顺式重复连接MAR对外源基因表达的增强作用很明显,MMAR、HMAR和DMAR都不同程度的提高了GUS的表达,分别为载体对照植株的4.16、3.66和2.08倍。但不同个体间表达水平差异仍然比较明显。
     3.通过构建MAR-AVA-MAR植物表达载体,利用农杆菌介导法转化白菜,获得抗蚜转化植株。含有AVA基因的白菜植株对桃蚜的群体发展有一定的抑制作用,在接种12天后的平均抑制桃蚜密度达55.8%;在转基因抗性植株上观察到有少量桃蚜若虫死亡的现象。无MAR的转基因植株平均桃蚜抑制率为34.3%。但含MAR的转基因单株之间基因表达也仍存在一定的差异。从总体上来说含有MAR的转基因白菜植株较不含MAR的转化植株对桃蚜具有更明显的抑制作用,且抗性程度与AVA基因的表达量呈正相关。
     4.根据豇豆胰蛋白酶抑制剂CpTl和野苋菜凝集素AVAc的抗虫特性,利用豌豆MMAR,成功构建了pC2MAR-AVAc/CpTI植物表达载体。以甘蔗ROC25胚性愈伤组织为转化受体材料,建立了一个高效而又简便的农杆菌介导的甘蔗遗传转化体系,成功地实现了MAR序列介导杀虫融合基因(AVAc+CpTI)在甘蔗中转化。
Sap-sucking insects belong to Homoptera, which have piercing and suckingmouthparts and feed upon the sap of plants, and most of them are serious pests ofagricultural and horticultural crops including aphids, whiteflies, planthoppers andleafhoppers. Crop is destroyed not only by pest feeding, but also by plant viruses producedthrough lesions that the mouthparts make. Plant resistance to insects through geneticengineering provides a new approach for control pests. With more and more insect-resistant genes were found and applied, people found that to search the highinsect-resistant genes are still the key task in transgenic researches. And the enhancedability of insect-resistance of transgenics does not depend on the introduction of singleinsect-resistant gene. Gene silence and instable gene expressions are also observed ingenetic engineering. Fusion gene, which can enhance the insect-resistant ability and kindsof insects by the means of fusion of several insect-resistant genes, exerts the insect-resistantability through the respective proteins. Furthermore, application of Matrix attachmentregios is also considered an efficient strategy to hurdle the gene silence at the level ofchromosome. The objectives of the present study are to clone new aphid-resitstant genesand improve the gene express level in transgenic plants. In the present study, Amaranthusviridis aggllutinin (AVA) was cloned by PCR from Amaranthus viridis L. In order toilluminate the possiblle approaches and important signification of gene introductiontocrops, the structure and functions of AVA were analysed and the insect-resistant fusion genewas constructed by connecting the coding sequences of two resistant genes with linker,which could kept the respeetine activity and enhance the insect resistance of the transgenics, and furthermore delay the occurance of non-resistance to insects. To avoid the gene silenceand enhance gene expression, the gene was flanked on both sides by MARs in the samedirection. The main results were as follows:
     1. Using total DNA isolated from Amaranthus viridis L., Amaranthus viridis agglutinin(AVA) was amplified by PCR and cloned. Sequence analysis results showed that AVA geneis consisted of 1831bp base pairs, which include one 922bp intron and two exons of 212bpand 697bp, respectively. After inverse PCR amplification, the coding region of AVA genewas obtained. The AVA gene fragments with and without introns, were inserteddownstream of 35S promoter in the vector pBI121 resulting the construction of two plantexpression vectors pBI121AVA and pBI121AVAc respectively. Leaf explants of Nicotinanatabatum var. SR1 were transformed with A. tumefaciens EHA105 harboring the expressionvector. The results of PCR and GUS detection showed that AVA gene was integrated intothe genome of the transformed tobacco plants, and indicated that AVA was expressed in thetransgenic plants. The results from insect bioassay with peach aphid (Myzus persicae)showed that the transgenic plants of pBI121AVA and pBI121AVAc were aphid resistant,evidenced by 50.63%~60.81% reduction in insect population density, or even higher than97% in some plants. The AVA gene of aphid resistance is regarded as a new member inAmaranthus lcctin families.
     2. Three new MAR segments (MMAR, DMAR and MAR) were cloned from threekinds of peas, which were different from the original MAR sequences. In order toinvestigate the three MARs on gene expression in transgenic plants, the plant expressionvectors were constructed with udiA gene codingβ-glucuronidase (GUS) which was flankedon both sides by the MARs in the same direction. Quantitative detection of GUS activityshowed that the MARs could increase GUS expression levels in vivo in contrast to thecontrol. The average GUS activity was 4.16 folds for MMAR, 3.66 folds for DMAR and2.08 folds for HMAR, respectively. But the expression differences among the individualtransformants were still obvious.
     3.The cotyledons with petiole as acceptors, Chinese cabbage genetic transformationsystem mediated by Agrobacterium tumefaciens was set up and Amaranthus viridis L.agglutinin (AVA) transformed plants that were resistant to Myzus persicae were acquired. Effects of MAR (matrix attachment region) on AVA gene expression in transgentic Chinesecabbage were studied with two different plant expression vectors. The number oftransgenic plants was 29.63% higher than that of the control. The bioassay of Myzuspersicae revealed that transgetic plants showed more or less enhanced resistance andinhibition to population, and the average inhibition rate was 55.8%. Among the transgeticplants that AVA gene was mediated by MAR, the expression level of AVA gene was higherthan that of the control, and the expression variance of AVA gene among the transgeticplants was smaller.
     4. According to the insect-resistant characteristics of CpTI and AVAc genes, the plantexpression vector pC2MAR-AVAc/CpTI was constructed. With the embryogenic calli ofsugarcane variety ROC25 as the acceptors, a genetic transformation system mediated byAgrobacterium tumefaciens was established and the fusion insect-resistant genetransformed plants were acquired. The plant expression vector was constructed with thefused gene which was flanked on both sides of the MARs. The plant vectors weretransformed into the embryogenic calli with the plant expression vector without MAR ascontrol. In the genetic transformation of sugarcane, the vector ligated with MARs in thesame direction on both sides of the fused gene could increase the number of transgenic lines,which was 62.5% higher than that of the control. Moreover, the number of transgenicplants regenerated from each resistant callus increased by 34.32%.
引文
[1] 周兆斓,刘春朋,朱祯.植物基因工程[M].济南:山东科学技术出版社,1996,145-164.
    [2] 罗志军.Bt毒蛋白基因工程研究进展[J].理庆师专学报,2000,19(2):89-91.
    [3] 李雪雁,李照会,徐维岸.苏云金芽孢杆菌Cry基因研究进展[J].昆虫知识,2003,40(1):9-13.
    [4] Knowles B H, Ellar D J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxin with different insect specificity[J]. Biochim Biophys Acta, 1987, 924:509-518.
    [5] Knight P J K, Crichmore N. The receptor for Bacillus thuringiensis CryIA(c) deta-endotoxin in the brush border membrane of the Lepidopteram manduca Sexta is a minopeptiase N[J]. M Microbiol, 1994, 11:429-430.
    [6] Sangadala S, Walters F S. A mixture of Manduca sexta a minopeptiase and phosphatase enhances Bacillus thuringiensis insecticidal CryIA(c) toxin binding and ~(86)Rb~+-K~+ of flux in vitro[J]. J Biol Chem, 1994, 269:10088-10092.
    [7] Vadlamudi R K, Weber E. Cloning and expression of receptor for an insecticidal toxin of Bacillus thurgiensis[J]. J Biol Chem, 1995, 270:5490-5494.
    [8] 程茂高,乔卿梅,原国辉.植物外源抗虫基因及其应用.生物技术通报,2004,5:18-20.
    [9] Schnepe K, Crickmore N, Van R J. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiol Mol Bio Rev, 1998, 62(3):775-806.
    [10] Altabella T, Chrispeels M J. Tobacco plants transformed with the bean gene express an inhibitor of insect, α-amylase in their seeds[J]. Plant Physiol, 1990, 93:805-810.
    [11] Perlak F J, Fuchs R L, Dean D A, McPherson S L, Fischoff D A. Modification of the coding sequence ebhances plant expression of insect control protein genes[J]. Proc Natl Acad Sci USA, 1991, 88:3324-3328.
    [12] Perlak F J, Deaton R W, Armstrong T A, Fuchs R L, Sims S R, Greenplate J T, Fischoff D A. lsect resistant cotton plants[J]. Biotechnol, 1990, 8:939-943.
    [13] Williams S, Friedrich L, Dincher S, Kessmann H. Chemical regulation of Bacillus thuringien δ-sisendotoxin expression in transgenic plants[J]. Biotechnol, 1992, 10(5):540-543.
    [14] Stalker DM, Comi L. A single amino acid substitution in the enzyme 5-enopyruvylshikimate3-phosphate synthase confers resistance to the herbicide glyphosate[J]. Biological Chemistry. 1985, 260: 4724-4728.
    [15] Zhang tianzhen, Tang canming.Commercial production of transgenic Bt insect-resistant cotton varieties and the resistance management for bollworm (Helicoverpa armigera Hubner) [J]. Chinese Science Bulletin. 2000,45(14): 1249-1257.
    [16] Hua-rong Li, Brenda Oppert, Kun Yan Zhu, Randall A. Higgins, Fang-neng Huang, Lawrent L. Buschman, Transgenic plants expressing bacillus thuringiensis delta-endotoxins[J]. Entomologia sinica 2003, 10 (3): 155-166.
    [17] Yun-Jun Liu, Fu-Ping Song, Kang-Lai He, Yuan Yuan, Xiao-Xia ZHang, Peng Gao, Jian-Hua Wang, Guo-Ying Wang. Expression of a modified crylle gene in E. Coli and in transgenic tobacco confers resistance to corn borer[J]. Acta Biochimica et Biophysica Sinica. 2004, 36 (4): 309-313.
    [18] 张少斌,刘慧.农作物抗虫蛋白质工程及其应用[J].安徽农业科学,2006,34(8):1617-1618.
    [19] Perlak F J, Fuchs R J. Modification of the coding sequence enhances plant expression of insect contronl protein genes[J]. Proc Natl Sci USA, 1995,101 (16):6003-6008.
    [20] 李雪雁,杨勇,许维岸.植物蛋白酶抑制剂及其在抗虫植物基因工程中的应用[J].生命的化学,2002,22(3):270-272.
    [21] Qi ZHou, Rui-guo He, Qian-hua Yuan, Xiang Li, Sheng-rong Liao, Wu ZHou, Ni-jia Kong. A study on heat resistance and initial characterization of protease inhibitors in porcine colostrum[J]. Agricultural sciences in china 2003,2 (9):1048-1053.
    [22] 文方德,傅加瑞.植物种子中的蛋白酶抑制剂及其生理功能[J].植物生理学通讯.1997,33(1):1-9.
    [23] 柳革武,薛庆中.蛋白酶抑制剂极其在抗虫基因工程中的应用[J].生物技术通报,2000,1(16):20-25.
    [24] Ryan C A. Proteinase inhibitor gene families, strategies for transformation improve plant defense against herbivores[J]. Bio Essays, 1989, 10(1):20-24.
    [25] Campos F A, Richardson P M, 1983. The complete amine acid sequence of the bifunctional α-amylase/trypsion inhibitor from seeds of ragi (Indian fingermillet, Eleusine coracana Goertn) [J]. FEBS Lett, 152: 300-304.
    [26] Wingate V P M, Lawton M A, Lamb C J. Glutathione causes a massive and selective induction of plant defense genes[J]. Plant Physiol, 1988, 87:206-210.
    [27] Suzuki A, Tsunogae Y. The structure of Bowmam-Birk type protease inhibitor A-2 from peanut (Arachis hypogea) at 3.3a resolution. [J] Biochem. 1987,101:267-274.
    [28] Watanabe K, Minami Y. Isolation and partial characterization of three protein-synthesis inhibitory proteind from the seeds of Luffa cylindrica[J]. Agric Biol Chem, 1990, 54(8):2085-2092.
    [29] 李雪雁,杨勇,徐维岸.植物蛋白酶抑制剂及其在抗虫植物基因工程中的应用[J].生命的化学,2002,22(3):270-273.
    [30] Laskowski M Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem, 1980, 49:593-626.
    [31] 高莹,翟礼嘉,陈章良.植物凝集素的分子生物学研究[J].生物技术通报.2000,(5):18-22.
    [32] 王关林,方宏筠主编.植物基因工程原理与技术[J].北京:科学出版社,1998,35.
    [33] 刘会香,张星耀.植物蛋白酶抑制剂及其在林小抗虫基因工程中的应用[J].林业科学,2005,41(3):148-157.
    [34] Peumans W J, van Damme E J M. Lectins as plant defense proteins[J]. Plant Physiol, 1995, 109:347-352.
    [35] 董朝蓬,杜林方,段真.植物凝集素研究进展[J].天然产物研究与开发,2003,15(1):71-77.
    [36] 高燕会,李润植,毛雪,李彩霞.植物凝集素的防卫功能及其研究进展[J].世界农业,2000,(2):33-35.
    [37] 王盛,钟伏弟,吴祖建,谢联辉,林奇英.抗病虫基因新资源:海洋绿藻孔石莼凝集素基因[J].分子植物育种,2004,2(1):153-155.
    [38] 梁峰,常团结.植物凝集素的研究进展[J].武汉大学学报,2002,48(2):232-238.
    [39] 常团结,朱祯.植物凝集索及其在抗虫植物基因工程中的应用[J].遗传,2002,24(4):493-500.
    [40] 郭明雄,孙桂鸿,吴显辉,冯胜彦,陈蔚梅,艾建宇,熊晓然,吴斌.从生物大分子结构特征解析植物凝集素的多样性[J].武汉植物学研究,2003,21(2):155-164.
    [41] Peumans, W J, Barre, A, Hao, Q, Rouge, P, Van Damme, E J M. Higher plants developed structurally different motifs to recognize foreign glycans[J]. Trends Glycosci Glycotechnol, 2000, 12:83-101.
    [42] Edward G A, Clerk S P. Pea lectin is correctly processed stable and active in leaves of transgentic potato plants[J]. Plant molecular biology 1991, 17: 89-100.
    [43] Huesing J E, Murfpvl L L. Rice and stinging netle lectins: insecticidal activity similar to wheat geam agglutinin[J]. Phytochemistry, 1991, 30(11):65-68.
    [44] Chrispeels M J, Raikhel N V. Lectins, lectin genes and their roles in plant defense[J]. Plant Cell, 1991, 3:1-9.
    [45] Czapla T H, Lang B A. Effects of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and Southern corn rootworm (Coleoptera:Chrysomelidae) [J]. J Econ Etomol, 83:2481-2485.
    [46] 李凤玲,徐培洲,肖炜,张红宇,汪旭东,吴先军.植物凝集素及其住抗虫基因工程中的应用[J].安徽农业科学,2006,34(3):430-432.
    [47] 刘士庄,施承梁.棉花凝集素的分离纯化及其对棉花枯萎病菌的影响[J].植物病理学报,1996,26(4):311-315.
    [48] Ratanapo S, Ngamjunyaporn W, Chulavatnatol M. Interaction of a mulberry leaf lectin with a phytopathogenic bacterium P. syringae pvmori[J]. Plant science, 2001, 160:739-744.
    [49] Gatehouse A M R, Gatehouse J A. Snowdrop lectin (GNA) has no acute toxic effects on a beneficial insect predator, the 2-spot ladybird (Adalia bipunctata L.) [J]. Journal of Insect Physiology, 2000, 46(4): 379-391.
    [50] Gatehouse A M R, Dewey F M, Dove J, Fenton K A, Pusztai A. Effect of seed lectins from Phaseolous valgaris on the devolepment of larvae of Callosbrchus maculatus: Mechnism of toxity[J]. J Sci Food Agric, 1984, 35:373-380.
    [51] Murdock L L, Huesing J E, Nielsen S S, Pratt R C, Shade R. Biological effects of plant lectins on the cowpea weevil[J]. Phytochemistry, 29:85-89.
    [52] Hilder V A, Powell K S, Gatehouse A M R. Expression of snowcrop lectin in transgenic tabsco plants results in added protection against aphids[J]. Transgenic Research, 1995, 4:18-25.
    [53] Macedo M L R, Freire M D G M, Novello J C, Marangoni S. Talisia esculenta lectin and larval development of Callosobruchus maculates and Zabrotes subfasciatus (Coleoptera: Bruchidae) [J]. Biochemical et Biophysica Acta, 1571:83-88.
    [54] Raina A, Datta A. Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition fron Amaranthus[J]. Proc Natl Acad Sci, 1992, 89:11774-11778.
    [55] 李润植,高武军,季道藩,李采霞.朝鲜天南星凝集素的分离及抗棉蚜效应分析[J].棉花学报,2000,12(1):54-56.
    [56] Poweel K S, Gatehouse A M R, Hilder V A, Gatehouse J A. Antifeedant effects of plant lectins and enzymes on the adult stage of the rice brown planthopper, Nilaparvata lugens[J]. Entomol Exp Appl, 75:51-59.
    [57] 王关林,方宏筠主编.植物基因工程[M].北京:科学出版社,2002,125-140.
    [58] 梁峰,刘秀花,刘茵,闫永锋,常团结.转菊芋凝集素基因烟草的抗蚜性研究[J].河南农业科学,2004,(2):15-19.
    [59] Gatehouse A M R, Davison G M, Newell C A. Molecular Breeding, 1997, 3:49-63.
    [60] 高泽发,陈绪清,杨凤萍,梁荣奇,张立全,张晓东.人工合成gna基因在小麦中的表达及其抗蚜虫效果研究[J].农业生物技术学报,20006,14(4):559-564.
    [61] 杨长登,唐克轩,吴连斌,李瑶,赵成章,刘光杰,沈大棱.农杆菌介导将雪莲凝集素(GNA)基因转入籼稻单倍体微芽的初步研究[J].中国水稻科学,1998,12(3):129-133。
    [62] 周岩,田颖川,吴标,莽克强.转雪花莲外源凝集素基因烟草对桃蚜的抑制作用[J].生物工程学报,1998,14(1):13-19.
    [63] 袁正强,赵存友,周岩,田颖川.雪花莲凝集素基因(gna)的改造及其抗蚜性(英文)lJJ.植物学报,2001,43(6):592-597。
    [64] 王志斌,郭三堆.表达cryIA/gna双价抗虫基因烟草兼抗棉铃虫和蚜虫[J].科学通报,1999,44(19):2068-2075.
    [65] Shi Y, Wang M B, Poweel K S, Van Damme E J M, Hilder V A, Gatehouse A M R, Boulter D, Gatehouse J A. Use of the rice sucrose synthase-1 promoter to direct phloem-specific expression of β-glucuronidase and snowdrop lectin genes in transgenic tobacco plants[J]. Journal of Experimental Botany, 45(274): 623-631.
    [66] Boulter D, Edwards G A, Gatehouse A M R, Gatehouse J A, Hilder V A. Additive protective effects of different plantderived insect resistance genes in transgenic tobacco plants[J]. Crop Prot, 9: 351-354.
    [67] 王伟,朱祯,高越峰,石春林,陈宛新,郭仲琛,李向辉.双价抗虫基因陆地棉转化植株的获得[J].植物学报,1999,41(4):384-388.
    [68]-周永刚,田颖川,莽克强.苋菜凝集素基因的克隆及在转基因烟草中抗蚜性研究[J].生物工程学报,2001,17(1):34-39.
    [69] Guo H N, Jia Y T, Zhou Y G, Zhang Z S, OuYang Q, Jiang Y, Tian Y C. Effects of transgenic tobacco plants expressing ACA gene from Amaranthus caudatus on the population development of Myzus persicae[J]. Acta Botanica Sinica, 2004, 46(9): 1100-1105.
    [70] 刘召华,张振山,郭洪年,贾燕涛,郑光宁,田颖川.两种植物凝集索基因在转基因烟草中的表达研究[J].遗传学报,2005,32(7):758-763.
    [71] van Damme E J M, Smeets K, Pumas W J. Biochemical Perspectives[M]. ed. A. Pusztai. A and Bardocz S, Taylor and Francis, London. 1995, pp. 59-80.
    [72] Wu C, Whitaker R J. Purification and partial characterization of four trypsin/chymotrypsin inhibitors from red kidney beans (Phaseolus vulgaris vat. Linden)[J]. J Agric Food Chem, 1990, 38: 1523-1529.
    [73] 张永军,吴孔明,彭于发,郭予元.转抗虫基因植物生态安全性研究进展[J].昆虫知识.2002,39(5):321-327。
    [74] 赵建周,范云六,范贤林,石西平,卢美光.转双基闪抗虫烟草延缓棉铃虫抗性的作用评价[J].科 学通报,1999,44(15):1635-1639。
    [75] 陈旭升,郭志刚,许乃银,柏立新,吴蔼民,狄佳春,刘剑光,肖松华.转8t基因抗虫棉的抗虫性与主要经济性状的相关性分析[J].江西农业学报,2002,14(3):23-28.
    [76] 刘光杰,孙国昌,闵捷,吕仲贤,朱小源,肖放华,袁筱萍,沈君辉,毛雪琴,王汉荣,赵新华,杨祁云,陈能.我国新育成水稻品种(材料)抗病虫性与米质的评价研究[J].植物保护,2003,29(2):15-20.
    [77] McGaughey W H. Bacillus thuringiensis in colonies of the Indian meal moth an dalmondmoth (Lep. Pyralidae)[J]. Econ. Entomol, 1988.
    [78] Georghiou G P. Insecticide resistance in mosquitoes research on new chemicals and techniques for management in: Mosquito Control Researc[R]. University of California, Annual Report, 1983.
    [79] Miyata T. Toxicological experiments insecticide resistance patterns[M]. In: Report of Meeting of Joint Research Project on Insect Toxicological Studies on Resistance to Insecticides and Integrated Control of the Diamond Backmoth, Bangkok, 1988.
    [80] Graham J S, Ryan C A. Accumulation of metallocarboxy-peptidase inhibitor in leaves of wounded potato plants[J]. Biochemical and Biophysics Research Communication, 1997, 101: 1164-1170.
    [81] Hoffmann T C, Zalom F G, Wilson L T. Field evolution of transgenic tobacco containing genes encoding Bacillus thuringiensis δ-endotoxins or cowpea trypsin inhibitor: efficacy against Helicoverpa zea (Lepidopera: Noctuidae)[J]. J Econ Entomol, 1992, 85: 2516-2522.
    [82] Michaud D, Nguyen-Quoc B, Vrain T C, Fong D, Yelle. Response of digestive cysteine proteinases from the Colorado potato beetle (Leptinotarsa decemlineala) and the black vine weevil (Otiorynchus sulcatus) to a recombinant form of human stefin A[J]. Archieves of Insect Biochemistry and Physiology, 1996, 31: 451-464.
    [83] Barrett A J. Classification of peptidases. In:BARRETT.A.J, ed. Methods in Enzymotogy[M], Academic Press, New York, 1994, 244:1-15.
    [84] Jongsma M A, Bolter C. The adaptation of insects to plant protease inhibitors[J]. Journal of insect physiology, 1997, 43:885-895.
    [85] Michand D. Avoiding protease mediated resistance in herbivorous pests[J]. Trends in Biotechnology, 1997, 15:4-6.
    [86] 朱桢.高效抗虫转基因水稻的研究与开发[J].中国科学院院刊,2001,5:353-360.
    [87] Couty A, Down R E, Gatehouse A M R, Kaiser L, Delegue M H P, Poppy G M. Effects of artificial diet containing GNA and GNA-expressing potatoes on the development of the aphid parasitoid Aphidius ervi Haliday (Hymenoptera: Aphidiidae)[J]. Journal of Insect Physiology, 2001,47:1357-1366.
    [88] Tamura T, Mizuta I, Sakoyama Y. PCR cloning of Cerambycidae Parechthistatus gibber (Pg) homeobox genes[J]. Biochem Genet, 2000, 38(1-2): 57-62.
    [89] Broadway R M. Dietary regulation od serine proteases that are resistant to serine protease inhibitors[J]. lsect Biochemistry and Molecular Biology, 1997, 43:855-874.
    [90] Sparber S B. Insect resistance to biological insecticide Ballicus thuringiensis[J]. Science, 1985, 229: 193-195.
    [91] Boulter. Insect pest control by copying nature using genetically engineered crops[J]. Phytochemistry, 1993, 34:1453-1466.
    [92] 夏兰芹,郭三堆.Bt杀虫基因在转基因双价棉的整合与遗传稳定性[J].科学通报,2001,16(46):1372-1375。
    [93] 李惠芬,刘翔,曲强,邓朝阳,路子显,陈宛新,徐洪林,株桢.转抗虫融合基因(CryAc3-CpTI)玉米(Zea mays L.)植株的获得及其抗虫性分析[J].自然科学进展,2002,15(1):37-40.
    [94] 崔洪志,郭三堆.Bt毒蛋白抗虫植物基因工程研究(综述)[J].农业生物技术学报,1998,6(2):166-172.
    [95] Wu S J, Dean D H. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryⅢ A δ-endotoxin[J]. J Mol Biol, 1996, 255: 628-640.
    [96] Honee G., Vriezen W, Visser B. A translation fusion product of two different insecticidal crystal protein genes of Bacillus thuringirnsis exhibits an enlarger insecticidal spectrum[J]. Appl Envi Mico, 1991, 56(3): 823-825.
    [97] Mandaokar A, Chakrabarti S K, Rao N G V, Kumar P A, Sharma R P. A fusion gene coding for two different deltaendotoxins of Bacillus fhuringiensis toxic to plutella xylostella and useful for resistance management[J]. World Journal of Microbiology and Biotechnology, 1998, 14(4): 599-601.
    [98] Lu H, Rajamohan F. And Dean D. H. Identification of amino acid residues of Bacillus thuringiensis δ-endotoxin CrylA(a) associated with membrane binding and toxicity to Bombyx mori[J]. J Bacteriol, 1994,176: 5554-5559.
    [99] Sardana R, Dukiandjiev S, Giband M, Cheng X, Cowan K. Construction and rapid testing of synthetic and modified toxin gene sequences CrylA (b&c) by expression in maize endosperm culture[J]. Plant Cell Reports. 1996, 15:677-681.
    [100] Mcganghey H. Implication of cross-resistance among Bacillus thuringiensis toxins in resistance management[M]. Proceedings of an CECD worshop on ecological implications of transgenic crops containing Bt toxin genes, geld in new Zealand on 10-14 January 1994. Biocintrol-science and Technology, 1994, 4(4): 427-435.
    [101] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual[M]. 2nd ed. New York. Cold Spring Harbor Laboratory Press, 1998.
    [102] 王关林,方红筠.植物基因工程原理与技术[M].北京:科学出版社,1998.
    [103] Murashige T, Skoog F A. Revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Plant hysiol, 1962, 15: 473-479.
    [104] Birnboim H C, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA[J]. Nucleic Acids Res, 1979, 7: 1513.
    [105] Ish-Horowicz D, Burke J F. Rapid and efficient cosmid cloning[J]. Nucleic Acids Res, 1981, 9: 2989.
    [106] Shrp P A, Sugden B, Sambrook J. Detection of two restriction endonuclease activities in Haemophilus Parainfluenzaae using analystical agarose-ethidium bromide electrophoresis[J]. Biochemistry, 1973, 12: 3055.
    [107] 卢圣栋.现代分子生物学实验技术[M].北京:高等教育出版社,1993.
    [108] Hanahan D. Studies on transformation of Escherichia coli with plasmids[J]. J Mol Biol, 1983, 166: 557.
    [109] Dower W J, Miller J F, Ragsdale C W. High efficiency transformation ofEscherichia coli by high voltage electroporation[J]. Nucleic Acids Res, 1988, 16:6127.
    [110] Horsch R. B. Fry J, Hffman N L, Wallroth M, Eichholtxd D, Rogers SG. A simple and general method for transferring genes into plants[J]. Science, 1985,277:1229-1231.
    [111] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis[J]. Nuclei Acid Research, 1991, 19(6): 1349.
    [112] 李新锋,赵淑清.转基因植物中报道基因GUS的活性检测及其应用[J].生命的化学,2004,24(1):71-73.
    [113] Jefferson R A. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal B iochem, 1976, 72:248-254.
    [114] Gatehouse A M R, Down R E, Powell K S, Sauvion N, Rahb e Y, Newell C A, Merryweather A, Hamilton W D O, Gatehouse J A. Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae[J]. Entomologia Experimentalis et Applicata, 1996, 79: 295-307.
    [115] Hilder V A, Powell K S, Gatehouse A M R, Gatehouse J A, Gatehouse L N, Shi Y, Hamilton W D O, Merryweather A, Newell C A, Tians J C, Peumans W J, van Damme E, Boulter D. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphid[J]. Transgenic Research, 1995, 4(1): 18-25.
    [116] Yuan Z Q, Zhao C Y, Zhou Y, Tian Y C. Modification of GNA gene and studies on its aphid resistance[J]. Acta Botanica Sinica, 2001, 43(6)592-597.
    [117] Chang T, Chen L, Chen S, Cai H, Liu X, Xiao G, Zhu Z. Transformation of tobacco with genes encoding Helianthus tuberosus agglutinin (HTA) confers resistance to peach-potato aphid (Myzus persicae)[J]. Transgenic Res, 2003, 12(5):607-614.
    [118] Yao J H, Zhao X Y, Liao Z H, Lin J, Chen Z H, Chen F, Song J, Sun X F, Tang K X. Cloning and molecular characterization of a novel lectin gene from Pinelliaternata[J]. Cell Res, 2003, 13(4):301-308.
    [119] Guo H N, Jia Y T, Zhou Y G, Zhang Z S, Ou Y Q, Jiang Y, Tian Y C. Effects of transgenic tobacco plants expressing ACA gene from Amatanthus caudatus on the population development of Myzus persicae[J]. Acta Botanica Sinica, 2004, 46(9): 1100-1105.
    [120] Nagadhara D, Ramesh S, Pasalu IC, Kondala Rao Y, Krishnaiah N V, Sarma N P, Gatehouse J A, Reddy V D, Rao K V. Transgenic indica rice resistant to sap-sucking insects[J]. Plant Biotechnology Journal, 2003, 1(3): 231-240.
    [121] 周永刚,田颖川,莽克强.苋菜凝集素基因的克隆及在转基因烟草中抗蚜性研究[J].生物工程学报,2001,17(1):34-39.
    [122] Rinderie S J, Goldstein I J, Remsen E E et al. Physicochemical properties of amaranthin, the lectin from Amaranthus caudatus Seeds[J]. Biochemistry, 1990, 29: 10555-10561.
    [123] Raina A, Datta A. Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus[J]. Proc Natl Acad Sci, 1992, 89: 11774-11778.
    [124] Van der Geest A H M, Hall G E Jr, Spiker S, et al. The β-phaseolin gene is flanked by matrix attachment regions[J]. Plant J, 1994, 6: 413-423.
    [125] 张可伟,王健美,郑成超.核基质结合序列(MAR)与基因表达调控[J].生物工程学报,2004,20(1):6-9.
    [126] Strick R, Laemmli U K. SARs are cis DNA elements of chromosome dynamics: synthesis of a SAR repressor protein[J]. Cell, 1995, 83: 1137-11481
    [127] Lee T H, Kim S J, Han Y M, Yu DY, Lee C S, Choi Y J, Moon H B, Baik M G. Matrix attachment region sequences enhanced the expression frequency of a whey acidic protein/human lactoferrin fusion gene in the mammary gland of transgenic mice[J]. Mol Cells, 1998, 8(5): 530-536.
    [128] Gutierrez-Adan A, Pintado B. Effect of flanking matrix attachment regions on expression of microinjected transgenes during preimplantation development of mouse embryos[J]. Transgenic Res, 2000, 9(2): 81-89.
    [129] Sawasaki, T, Takahashi, M, Goshima, N. Structure of transgene loci in transgenic Arabidopsis plants obtained by particle bombardment: Junction regions can bind to nuclear matrix[J]. Gene, 1998, 218: 27-35.
    [130] Nomura K, Saito W, Moriyana H. Isolation and characterization of matrix associated region DNA fragments in rice (Oryza sativa)[J]. Plant Cell Physiol, 1997, 38: 1060-1068.
    [131] 李旭刚,朱桢,徐望军,吴茜,徐鸿林,豌豆核基质结合区的分离及其在转基因烟草中的功能分析[J].中国科学(C辑),2001,31(3):230-237.
    [132] Slatter R E, Dupree P, Gray J C. A scaffold-associated DNA region is located downstream of the pea plastocyanin gene. Plant Cell, 1991, 3: 1239-1250.
    [133] 王关林,方宏筠.植物基因工程(第二版)[M].北京:科学出版社,2002.
    [134] Mlynarova L, Jansen R C, Coonner A J. The MAR-mediated reduction in position effect can be uncouple copy-number expression in transgenic plants[J]. Plant Cell, 1995, 7:599-609.
    [135] Jefferson R A. Assaying chimeric genes in plants: the GUS gene fusion system[J]. Plant Mol Biol Rep, 1987, 5: 387-405.
    [136] Zoya Avramova, Jeffrey L Bennetzen. Isolation of matrix from maize leaf nuclei: identification of a matrix-binding site adjacent to the Adhl gene[J]. Plant Molecular Biology, 1993, 22: 1135-1143.
    [137] Michalowski S M, Allen G C, Hall G E. Characterization of randomly obtained matrix attachment regions (MARs) from higher plants[J]. Biochemistry, 1999, 38: 12795-12804.
    [138] Mankin SL, Allen GC, Phelan T. Elevation of transgene expression level by flanking matrix attachment region (MAR) is promoter dependent: a study of the interaction of six promoters with the RB7 3'mar[J]. Transgenic Research, 2003, 12: 3-12.
    [139] 张可伟,王健关,杨国栋,郭兴启,温孚江,崔德才,郑成超.强MAR的分离及其体内外功能鉴定[J].科学通报,2002,47(20):1572-1577.
    [140] Guo H N, Jia Y T, Zhou Y G, Zhang Z S, OuYang Q, Jiang Y, Tian Y C. Effects ot transgenic tobacco plants expressing ACA gene from Amaranthus caudatus on the population development of Myzuspersicae[J]. Acta Botanica Sinica, 2004, 46(9):1100-1105.
    [141] Rinderie S J, Goldstein I J, Remsen E E. Physicochemical properties of amaranthin, the lectin from Amaranthus caudatus Seeds[J]. Biochemistry, 1990, 29(46): 10555-10561.
    [142] 周永刚,田颖川,莽克强.苋菜凝集素基因的克隆及在转基因烟草中抗蚜性研究[J].生物工程学报,2001,17(1):34-39.
    [143] 张扬勇,李汉霞,叶志彪,卢永恩,陆芽春.农杆菌介导GNA基因转化菜薹[J].园艺学报,2003,30(4):473-475.
    [144] 杨广东,朱祯,李燕娥,朱祝军,上官小霞,吴霞.雪花莲外源凝集素基因在大白菜中的表达和抗蚜性遗传分析[J].园艺学报,2003,30(3):341-342.
    [145] 王忠华.抗虫转基因白菜类蔬菜作物培育研究进展[J].上海农业学报,2004,20(4):53-56.
    [146] Allen G C, Hall Jr G, Michalowski S, Newman W, Spiker S, Weissinger A K, Thompson W F. High-level transgene expression in plant cell: effects of a strong scaffold attachment region from tobacco[J]. Plant Cell, 1996, 8: 889-913.
    [147] Allen G C, Hall G E Jr, Childs L C, Weissinger A K, Spiker S, Thompson W F. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells[J]. Plant Cell, 1993, 5(6): 603-613.
    [148] Breyne P, Van Montagu M, Depicker A, Gheysen G. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco[J]. Plant Cell, 1992, 4(4): 463-471.
    [149] Allen G C, Spiker S, Thompson W F. Use of matrix attachment regions (MARs) to minimize transgene silencing[J]. Plant Molecular Biology, 2000, 43(2-3): 361-376.
    [150] Han K H, Ma C P, Strauss S H. Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar[J]. Transgenic Research, 1997, 6: 415-420.
    [151] Lee T H, Kim S J, Han Y M, Yu D Y, Lee C S, Choi Y J, Moon H B, Baik M G, Lee K K. Matrix attachment region sequences enhanced the expression frequency of a whey acidic protein/human iactoferrin fusion gene in the mammary gland of transgenic mice[J]. Molecular Cells, 1998, 8(5): 530-536.
    [152] Gutierrez-Adan A, Pintado B. Effect of flanking matrix attachment regions on expression of microinjected transgenes during preimplantation development of mouse embryos[J]. Transgenic Research, 2000, 9(2): 81-89.
    [153] Spiker S, Thompson W F. Nuclear matrix attachment regions and transgene expression in plants[J]. Plant Physiology, 1996, 110: 15-21.
    [154] Matzke M A, Matzke A J M. How and why do plants inactivate homologous (trans) genes[J]. Plant Physiology, 1995, 107(3): 679-685.
    [155] Mlynarova L, Loonen A, Heldens J, Jansen R C, Keizer P, Stiekema W J, Nap J P. Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix associated regions[J]. Plant Cell, 1994, 6(3): 417-426.
    [156] Mlynarova L, Jansen R C, Conner A J, Stiekema W J, Nap J P. The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants[J]. Plant Cell, 1995, 7(5): 599-609.
    [157] Schoffi F, Schroder G, Kiiem M, Rieping M. An SAR sequence containing 395bp DNA fragment mediates enhanced, gene-dosage-correlated expression of a chimaeric heat shock gene in thansgenic tobacco plants[J]. Transgenic Research, 1993, 2(2): 93-100.
    [158] Liu J W, Tabe L M. The influences of tow plant nuclear matrix attachment regions (MARs) on gene expression in transgenic plants[J]. Plant Cell Physiology, 1998, 39(1): 115-123.
    [159] 伍成祥,宛煜嵩,徐俊,苏金,方宣钧.基因枪转化MAR序列介导水稻bar基因的表达分析[J].农业生物技术学报,2002,10(3):227-230.
    [160] 周仲驹,林奇英,谢联辉.甘蔗病毒及类似病害的研究现状和进展[J].四川甘蔗,1988,(2):28-32.
    [161] 高文臣,魏宁生,吴云峰.甘蔗花叶病毒MDB株系传播特性研究[J].北京师范大学学报(自然版),1999,35(1):97-101.
    [162] 王自章,张树珍,杨本鹏,李杨瑞.甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫增强植株[J],中国农业科学,2003,36(2):140-146.
    [163] Yao W, Yu Ai L, Xu J S, Zhou H, Zhang M Q, Chen R K. A simple and quick method for extracting sugarcane genomic DNA[J]. Journal of Agricultural Biotechnology, 2005, 13(1): 121-122.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.