微纳米结构磁性材料的设计、制备及磁性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微纳米结构磁性材料(包括铁氧体,磁性金属氧化物,铁磁性金属及合金等)是一类非常重要的无机功能材料。基于其在电子、信息、汽车、航空航天、生物医药等领域潜在应用前景,近年来有关微纳米结构磁性材料的制备及性能表征已成为磁学领域的研究热点之一。设计开发具有独特形貌的微纳米磁性材料,并对其磁性能进行研究,是科研工作者努力实现的目标。本论文通过合成工艺设计,制备了四类五种不同形貌的微纳米磁性材料,并对其形成机理和相关磁性能作了较为系统的研究。主要研究内容及结果如下:
     (1)采用溶剂热法制备了尺寸均匀、单晶、单分散,直径为200–300 nm,壁厚为50 nm的四氧化三铁中空微球,系统地研究了制备条件对样品形貌、结构以及磁性能的影响,提出了络合-定向生长-再溶解、成核-组装-腐蚀撤去的形成机制。
     (2)通过简单的水热过程,以硫酸亚铁和氯酸钠为起始原料,在无模板存在的情况下,制备得到了三维超结构的三氧化二铁。通过实验条件的调控实现了两种不同形貌和结构的三氧化二铁,即海胆状和哈密瓜状三维超结构的可控制备,并对这两种超结构的形成机理和磁性能进行了研究。
     (3)采用络合-还原水/溶剂热路径,以氯化钴和联氨为主要原料,制备得到了两种不同形貌和结构的钴单质。研究了络合剂、反应持续时间、联氨的浓度等对样品形貌的影响,给出了不同结构和形貌的钴单质的形成机理,并研究了两种钴单质样品的磁性能。
     (4)在十六烷基三甲基溴/氯化铵存在的情况下,以氯化钴、氯化镍和联氨为起始原料,经水热处理制备了6–7μm长的亚微米链状镍钴(NiCo)合金聚集体。研究了表面活性剂对其结构和形貌的影响,并对其磁性能进行了研究。
Micro- and nano-structured magnetic materials, including ferrites, ferromagnetic metal oxides, and ferromagnetic metals and alloys etc, are very important functional materials. The synthesis, characterization and magnetic properties of micro- and nano-structured magnetic materials have become a hot topic in magnetism research areas and are attracting a growing interest because of the potential applications such as electron, communication, automobile, aerospace, biology and medicine, et al. More and more attentions have been paid to the studies of the synthesis and magnetic properties of those magnetic materials with uniform morphologies. In this dissertation, many efforts have been made to design and synthesize micro- and nanostructured magnetic materials. The formation mechanisms and magnetic properties of these materials have also been systematically studied. The main contents and major results are given as follows:
     (1) Uniform-sized, monodisperse and single-crystal magnetite hollow spheres with a diameter of 200–300 nm and a shell thickness of ~50 nm have been successfully synthesized in high yield using a template-free solvothermal route. We systematically investigated the influence of synthetic conditions on the morphology, structures and magnetic properties, and proposed the formation mechanism for the magnetite hollow spheres.
     (2) Hematite of three dimensional (3D) superstructures has been successfully prepared by a hydrothermal synthetic route based on the reaction between ferrous sulfate and sodium chlorate. An interesting feature is that 3D urchin-like and single-crystalline cantaloupe-like hematite superstructures can be controllably obtained by adjusting the synthetic conditions. The formation mechanism and magnetic properties of the hematite superstructures have been investigated.
     (3) Novel three dimensional (3D) Co dendritic superstructures and hierarchical nanostructured microspheres were successfully prepared by a simple hydro- and solvothermal reduction route. The influence of synthetic conditions on the morphology, structures and magnetic properties of the metallic Co were systematically investigated. The possible formation processes of the two metallic Co with different structures and morphologies were proposed.
     (4) Chain-like NiCo alloy assemblies with a length of up to 6–7μm were successfully prepared by a hydrothermal synthetic route in the presence of cetyltrimethylamonium bromide (CTAB) or cetyltrimethylamonium chloride (CTAC). We have investigated the influence of synthetic conditions on the morphology and structures. Investigation on the influence of the morphology and structures on the magnetic properties of NiCo alloy has been performed.
引文
[1] 田民波. 磁性材料. [M]. 北京, 清华大学出版社, 2001, 1.
    [2] Jiles DC. Recent advances and future directions in magnetic materials. [J]. Acta Mater. 2003, 19, 5907-5939.
    [3] 张立德, 牟季美. 纳米材料和纳米结构. [M]. 北京,科学出版社, 2001, 2.
    [4] 王涛. Co、Co-Cu纳米线及铁氧体纳米管阵列的结构与磁性研究. [M]. 兰州大学博士学位论文. 兰州, 2005, 5.
    [5] Tang H, Du YW, Qiu ZQ, Walker JC. A M?ssbauer study of fine iron particles. [J]. J. Appl. Phys. 1988, 63, 4100-4104.
    [6] Gong W, Li H, Zhao Z, et al. Ultrafine particles of Fe, Co, and Ni ferromagnetic metals. [J]. J. Appl. Phys. 1991, 69, 5119-5121.
    [7] Kneller EF, Luborsky FE. Particle Size Dependence of Coercivity and Remanence of Single-Domain Particles. [J]. J. Appl. Phys. 1963, 34, 656-658.
    [8] Trohidou KN, Soukoulis CM, Kostikas A, Hadjipanayis G. Size dependence of coercivity of small magnetic particles. [J]. J. Magn. Magn. Mater. 1992, 104-107, 1587-1588.
    [9] Milligan WO, Morriss RN. Morphology of Colloidal Gold--A Comparative Study. [J]. J. Am. Chem. Soc. 1964, 86, 3461-3467.
    [10] Berkowitz AE, Lahut JA, Jacobs IS, et al. Spin Pinning at Ferrite-Organic Interfaces. [J]. Phys. Rev. Lett. 1975, 34, 594-597.
    [11] 都有为, 徐明祥, 吴坚, 等. 镍超细微颗粒的磁性. [J]. 物理学报. 1992, 41, 149-154.
    [12] Mulyukov KY, Valiev RZ, Korznikova GF, et al. The Amorphous Fe83Nd13B4 Alloy Crystallization Kinetics and High Coercivity State Formation. [J]. Phys. Stat. Sol.(a), 1989, 112, 137-143.
    [13] Apai G, Hamilton JF, Stohr J, Thompson A. Extended X-Ray--Absorption Fine Structure of Small Cu and Ni Clusters: Binding-Energy and Bond-Length Changes with Cluster Size. [J]. Phys. Rev. Lett. 1979, 43, 165–169.
    [14] 刘献明. 微纳米铁氧体和过渡金属氧化物的化学制备及磁性能研究. [M]. 中国科学院研究生院博士学位论文. 北京, 2006, 1.
    [15] 王涛, 张立德. 纳米氮化硅红外吸收谱的“蓝移”和“宽化”现象. [J]. 中国科学院研究生学报. 1993.
    [16] 周志刚. 铁氧体磁性材料. [M]. 北京, 科学出版社, 1981, 5.
    [17] Liu CM, Guo L, Wang RM, et. al. Magnetic nanochains of metal formed by assembly of small nanoparticles. [J]. Chem. Commun. 2004, 2726-2727.
    [18] Guo L, Liang F, Wen X, Yang S, He L, Zheng W, Chen C, Zhong Q. Uniform Magnetic Chains of Hollow Cobalt Mesospheres from One-Pot Synthesis and Their Assembly in Solution. [J]. Adv. Funct. Mater. 2007, 17, 425-430.
    [19] Zhu LP, Xiao HM, Fu SY. Surfactant-assisted synthesis and characterization of novel chain-like CoNi alloy assemblies. [J]. Eur. J. Inorg. Chem. 2007, 3947-3951.
    [20] Liu Z, Li S, Yang Y, et al. Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts. [J]. Adv. Mater. 2003, 15, 1946-1948.
    [21] Zhu LP, Zhang WD, Xiao HM, et al. Synthesis and Characterization of Novel Three-Dimensional Metallic Co Dendritic Superstructures by a Simple Hydrothermal Reduction Route. [J]. Cryst. Growth Des. 2008, 8, 1113-1118.
    [22] Zhu LP, Zhang WD, Xiao HM, et al. Facile Synthesis of Metallic Co Hierarchical Nanostructured Microspheres by a Simple Solvothermal Process. [J]. J. Phys. Chem. C. in press.
    [23] Liu Q, Liu H, Han M, et al. Nanometer-Sized Nickel Hollow Spheres. [J] Adv. Mater. 2005, 17, 1995-1999.
    [24] Zhang D, Ni X, Zheng H. Surfactant-controlled synthesis of Fe nanorods in solution. [J]. J. Colloid & Interface Sci. 2005, 292, 410-412.
    [25] Dinepa DP, Bawendi MG. A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt. [J]. Angew. Chem. Int. Ed. 1999, 38, 1788-1791.
    [26] Catti E, Valerio G, Dovesi R. Theoretical study of electronic, magnetic and structural properties of α-Fe2O3. [J]. Phys. Rev. B. 1995, 12, 7441-7450.
    [27] Hansen MF, Koch CB, M?rup S. Magnetic dynamics of weakly and strongly interaction hematite nanoparticles. [J]. Phys. Rev. B. 2000, 2, 1124-1135.
    [28] B?dker F, Hansen MF, Koch CB, et al. Particle interaction effects in antiferromagnetic NiO nanoparticles. [J]. J. Magn. Magn. Mater. 2000, 1-2, 75-79.
    [29] Bi H, Li SD, Zhang YC, et al. Ferromagnetic-like behavior of ultrafine NiO nanocrystallites. [J]. J. Magn. Magn. Mater. 2004, 3, 363-367.
    [30] 彭穗. 水热法制备镍锌铁氧体及性能表征. [M]. 中南大学硕士学位论文, 长 沙, 2007, 7.
    [31] 陈学平. 固相反应前驱体法制备纳米铁氧体及其吸波涂层研究. [M].西南科技大学硕士研究生学位论文. 成都, 2005, 10.
    [32] 刘锦宏. 镍基尖晶石铁氧体纳米颗粒的微结构与磁性研究. [M].兰州大学博士学位论文. 兰州, 2005, 14.
    [33] 姚营. 钴纳米棒和钴纳米孔阵列的制备及表征. [M]. 深圳大学硕士学位论文. 深圳, 2007, 8.
    [34] Berkowitz AE, Mitchell JR, Carey MJ, et al. Giant magnetoresitance in heterogeneous Cu-Co alloys. [J]. Phys. Rev. Lett. 1992, 68, 3745-3748.
    [35] Xiao JQ, Jiang JS, Chien CL. Giant magnetoresitance in nonmultilayer magnetic systems. [J]. Phys. Rev. Lett. 1992, 68, 3749–3752.
    [36] 樊红雷. 单分散氧化铁的控制合成及其物化性质研究. [M]. 中国科学院研究生院博士学位论文. 北京, 2005, 15.
    [37] Blakeborough A, Ward J, Wilson D. Hepatic Lesion Detection at MR Imaging: A Comparative Study with Four Sequences. [J]. Radiology. 1997, 203, 759-765.
    [38] Weissleder R. Liver MR Imaging with Iron Oxides: Toward Consensus and Clinical Practice. [J]. Radiology. 1994, 193, 593-595.
    [39] Zhu LP, Xiao HM, Liu XM, Fu SY. Template-free synthesis and characterization of novel 3D urchin-like alpha-Fe2O3 superstructures. [J]. J. Mater. Chem. 2006, 16, 1794-1797.
    [40] Zhong L-S, Hu J-S, Liang H-P, Cao A-M, Song W-G, Wan L-J. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. [J]. Adv. Mater. 2006, 18, 2426-2431
    [41] Deliyanni E A, Bakoyannakis DN, Zouboulis AI, Mais KA. Sorption of As Ions by Akaganeite-type Nanocrystals. [J]. Chemosphere, 2003, 50, 155-163
    [42] 翁兴园. 磁流体技术及应用的发展现状及未来. [J]. 磁性材料及器件. 1998, 6, 35-39.
    [43] 高道江, 王建华. 磁流体制备技术的现状与展望. [J]. 磁性材料及器件. 1998, 2, 20-23.
    [44] 任欢鱼. 磁流体的制备与性质研究. [J]. 中国粉体技术. 2003,1,21-23.
    [45] 叶荣昌, 刘书进, 高宏等. 磁流体制备技术的研究现状及其存在的问题. [J]. 机械工程材料. 2003, 3, 33-34.
    [46] 李德才. 磁性溶液理论及应用. [M]. 北京, 科学出版社, 2003, 280-347.
    [47] Wang LP, Gao Y, Xue QJ, et al. Microstructure and Tribological Properties of Electrodeposited Ni-Co Alloy Deposits. [J]. Applied Surface Science, 20 05, 242, 326-332
    [48] Hu ZF, Wu XF. High Resolution Electron Microscopy of Precipitates in High Co-Ni Alloy Steel. [J]. Micron, 2003, 34, 19-23.
    [49] D'Orazio F, Lucari F, Melchiorri M, et.al. Blocking Temperature Distribution in Implanted Co-Ni Nanoparticles Obtained by Magneto-Optical Measurements. [J]. J. Magn. Magn. Mater, 2003, 262, 111-115.
    [50] Vilain S, Eboth? J. Growth and Topology of Co-Fe and Co-Ni Alloy Electrodeposits Studied by Atomic Force Microscopy. [J]. Mater. Sci. Engin A, 2001, 15, 199-201.
    [51] Moina CA, Vazdar M Electrodeposition of Nano-Sized Nuclei of Magnetic Co-Ni Alloys onto n-Si(100). [J]. Electrochem. Commun, 2001, 3, 159-163.
    [52] Abd EI-Rehim SS, Abd El-Hahim AM, Osman MM. Electrodeposition of Cobalt-Nickel Alloys from Wats-Type Baths. [J]. J. Appl. Electrochem, 1985, 15, 107-112.
    [53] 姚素薇, 刘冰, 张卫国, 等. 电沉积Ni-Co合金及其结构研究. [J]. 电镀与精饰. 1996, 18, 7-10.
    [54] Inoue J. Efects of Bulk and Interface Scatering on Giant Magnetoresistance in Magnetic Multilayers. [J]. J. Magn. Magn. Mater, 1996, 164, 273-283.
    [55] Armyanov S. Crystallographic Structure and Magnetic Properties of Electrodeposited Cobalt and Cobalt Alloys. [J]. Electrochimica Acta, 2000, 45, 3323-3335.
    [56] 乔桂英. 块体纳米晶Co-Ni合金的JED制备及其结构性能的研究. [M].燕山大学博士学位论文. 秦皇岛,2006,15-16.
    [57] Lee JG, Park JY, Kim CS. Growth of ultra-fine cobalt ferrite particles by a sol-gel method and their magnetic properties. [J]. J. Mater. Sci. 1998, 3965-3968.
    [58] Chen DH, He XR. Synthesis of nickel ferrite nanoparticles by sol-gel method. [J]. Mater. Res. Bull. 2001, 7-8, 1369-1377.
    [59] Atif M, Hasanain S K, Nadeem M. Magnetization of sol-gel prepared zinc ferrite nanoparticles: Effects of inversion and particle size. [J] Solid State Commun. 2006, 8, 416-421.
    [60] Ohashi H, Okazaki Y, Ohya Y, et al. High coercivity of Co-ferrite thin films prepared by sol-gel method. [J] IEEE Trans. Magn. 2006, 10, 2891-2893.
    [61] Bae SY, Jung HJ, Kim CS, et al. Magnetic properties of sol-gel derived Ni-Zn ferrite thin films. [J]. J. De Phtsique IV 1998, 2, 261-264.
    [62] Kim CS, Yi YS, Park KT, et al. Growth of ultrafine Co-Mn ferrite and magnetic properties by a sol-gel method. [J]. J. Appl. Phys. 1999, 8, 5223-5225.
    [63] Lee SW, Ryu YG, Yang KJ, et al. Magnetic properties of Zn2+ substituted ultrafine Co-ferrite grown by a sol-gel method. [J]. J. Appl. Phys. 2002, 10, 7610-7612.
    [64] Kim WC, Park SI, Kim SJ, et al. Magnetic and structural properties of ultrafine Ni-Zn-Cu ferrite grown by a sol-gel method. [J]. J. Appl. Phys. 2000, 9, 6241-6243.
    [65] Yan SF, Geng JX, Yin L, et al. Preparation of nanocrystalline NiZnCu ferrite particles by sol-gel method and their magnetic properties. [J]. J. Magn. Magn. Mater. 2004, 1-2, 84-89.
    [66] Liu F, Yang C, Ren TL, et al. NiCuZn ferrite thin films grown by a sol-gel method and rapid thermal annealing. [J]. J. Magn. Magn. Mater. 2007, 1, 75-79.
    [67] Li GS, Li LP, Smith RL, et al. Characterization of the dispersion process for NiFe2O4 nanocrystals in a silica matrix with infrared spectroscopy and electron paramagnetic resonance. [J]. J. Mol. Struct. 2001, 1-3, 87-93.
    [68] Li LP, Li GS, Smith RL, et al. Microstructural evolution and magnetic properties of NiFe2O4 nanocrystals dispersed in amorphous silica. [J]. Chem. Mater. 2000, 12, 3705-3714.
    [69] da Silva JB, Mohallem NDS. Preparation of composites of nickel ferrites dispersed in silica matrix. [J]. J. Magn. Magn. Mater. 2001, 2, 1393-1396.
    [70] Mohallem NDS, Seara LM. Magnetic nanocomposite thin films of NiFe2O4/SiO2 prepared by sol-gel process. [J]. Appl. Surf. Sci. 2003, 1-4, 143-150.
    [71] Liu XM, Fu SY, Huang CJ. Magnetic properties of Ni ferrite nanocrystalsdispersed in the silica matrix by sol-gel technique. [J]. J. Magn. Magn. Mater. 2004, 2-3, 234-238.
    [72] Hutlova A, Niznansky D, Rehspringer JL, et al. High coercive field for nanoparticles of CoFe2O4 in amorphous silica sol-gel. [J]. Adv. Mater. 2003, 19, 1622-1625.
    [73] Cannas C, Musinu A, Piccaluga G, et al. Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique. [J]. J. Chem. Phys. 2006, 16, 64714-64714
    [74] Zhang SP, Dong DW, Sui Y, et al. Preparation of core shell particles consisting of cobalt ferrite and silica by sol-gel process. [J] J. Alloy. Compd. 2006, 1-2, 257-260.
    [75] Monte FD, Morales MP, Levy D, et al. Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. [J]. Langmuir. 1997, 14, 3627-3634.
    [76] Yu SH, Fujino T, Yoshimura M. Hydrothermal synthesis of ZnFe2O4 ultrafine particles with high magnetization. [J]. J. Magn. Magn. Mater. 2003, 1, 420-424.
    [77] Ji JB, Tang SL, Ren SK, et a1. Simplified synthesis of single-crystalline magnetic CoFe2O4 nanorods by a surfactant-assisted hydrothermal process. [J]. J. Cryst. Growth. 2004, 1, 156-161.
    [78] Chen DH, Chen DR, Jiao XL, et al. Hydrothermal synthesis and characterization of octahedral nickel ferrite particles. [J]. Powder Technol. 2003, 1-3, 247-250.
    [79] 刘献明, 黄传军, 张书峰, 等. 纳米晶MnFe2O4 的水热法合成及其磁性. [J]. 功能材料与器件学报. 2005, 2, 153-157.
    [80] Verma S, Joy PA, Khollam YB, et al. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. [J]. Mater. Lett. 2004, 6, 1092-1095.
    [81] 李康, 魏群, 古宏晨. 水热法合成六角片状钡铁氧体. [J]. 华东理工大学学报. 2003, 4, 413-415.
    [82] 桑商斌, 古映莹, 黄可龙, 等. 锰锌铁氧体纳米晶的水热法制备及动力学研究. [J]. 功能材料. 2001, 1, 27-29.
    [83] Wang HW, Kunk SC. Crystallization of nanosized Ni–Zn ferrite powdersprepared by hydrothermal method. [J]. J. Magn. Magn. Mater. 2004, 1, 230-236.
    [84] Kim C, Lee J, Katoh S, et al. Synthesis of Co-, Co-Zn and Ni-Zn ferrite powders by the microwave-hydrothermal method. [J]. Mater. Res. Bull. 2001, 12, 2241-2250.
    [85] Krishnaveni T, Komarneni S, Murthy SR. Microwave hydrothermal synthesis and characterization of nanosize NiCuZn ferrites. [J]. Synth. React. Inorg. Metal-org. Nano-metal Chem. 2006, 1, 143-148.
    [86] Fan R, Chen XH, Gui Z, et al. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4. [J]. Mater. Res. Bull. 2001, 4, 497-502.
    [87] Deng H, Li XX, Peng Q, Wang X, Chen JP, Li YD. Monodisperse magnetic single-crystal ferrite microspheres. [J]. Angew. Chem. Int. Ed. 2005, 44, 2782-2785.
    [88] Zhu LP, Xiao HM, Zhang WD, Yang G, Fu SY. One-Pot Template-Free Synthesis of Monodisperse and Single-Crystal Magnetite Hollow Spheres by a Simple Solvothermal Route. [J]. Crystal Growth & Design. 2008, 8, 957-963.
    [89] Zhu LP, Xiao HM, Fu SY. Template-Free Synthesis of Monodispersed and Single-Crystalline Cantaloup-like Fe2O3 Superstructures. [J]. Cryst. Growth Des. 2007, 7, 177-184.
    [90] Hou Y, Kondoh H, Ohta T. Self-assembly of Co nanoplatelets into spheres: Synthesis and characterization. [J]. Chem. Mater. 2005, 17, 3994-3996.
    [91] Nedkov I, Merodiiska T, Slavov L, et al. Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation. [J]. J. Magn. Magn. Mater. 2006, 2, 358-367.
    [92] Shi Y, Ding J, Liu X, et al. NiFe2O4 ultrafine particles prepared by co-precipitation/mechanical alloying. [J]. J. Magn. Magn. Mater. 1999, 2-3, 249-254.
    [93] 王秀宇, 杨桂琴, 严乐美, 等. 纳米晶MnFe2O4的低温共沉淀法合成及表征. [J]. 化学研究与应用. 2004, 1, 115-116.
    [94] Nedkov I, Merodiiska T, Milenova L, et al. Modified ferrite plating of Fe3O4 and CuFe2O4 thin films. [J]. J. Magn. Magn. Mater. 2000, 1-3, 296-300.
    [95] Date SK, Joy PA, Kumar PSA, et al. Structural, magnetic and M?ssbauer studies on nickel-zinc ferrites synthesized via a precipitation route. [J]. phys. stat. sol. (c) 2004, 12, 3495-3498.
    [96] Ryu BH, Chang HJ, Choi YM, et al. Preparation of Co1-xNixFe2O4 nanoparticles by coprecipitation method. [J]. Phys. Stat. Sol. (a) 2004, 8, 1855-1858.
    [97] Patron L, Carp O, Mindru I, et al. Compounds containing urea-precursors of mixed oxides.I-Synthesis of nickel ferrite. [J]. Rev. Roum. Chim. 1998, 11, 993-996.
    [98] Gajbhiye NS, Balaji G, Ghafari M. Magnetic properties of nanostructured MnFe2O4 synthesized by precursor technique. [J]. Phys. Stat. Sol. (a) 2002, 2, 357-361.
    [99] Li F, Liu J, Evans DG, et al. Stoichiometric synthesis of pure MFe2O4 (M=Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-Like) precursors. [J]. Chem. Mater. 2004, 8, 1597-1602.
    [100] Meng WQ, Li F, Evans DG, et al. Preparation of magnetic material containing MgFe2O4 spinel ferrite from a Mg-Fe(III) layered double hydroxide intercalated by hexacyanoferrate(III) ions. [J]. Mater. Chem. Phys. 2004, 1, 1-4.
    [101] Dumestre F, Chaudret B, Amiens C, Respaud M, Fejes P, Renaud P, Zurcher P. Unprecedented Crystalline Super-Lattices of Monodisperse Cobalt Nanorods . [J]. Angew. Chem., Int. Ed., 2003, 42, 5213-5216.
    [102] Vivekch SRC, Gundiah G, Govindaraj A, Rao CNR. A new method for the preparation of metal nanowires by the nebulized spray pyrolysis of precursors. [J]. Adv. Mater., 2004, 16, 1842.
    [103] Liu XM, Fu SY, Xiao HM, et al. Synthesis of nanocrystalline cobalt ferrite via a polymer-pyrolysis route. [J]. Physica B 2005, 12, 14-21.
    [104] 刘献明, 付绍云, 肖红梅, 等. 聚合-热解法制备和表征Co0.2Zn0.2Mn0.6Fe2O4纳米颗粒. [J]. 金属学报. 2006, 5, 497-499.
    [105] Liu XM, Fu SY, Xiao HM, et al. Preparation and characterization of complex ferrite nanoparticles by a polymer-pyrolysis route. [J]. J. Nanopart. Res. 2007, 9, 1041-1046.
    [106] Zhang XY, Xu LH, Dai JY, Chan HLW. Fabrication and magnetic behavior of Co-Ni nanowire arrays with small diameters. [J]. Phys. B 2004, 353, 187-191.
    [107] Ji G, Tang S,Xu B,et al. Synthesis of CoFe2O4 nanowire arrays using sol-gel method. [J]. Chem. Phys. Lett. 2003, 5-6, 484-489.
    [108] Zhang L, Papaefthymiou GC, Ying JY. Synthesis and properties of γ-Fe2O3 nanoclusters within mesoporous aluminosilicate matrices. [J]. J. Phys. Chem. B 2001, 31, 7414-7423.
    [109] Pham-Huu C, Keller N, Estournès C, et al. Synthesis of CoFe2O4 nanowire in carbon nanotubes: A new use of the confinement effect. [J]. Chem. Commun. 2002, 17, 1882-1883.
    [110] Shchakin DG, Radtchenko IL, Sukhomkov GB. Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside. [J]. Mater. Lett. 2003, 11, 1743-1747.
    [111] Niu H, Chen Q, Zhu H, et al. Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. [J]. J. Mater. Chem., 2003, 13, 1803-1805。
    [112] Wang J, Chen QW, Zeng C, Hou BY. Magnetic-Field-Induced Growth ofSingle-Crystalline Fe3O4 Nanowires. [J]. Adv. Mater. 2004, 16, 137–140.
    [113] Wu M, Xiong Y, Jia Y, Niu H, Qi H, Ye J, Chen Q. Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. [J]. Chem. Phys. Lett. 2005, 401, 374–379.
    [114] Niu H, Wu M, Tang Y, Yu Y, Chen Q. A case of magnetic field-induced change in final product.[J]. Solid State Commun. 2005,136, 490–493.
    [115] Cheng G, Romero D, Fraser G T, Walker A R H. Magnetic-Field-Induced Assemblies of Cobalt Nanoparticles. [J]. Langmuir, 2005,21, 12055-12059
    [116] May S, Ben SA. Molecular theory of the sphere-to-rod transition and the second CMC in aqueous. [J]. J. Phys. Chem. B 2001, 3, 630-640.
    [117] Pillai V, Shah DO. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsion. [J]. J. Magn. Magn. Mater. 1996, 1-2, 243-248.
    [118] Lee Y, Lee J, Bae CG, et al. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. [J]. Adv. Funct. Mater. 2005, 3, 503-509.
    [119] Sun S, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. [J]. J. Am. Chem. Soc. 2004, 1, 273-279.
    [120] Liu XM, Fu SY, Xiao HM, et al. Preparation and characterization of shuttle-like α-Fe2O3 nanoparticles by supermolecular template. [J]. J. Solid State Chem. 2005, 10, 2798-2803.
    [121] Vestal CR, Zhang ZJ. Synthesis of CoCrFeO4 nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties. [J]. Chem. Mater. 2002, 9, 3817-3822.
    [122] Xiao HM, Liu XM, Fu SY. Synthesis, magnetic and microwave absorbing properties of core-shell structured MnFe2O4/TiO2 nano-composites. [J]. Compos. Sci. Technol. 2006, 66, 2003-2008.
    [123] Vestal CR, Zhang ZJ. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core. [J]. Nano. Lett. 2003, 12, 1739-1743.
    [124] Vestal CR, Zhang ZJ. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. [J]. J. Am. Chem. Soc. 2002, 48, 14312-14313.
    [125] Wang F, Gu HZ, Zhang ZC. Preparation of cobalt nanocrystals in the homogenous solution with the presence of a static magnetic field. [J]. Mater. Res. Bull., 2003, 38, 347-351.
    [126] 肖红梅. 电磁功能纳米复合材料的制备及性能研究 [M]. 中国科学院研究生院博士学位论文. 北京,2007.
    [127] 姜久兴, 李垚, 赫晓东,等. MnFe2O4粉体的燃烧合成. [J]. 粉末冶金技术. 2003, 5, 264-269.
    [128] 徐志刚. CoFe2O4 纳米材料的燃烧法合成及磁性研究. [J]. 科学通报. 2000, 17, 1837-1840.
    [129] Vakyan A, Int P B, Nersisyan E L, et al. Influence of powder particle size on formation of microstructure and properties of manganese-zinc ferrites. [J]. J. Self Propag. High-Temp. Synth. 1995, 1, 79-83.
    [1] Liu C,Zhou BC,Adam J. R, et al. Reverse Micelle Synthesis and Characterization of Superparamagnetic MnFe2O4 Spinel Ferrite Nanocrystallites. [J]. J. Phys. Chem. B. 2000, 104, 1141-1145.
    [2] 李葵英, 田秋雄, 吴风清, 等. 掺杂纳米晶铁酸盐表面电子重组能与光伏特性的关系. [J]. 物理化学学报. 2003, 19, 158-162.
    [3] 朱碧宁. 水热法的不同条件制备纳米铁酸钴及其气敏性能研究. [M]. 中山大学硕士学位论文. 广州, 2007, 3-7.
    [4] 宫建国, 张清杰. 多元醇法制备纳米Fe3O4及其静磁性能的研究. [J]. 功能材料. 2006, 12, 2001-2002
    [5] Caruso F, Spasova M, Susha A, Giersig M, Caruso R A. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. [J]. Chem. Mater. 2001, 13, 109-116.
    [6] Hyeon T. Chemical synthesis of magnetic nanoparticles. [J]. Chem. Commun. 2003, 8, 927-934.
    [7] Hyeon T, Chung Y, Park J, Lee SS, Kim YW, Park BH. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. [J]. J. Phys. Chem. B 2002, 106, 6831-6833.
    [8] Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. [J]. J. Am. Chem. Soc. 2001, 123, 12798-12801.
    [9] Yu S, Yoshimura M. Ferrite/Metal Composites Fabricated by Soft Solution Processing. [J]. Adv. Funct. Mater. 2002, 12, 9-15.
    [10] Yu S, Yoshimura M. Direct Fabrication of Ferrite MFe2O4 (M = Zn, Mg)/Fe Composite Thin Films by Soft Solution Processing. [J]. Chem. Mater. 2000, 12, 3805-3810.
    [11] Sun S, Zeng H. Size-Controlled Synthesis of Magnetite Nanoparticles. [J]. J. Am. Chem. Soc. 2002, 124, 8204-8205.
    [12] Gee SH, Hong YK, Erickson DW, Park MH. Synthesis and aging effect of spherical magnetite (Fe3O4) nanoparticles for biosensor applications. [J]. J. Appl. Phys. 2003, 93, 7560-7562.
    [13] Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles. [J]. J. Am. Chem. Soc. 2004, 126, 273.
    [14] Lee Y, Lee J, Bae CJ, et al. Large-scale synthesis of uniform and crystallinemagnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. [J]. Adv. Funct. Mater. 2005, 15, 503-509.
    [15]Yang T, Shen C, Li Z, et al. Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties. [J]. J. Phys. Chem. B 2005, 109, 23233-23236.
    [16] Pinna N, Grancharov S, Beato P, et al. Magnetite Nanocrystals: Nonaqueous Synthesis, Characterization, and Solubility. [J]. Chem. Mater. 2005, 17, 3044-3049.
    [17] Liang X, Wang X, Zhuang J, et al. Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals. [J]. Adv. Funct. Mater. 2006, 16, 1805-1813.
    [18] Hu F, Wei L, Zhou Z, et al. Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer. [J]. Adv. Mater. 2006, 18, 2553-2556.
    [19] Deng H, Li XX, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres. [J]. Angew. Chem. Int. Ed. 2005, 44, 2782-2785.
    [20] Wang L, Bao J, Wang L, et al. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. [J]. Chem. Eur. J. 2006, 12, 6341-6347.
    [21] Lian S, Kang Z, Wang E, et al. Convenient synthesis of single crystalline magnetic Fe3O4 nanorods. [J]. Solid State Commun. 2003, 127, 605-608.
    [22] Lian S, Wang E, Kang Z, et al. Synthesis of magnetite nanorods and porous hematite nanorods. [J]. Solid State Commun. 2004, 129, 485-490.
    [23] Wang J, Peng Z, Huang Y, Chen Q. Growth of magnetite nanorods along its easy-magnetization axis of [1 1 0]. [J]. J. Crystal Growth 2004, 263, 616-619.
    [24] Wan J, Chen X, Wang Z, Yang X, Qian Y. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. [J]. J. Crystal Growth 2005, 276,571-576.
    [25] Chen S, Feng J, Guo X, Hong J, Ding W. One-step wet chemistry for preparation of magnetite nanorods. [J]. Mater. Lett. 2005, 59, 985-988.
    [26] Wang J, Chen Q, Zeng C, Hou B. Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires. [J]. Adv. Mater. 2004, 16, 137-140.
    [27] Huang Z, Zhang Y, Tang F. Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity. [J]. Chem. Commun. 2005, 342-344.
    [28] Chueh Y-L, Lai M-W, Liang J-Q, Chou L-J, Wang Z L. Systematic Study of the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor-Solid. [J]. Adv. Funct. Mater. 2006, 16, 2243-2251.
    [29] Liu Z, Zhang D, Han S, Li C, Lei B, Lu W, Fang J, Zhou C. Single Crystalline Magnetite Nanotubes. [J]. J. Am. Chem. Soc. 2005, 127, 6-7.
    [30] Liu F, Cao P, Zhang H, Tian J, Xiao C, Shen C, Li J, Gao H. Novel Nanopyramid Arrays of Magnetite. [J]. Adv. Mater. 2005, 17, 1893-1897.
    [31] Hu C, Gao Z, Yang X. Fabrication and magnetic properties of Fe3O4 octahedra. [J]. Chem. Phys. Lett. 2006, 429, 513-517.
    [32] Liu XM, Fu SY, Xiao HM. Fabrication of octahedral magnetite microcrystals. [J]. Mater. Lett. 2006, 60, 2979-2983.
    [33] Yu W, Zhang T, Zhang J, Qiao X, Yang L, Liu Y. The synthesis of octahedral nanoparticles of magnetite. [J]. Mater. Lett. 2006, 60, 2998-3001.
    [34] Zhong L-S, Hu J-S, Liang H-P, Cao A-M, Song W-G, Wan L-J. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. [J]. Adv. Mater. 2006, 18, 2426-2431.
    [35] Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. [J].Science 2002, 298, 2176-2179.
    [36] Lu Y, Yin Y, Mayers BT, Xia Y. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. [J]. Nano Lett. 2002, 2, 183-186.
    [37] Gee SH, Hong YK, Erickson DW, Park MH. Synthesis and aging effect of spherical magnetite (Fe3O4) nanoparticles for biosensor applications. [J]. J. Appl. Phys. 2003, 93, 7560-7562.
    [38] Woo K, Hong J, Choi S, et al. Easy synthesis and magnetic properties of iron oxide nanoparticles. [J]. Chem. Mater. 2004, 16, 2814-2818.
    [39] Schlachter A, Gruner M E, Spasova M, Farle M, Entel P. Preparation and properties of nanostructured magnetic hollow microspheres: experiment and simulation. [J]. Phase Trans. 2005, 78, 741-750.
    [40] Huang Z, Tang F. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. [J]. J. Colloid Interface Sci. 2005, 281, 432-436.
    [41] Li X-H, Zhang D-H, Chen J-S. Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres [J]. J. Am. Chem. Soc. 2006, 128, 8382-8383.
    [42] Chen X, Zhang Z, Li X, Shi C. Hollow magnetite spheres: Synthesis, characterization, and magnetic properties. [J]. Chem. Phys. Lett. 2006, 422, 294-298.
    [43] Yu D, Sun X, Zou J, Wang Z, Wang F, Tang K. Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres. [J]. J. Phys. Chem. B 2006, 110, 21667-21671.
    [44] Zhong Z, Yin Y, Gates B, Xia Y. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. [J]. Adv. Mater. 2000, 12, 206.
    [45] Kim SW, Kim M, Lee WY, Hyeon T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. [J]. J. Am. Chem. Soc. 2002, 124, 7642-7643.
    [46] Caruso F, Caruso RA, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. [J]. Science 1998, 282, 1111-1114.
    [47] Yang M, Ma J, Zhang C, Yang Z, Lu Y. General synthetic route toward functional hollow spheres with double-shelled structures. [J]. Angew. Chem. Int. Ed. 2005, 44, 6727-6730.
    [48] Liang HP, Zhang HM, Hu JS, et al. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. [J]. Angew. Chem. Int. Ed.2004, 43, 1540-1543.
    [49] Gao J, Zhang B, Zhang X, Xu B. Magnetic-Dipolar-Interaction-Induced Self-Assembly Affords Wires of Hollow Nanocrystals of Cobalt Selenide. [J]. Angew. Chem. Int. Ed. 2006, 45, 1220-1223.
    [50] Zoldesi CI, Imhof A. Synthesis of Monodisperse Colloidal Spheres, Capsules, and Microballoons by Emulsion Templating. [J]. Adv. Mater. 2005, 17, 924-928.
    [51]Walsh D, Lebeau B, Mann S. Morphosynthesis of Calcium Carbonate (Vaterite) Microsponges. [J]. Adv. Mater. 1999, 11, 324-328.
    [52] Peng Q, Dong Y, Li Y. ZnSe Semiconductor Hollow Microspheres. [J].Angew. Chem. Int. Ed. 2003, 42, 3027-3030.
    [53] Lou XW,Yuan C, Rhoades E, Zhang Q, Archer L A. Encapsulation and Ostwald ripening of Au and Au-Cl complex nanostructures in silica shells. [J]. Adv. Funct. Mater. 2006, 16, 1679-1684.
    [54] Yin YD, Rioux RM, Erdonmez CK, et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. [J]. Science 2004, 304, 711-714.
    [55] Xiong Y, Wiley B, Chen J, Li ZY, Yin Y, Xia Y. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. [J]. Angew. Chem. Int. Ed. 2005, 44, 7913-9717.
    [56] Yang HG, Zeng HC. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. [J]. J. Phys. Chem. B 2004, 108, 3492-3495.
    [57] Wang Y, Zhu Q, Zhang H. Fabrication of β-Ni(OH)2 and NiO hollow spheres by a facile template-free process. [J]. Chem. Commun. 2005, 5231-5233.
    [58] Lou XW, Yuan C, Lee JY, Archer LA. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. [J]. Adv. Mater. 2006, 18, 2325+.
    [59] Liu Q, Liu H, Han M, Zhu J, Liang Y, Xu Z, Song Y. Nanometer-Sized Nickel Hollow Spheres. [J]. Adv. Mater. 2005, 17, 1995-1999.
    [60] Cao AM, Hu JS, Liang HP, Wan LJ. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. [J]. Angew. Chem. Int. Ed. 2005, 44, 4391-4395.
    [61] Han S, Jang B, Kim T, Oh SM, Hyeon T. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. [J]. Adv. Funct. Mater. 2005, 15, 1845-1850.
    [62] Cornell RM, Schwertmann U. [M]. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; VCH: Weinheim, 1996.
    [63] Teng XW, Black D, Watkins NJ, Gao YL, Yang H. Platinum-maghemite core-shell nanoparticles using a sequential synthesis. [J]. Nano Lett. 2003, 2, 261-264.
    [64] Wu JB, Lin YF, Wang J, et al. Correlation between N 1s XPS binding energy and bond distance in metal amido, imido, and nitrido complexes. [J]. Inorg. Chem. 2003, 42, 4516-4518.
    [65] Charlier J, Cousty J, Xie ZX, Poulennec VL, Bureau C. Adsorption of substituted pyrrolidone molecules on Au(111): an STM and XPS study. [J]. Surf. Interface Anal. 2000, 30, 283-287.
    [66] Moulder JF, Stickle WF, Sobol PE, Bomben KD. [M]. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics: Eden Prairie, MN, 1995.
    [67] Bavykin DV, Parmon VN, Lapkin AA, Walsh FC. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. [J]. J. Mater. Chem. 2004, 14, 3370-3377.
    [68] Yu J, Guo H, Davis SA, Mann S. Fabrication of Hollow Inorganic Microspheres by Chemically Induced Self-Transformation. [J]. Adv. Funct. Mater. 2006, 16, 2035–2041.
    [69] Zhu LP, Xiao HM, Zhang WD, Yang G, Fu SY. One-Pot Template-Free Synthesis of Monodisperse and Single-Crystal Magnetite Hollow Spheres by a Simple Solvothermal Route. [J]. Crystal Growth & Design. 2008, 8, 957-963.
    [70] Zhang D-E, Zhang X-J, Ni X-M, Zheng H-G. Preparation and characterization of alpha-FeOOH nanorods via an ethylenediamine-assisted route. [J] Mater. Lett. 2006, 60, 1915-1917.
    [71] Wang JW, Wang X, Peng Q, Li YD. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. [J]. Inorg. Chem. 2004, 43, 7552-7556.
    [72] Wang YL, Xia YN. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. [J]. Nano Lett. 2004, 4, 2047-2050.
    [73] Feldmann C. Polyol-mediated synthesis of nanoscale functional materials. [J]. Adv. Funct. Mater. 2003, 13, 101-107.
    [74] Alivisatos AP. Biomineralization - Naturally aligned nanocrystals. [J]. Science 2000, 289, 736-737.
    [75] Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. [J]. Science 2000, 289, 751-754.
    [76] Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T. Synthesis, characterisation and application of silica-magnetite nanocomposites. [J]. J. Magn. Magn. Mater. 2004, 284, 145-160.
    [77] Ma Z, Guan Y, Liu H. Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. [J]. J. Polymer Sci: Part A: Polymer Chem, 2005, 43, 3433-3439.
    [78] Han DH, Wang JP, Luo HL. Crystallite size effect on saturation magnetization onfine freemagnetic particles. [J]. J. Magn.Magn. Mater. 1994, 136,176-182.
    [79] Cullity BD. (Ed.), Introduction to Magnetic Materials, Addison-Wesley: London, UK, 1972, pp 240-243, 386-389.
    [80] Peng S,Sun S. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. [J]. Angew. Chem. Int. Ed. 2007, 46, 4155-4158.
    [81] 付绍云, 朱路平, 肖红梅, 等. 一种尖晶石铁氧体纳米空心微球的制备方法. 中国专利, 申请号:200710098587. 4.
    [1] 罗益民, 黄可龙, 潘春跃. 纳米级 β-FeOOH 细粉的制备与表征. [J].无机材料学报.1994, 9(2), 239-243
    [2] 樊红雷. 单分散氧化铁的控制合成及其物化性质研究. [M] 中国科学院研究生院博士学位论文. 北京, 2005, 13.
    [3] Zhang T S, Hing P,Zhang R E. Improvements in Fe2O3 ceramic sensors for reducing gases by addition of Sb2O3. [J]. J Mater Sci.2000, 35, 1419-1425.
    [4] 朱路平, 贾志杰, 黄在银. α-Fe2O3纳米棒的制备研究. [J].电子元件与材料. 2004, 23, 1-3
    [5] Sahu KK, Rath C, Mishra NC, Anand S, Das RP. Microstructural and Magnetic Studies on Hydrothermally Prepared Hematite. [J]. J. Colloid Interface Sci. 1997, 185, 402-407.
    [6] Lian S, Wang E, Kang Z, Bai Y, Gao L, Jiang M, Hu C, Xu L. Synthesis of magnetite nanorods and porous hematite nanorods. [J]. Solid State Commun. 2004, 129, 485-488.
    [7] Jing Z, Wu S. Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. [J]. Mater. Lett. 2004, 58, 3637-3640.
    [8] Pascal C, Pascal JL, Favier F, Moubtassim MLE, Payen C. Electrochemical Synthesis for the Control of γ-Fe2O3 Nanoparticle Size. Morphology, Microstructure, and Magnetic Behavior. [J]. Chem. Mater. 1999, 11, 141-147.
    [9] Fu Y, Chen J, Zhang H. Synthesis of Fe2O3 nanowires by oxidation of iron. [J]. Chem. Phys. Lett. 2001, 350, 491-494.
    [10] Fu Y, Wang R, Xu J, Chen J, Yan Y, Narlikar A, Zhang H. Synthesis of large arrays of aligned α-Fe2O3 nanowires. [J]. Chem. Phys. Lett. 2003, 379, 373-379.
    [11] Chueh Y-L, Lai M-W, Liang J-Q, Chou L-J, Wang ZL. Systematic study of the growth of aligned arrays of alpha-Fe2O3 and Fe3O4 nanowires by a vapor-solid. [J]. Adv. Funct. Mater. 2006, 16, 2243-2251.
    [12] Wen XG, Wang SH Ding Y, et al. Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires. [J]. J. Phys. Chem. B. 2005, 109, 215-220.
    [13] Wen X, Wang S, Ding Y, et al. Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays of α-Fe2O3 Nanobelts and Nanowires. J. Phys. Chem. B 2005, 109, 215-220
    [14] Hu X, Yu JC, Gong J, Li Q, Li G. α-Fe2O3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties. [J]. Adv. Mater. 2007, 19, 2324–2329
    [15] Ni Y, Ge X, Zhang Z, Ye Q. Fabrication and Characterization of the Plate-Shaped γ-Fe2O3 Nanocrystals [J]. Chem. Mater. 2002, 14, 1048.
    [16] Suber L, Fiorani D, Imperatori P, Foglia S, Montone A, Zysler R. Effects of thermal treatments on structural and magnetic properties of acicular α-Fe2O3 nanoparticles. [J]. NanoStructured Mater. 1999, 11, 797-803.
    [17] Liu XM, Fu SY, Xiao HM, Huang CJ. Preparation and,characterization of shuttle-like alpha-Fe2O3 nanoparticles by supermolecular template. [J]. J. Solid. State. Chem. 2005, 178, 2798-2803.
    [18] Ngo AT, Pileni MP. Cigar-shaped ferrite nanocrystals: Orientation of the easy magnetic axes. [J]. J. Appl. Phys. 2002, 92, 4649-4652.
    [19] Li S, Zhang H, Wu J, Ma X, Yang D. Shape-control fabrication and characterization of the airplane-like FeO(OH) and Fe2O3 nanostructures. [J]. Cryst. Growth Des. 2006, 6, 351-353
    [20] Wu X, Hu C, Wang ZL. Single-Crystal Dendritic Micro-Pines of Magnetic α-Fe2O3 : Large-Scale Synthesis, Formation Mechanism, and Properties. [J]. Angew. Chem. Int. Ed. 2005, 44, 4197-4201
    [21] Zhong L-S, Hu J-S, Liang H-P, Cao A-M, Song W-G, Wan L-J. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. [J]. Adv. Mater. 2006, 18, 2426-2431
    [22] 李志远. Fe2O3纳米材料的制备及其气敏和催化性质. [M]. 天津大学硕士学位论文. 天津, 2004, 5.
    [23] Zboril R, Mashlan M, Petridis D. Iron (III) oxides from thermal processes- synthesis, structural and magnetic properties, m?ssbauer spectroscopy characterization and applications. [J]. Chem. Mater. 2002, 3, 969-982.
    [24] 刘献明. 微纳米铁氧体和过度金属氧化物的化学制备及磁性能研究. [M]. 中国科学院研究生院博士学位论文. 北京, 2006, 69-70.
    [25] 张立德, 牟季美. 纳米材科和纳米结构. [M]. 北京:科学出版社,2002. 72.
    [26] Catti M, Valerio G, Doversi R. Theoretical study of electronic, magnetic and structural properties of α-Fe2O3. [J]. Phys. Rev. B 1995 (12), 7441-7450.
    [27] Suberl L, Santiago AG, Fiorani D, Imperatori P, Testa AM, Angiolini M, Montone A, Dormann JL. Structural and Magnetic Properties of α-Fe2O3 Nanoparticles. [J]. Appl. Organomatal. Chem. 1998, 12, 347–351
    [28] Jing Z, Wu S. Synthesis and characterization of monodisperse hematite nanoparticles. [J]. Mater. Lett. 2004 (58), 3637-3640
    [29] Giri S, Samant S, Maji S, Ganguli S, Bhaumik A. Magnetic properties of α-Fe2O3nanoparticle synthesized by a new hydrothermal method. [J]. J. Magn. Magn. Mater. 2005(285), 296-302
    [30] Xu YY, Rui XF, Fu YY, Zhang H. Magnetic properties of α-Fe2O3 nanowires. [J]. Chem. Phys. Lett. 2005(410), 36-38
    [31] Tang B, Wang G, Zhuo L, Ge J, Cui L. Facile Route to α-FeOOH and α-Fe2O3 Nanorods and Magnetic Property of α-Fe2O3 Nanorods. [J]. Inorganic Chem.2006, 13, 5196-5200.
    [32] Leontidis E, Kyprianidou-Leodiou T, Caseri W, et al. From colloidal aggregates to layered nanosized structures in polymer-surfactant systems. [J]. J. Phys. Chem. B 2001, 19, 4133-4144.
    [33] Leontidis E, Kyprianidou-Leodiou T, Caseri W, et al From beads-on-a- string to colloidal aggregation: novel crystallization phenomena in the PEO-SDS system. [J]. Langmuir, 1999, 10, 3381-3385.
    [34] Stoll S, Buffle J. Computer simulation of bridging flocculation processes: the role of colloid to polymer concentration ratio on aggregation kinetcs. [J]. J. Colloid. Interf. Sci. 1996, 2, 548-563.
    [35] Philip J, Jaykumar T, Kalyanasundaram P, et al. Effect of polymer-surfactant association on colloidal force. [J]. Phys. Rev. E 2002, 1, 1406-1408
    [36] Jia CJ, Sun LD, Yan ZH, et al. Iron oxide nanotubes - Single-crystalline iron oxide nanotubes. [J]. Angew. Chem. Int. Edit. 2005, 44, 4328-4333.
    [37] Chen X, Zhang Z, Qiu Z, Shi C, Li X. A facile biomolecule-assisted approach for fabricating α-Fe2O3 nanowires in solution. [J]. Solid State Commun. 2006, 140, 267-269.
    [38] Zhu LP, Xiao HM, Fu SY. Template-Free Synthesis of Monodispersed and Single-Crystalline Cantaloup-like Fe2O3 Superstructures. [J]. Cryst. Growth Des. 2007, 7, 177-184.
    [39] Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: From nanodots, to nanorods. [J]. Angew. Chem., Int. Ed. 2002, 41, 1188-1194.
    [40] Liu J, Huang X, Sulieman K M, Sun F, He X. Solution-based growth and optical properties of self-assembled monocrystalline ZnO ellipsoids. [J]. J. Phys. Chem. B. 2006, 110, 10612-10618.
    [41] Liu J, Huang X, Li Y, Sulieman K M, He X, Sun F. Self-assembled CuO monocrystalline nanoarchitectures with controlled dimensionality and morphology. [J]. Cryst. Growth Des. 2006, 6, 1690-1696.
    [42] Xia Y, Yang P, Sun Y, Wu Y, et al. One-dimensional nanostructures: Synthesis, characterization, and applications. [J]. Adv. Mater. 2003, 15, 353-389.
    [43] Liu Z, Li S, Yang Y, et al. Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts. [J]. Adv. Mater. 2003, 15, 1946-1948.
    [44] Zhu LP, Xiao HM, Fu SY. Surfactant-assisted synthesis and characterization of novel chain-like CoNi alloy assemblies. [J]. Eur. J. Inorg. Chem. 2007, 3947-3951.
    [45] Zhang D, Ni X, Zheng H. Surfactant-controlled synthesis of Fe nanorods in solution. [J]. J. Colloid & Interface Sci. 2005, 292, 410-412.
    [46] Jia ZJ, Zhu LP, Liao GH, Yu Y, Tang YW. Preparation and characterization of SnO nanowhiskers. [J]. Solid State Commun. 2004, 132, 78-82.
    [47] Yu Y, Du FP, Yu JC, Zhuang YY, Wong P. One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template. [J]. J. Solid State Chem. 2004, 177, 4640-4647.
    [48] Qiu J, Yang R, Li M, Jiang N. Preparation and characterization of porous ultrafine Fe2O3 particles. [J]. Mater. Res. Bull, 2005, 40, 1968-1975.
    [49] Zhu LP, Xiao HM, Liu XM, Fu SY. Template-free synthesis and characterization of novel 3D urchin-like alpha-Fe2O3 superstructures. [J]. J. Mater. Chem. 2006, 16, 1794-1797.
    [1] Kaltenpoth G, Himmelhaus M, Slansky L, Caruso F, Grunze M. Conductive core-shell particles: An approach to self-assembled mesoscopic wires. [J]. Adv. Mater. 2003, 15, 1113-1118.
    [2] Yuan JK, Laubernds K, Zhang QH, Suib SL. Self-Assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres. [J]. J. Am. Chem. Soc. 2003, 125, 4966-4967.
    [3] Yada M, Taniguchi C, Torikai T, Watari T, Furuta S, Katsuki H. Hierarchical Two- and Three-Dimensional Microstructures Composed of Rare-Earth Compound Nanotubes. [J]. Adv. Mater. 2004, 16, 1448-1453.
    [4] Fan HY, Yang K, Boye DM, et al. Self-assembly of ordered, robust,three-dimensional gold nanocrystal/silica arrays. [J]. Science, 2004, 304, 567-571.
    [5] Gao PX, Wang ZL. Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. [J]. J. Am. Chem. Soc. 2003, 125, 11299-11305.
    [6] Hu J, Ren L, Guo Y, Liang H, Cao A, Wan L, Bai C. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles [J]. Angew. Chem. Int. Ed. 2005, 44, 1269-1273.
    [7] Zhu L-P, Xiao H-M, Fu S-Y. Template-free synthesis of monodispersed and single-crystalline cantaloupe-like Fe2O3 superstructures. [J]. Cryst. Growth Des. 2007, 7, 177-182.
    [8] Jenekhe SA, Chen XL. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. [J]. Science 1998, 279, 1903-1907.
    [9] Ikkala O, Ten Brinke G. Functional materials based on self-assembly of polymeric supramolecules. [J]. Science 2002, 295, 2407.
    [10] Du JZ, Chen YM. Organic-inorganic hybrid nanoparticles with a complex hollow structure. [J]. Angew. Chem. Int. Ed. 2004, 43, 5084-5087.
    [11] Shenton W, Pum D, Sleytr UB, Mann S. Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. [J]. Nature 1997, 389, 585-587.
    [12] Mann S. The chemistry of form. [J]. Angew. Chem., Int. Ed., 2000, 39, 3393-3406
    [13] Gao F, Lu QY, Xie SHD, Zhao Y. A simple route for the synthesis of multi-armed CdS nanorod-based materials. [J]. Adv. Mater., 2002, 14, 1537+.
    [14] Huang Y, Duan XF, Lieber CM. Nanowires for integrated multicolornanophotonics. [J]. Small, 2005, 1, 142-147.
    [15] 龙沁. 液相还原法制备超细钻粉新工艺的研究. [M]. 四川大学硕士学位论文. 成都, 2004, 6.
    [16] Puntes VF,Krishnan KM,Alivisatos A P. Colloidal nanocrystal shape and size control: The case of cobalt. [J]. Science 2001, 291, 2115-2117.
    [17] Dinepa DP, Bawendi MG. A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt. [J]. Angew. Chem. Int. Ed., 1999, 38, 1788-1791.
    [18] Hou Y, Kondoh H, Ohta T. Self-assembly of Co nanoplatelets into spheres: Synthesis and characterization. [J]. Chem. Mater. 2005, 17, 3994-3996.
    [19] Ung D, Viau G, Ricolleau C. CoNi Nanowires Synthesized by Heterogeneous Nucleation in Liquid Polyol. [J]. Adv. Mater. 2005, 17, 338-344.
    [20] Zhu LP, Xiao HM, Fu SY. Surfactant-assisted synthesis and characterization of novel chain-like CoNi alloy assemblies. [J]. Eur. J. Inorg. Chem. 2007, 3947-3951.
    [21] Dumestre F, Chaudret B, Amiens C, et al. Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry. [J]. Angew. Chem., Int. Ed. 2002, 41, 4286-4289.
    [22] Dumestre F, Chaudret B, Amiens C, Respaud M, Fejes P, Renaud P, Zurcher P. Unprecedented Crystalline Super-Lattices of Monodisperse Cobalt Nanorods . [J]. Angew. Chem., Int. Ed., 2003, 42, 5213-5216.
    [23] Vivekch SRC, Gundiah G, Govindaraj A, Rao CNR. A new method for the preparation of metal nanowires by the nebulized spray pyrolysis of precursors. [J]. Adv. Mater., 2004, 16, 1842.
    [24] Rivas J, Bantu AKM, Zaragoza G, et al. Preparation and magnetic behavior of arrays of electrodeposited Co nanowires. [J]. J. Magn. Magn. Mater. 2002, 249, 220-227.
    [25] Knez M, Bittner AM, Boes F, et al. Biotemplate synthesis of 3-nm nickel and cobalt nanowires. [J]. Nano Lett. 2003, 3, 1079-1082.
    [26] Wu H, Zhang R, Liu X, et al. Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties. [J]. Chem. Mater. 2007, 19, 3506-3511.
    [27] Niu HL, Chen QW, Zhu HF, Lin YS, Zhang X. Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. [J]. J. Mater. Chem., 2003, 13, 1803-1805.
    [28] Athanassiou EK, Grossmann P, Grass RN, Stark WJ. Template free, large scale synthesis of cobalt nanowires using magnetic fields for alignment. [J]. Nanotechnology, 2007, 18, 165606.
    [29] Xie Q, Dai Z, Huang WW, Liang JB, Jiang CL, Qian YT. Synthesis of ferromagnetic single-crystalline cobalt nanobelts via a surfactant-assisted hydrothermal reduction process. [J]. Nanotechnology, 2005, 16, 2958-2962.
    [30] Xie Q, Qian YT, Zhang S, Fu S, Yu W. A Hydrothermal Reduction Route to Single-Crystalline Hexagonal Cobalt Nanowires. [J]. Eur. J. Inorg. Chem., 2006, 2454-2459.
    [31] Guo L, Liang F, Wen X,Yang S,He L,Zheng W, Chen C, Zhong Q. Uniform Magnetic Chains of Hollow Cobalt Mesospheres from One-Pot Synthesis and Their Assembly in Solution. [J]. Adv. Funct. Mater. 2007, 17, 425-430.
    [32] Qiu R, Zhang XL, Qiao R, et al. CuNi Dendritic Material: Synthesis, Mechanism Discussion, and Application as Glucose Sensor. [J]. Chem. Mater. 2007, 19, 4174-4180.
    [33] Tao F, Wang Z, Chen D, et al. Synthesis of silver dendritic hierarchical structures and transformation into silver nanobelts through an ultrasonic process. [J]. Nanotechnology 2007, 18, 295602.
    [34] Yan Y, Wu Q S, Li L, Ding YP. Simultaneous synthesis of dendriticsuperstructural and fractal crystals of BaCrO4 by vegetal Bi-templates. [J]. Cryst. Growth Des. 2006, 6, 769-773.
    [35] Meyer M, Bée A, Talbot D, Cabuil V, Boyer JM, Répetti B, Garrigos R. Synthesis and dispersion of Ni(OH)2 platelet-like nanoparticles in water. [J]. J. Colloid Interface Sci. 2004, 277, 309-315.
    [36] Liang JB, Liu JW, Xie Q, Bai S, Yu WC, Qian YT. Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles. [J]. J. Phys. Chem. B 2005, 109, 9463-9467.
    [37] Zhang LP, Guo F, Liu XZ. Growth and shape evolution of octahedral CuI crystal by a SC-assisted hydrothermal method. [J]. Mater. Res. Bull. 2006, 41, 905-908.
    [38] Liu XM, Fu SY, Zhu LP. High-yield synthesis and characterization of monodisperse sub-microsized CoFe2O4 octahedra. [J]. J. Solid State Chem. 2007, 180, 461-466.
    [39] Xiao HM, Fu SY, Zhu LP, Li YQ, Yang G. Controlled synthesis and characterization of CuO nanostructures through a facile hydrothermal route in the presence of sodium citrate. [J]. Eur. J. Inorg. Chem. 2007, 1966-1971
    [40] Xie Q, Qian YT, Zhang S, Fu S, Yu W. A Hydrothermal Reduction Route to Single-Crystalline Hexagonal Cobalt Nanowires. [J]. Eur. J. Inorg. Chem., 2006, 2454-2459.
    [41] Dumpich G, Krome TP, Hausmanns B. Magnetoresistance of single Co nanowires. [J]. J. Magn. Magn. Mater. 2002, 248, 241-247.
    [42] Hausmanns B, Krome TP, Dumpich G. Magnetoresistance and magnetization reversal process of Co nanowires covered with Pt. [J]. J. Appl. Phys. 2003, 93, 8095-8097.
    [43] Cao HQ, Xu Z, Sang H, Sheng D, Tie CY. Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanotubules. [J]. Adv. Mater. 2001, 13, 121-123.
    [1] Jin J, Ohkoshi S, Hashimoto K. Giant coercive field of nanometer-sized iron oxide. [J]. Adv. Mater. 2004, 16, 48.
    [2] Vayssieres L, Sathe C, Butorin SM, et al. One-dimensional quantum-confinement effect in alpha-Fe2O3 ultrafine nanorod arrays. [J]. Adv. Mater. 2005, 17, 2320.
    [3] Dinepa DP, Bawendi MG. A Solution-Phase Chemical Approach to a New Crystal Structure of Cobalt. [J]. Angew. Chem. Int. Ed., 1999, 38, 1788-1791.
    [4] Dumestre F, Chaudret B, Amiens C, et al. Shape control of thermodynamicallystable cobalt nanorods through organometallic chemistry. [J]. Angew. Chem., Int. Ed. 2002, 41, 4286-4289.
    [5] Dumestre F, Chaudret B, Amiens C, Respaud M, Fejes P, Renaud P, Zurcher P. Unprecedented Crystalline Super-Lattices of Monodisperse Cobalt Nanorods . [J]. Angew. Chem., Int. Ed., 2003, 42, 5213-5216.
    [6] Vivekch SRC, Gundiah G, Govindaraj A, Rao CNR. A new method for the preparation of metal nanowires by the nebulized spray pyrolysis of precursors. [J]. Adv. Mater. 2004, 16, 1842.
    [7] Rivas J, Bantu A K M, Zaragoza G, et al. Preparation and magnetic behavior of arrays of electrodeposited Co nanowires. [J]. J. Magn. Magn. Mater. 2002, 249, 220-227.
    [8] Knez M, Bittner AM, Boes F, et al. Biotemplate synthesis of 3-nm nickel and cobalt nanowires. [J]. Nano Lett. 2003, 3, 1079-1082.
    [9] Wu H, Zhang R, Liu X, et al. Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties. [J]. Chem. Mater. 2007, 19, 3506-3511.
    [10] Niu HL, Chen QW, Zhu HF, Lin YS, Zhang X. Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. [J]. J. Mater. Chem., 2003, 13, 1803-1805.
    [11] Athanassiou EK, Grossmann P, Grass RN, Stark WJ. Template free, large scale synthesis of cobalt nanowires using magnetic fields for alignment. [J]. Nanotechnology, 2007, 18, 165606.
    [12] Xie Q, Dai Z, Huang WW, Liang JB, Jiang CL, Qian YT. Synthesis of ferromagnetic single-crystalline cobalt nanobelts via a surfactant-assisted hydrothermal reduction process. [J]. Nanotechnology, 2005, 16, 2958-2962.
    [13] Xie Q, Qian YT, Zhang S, Fu S, Yu W. A Hydrothermal Reduction Route to Single-Crystalline Hexagonal Cobalt Nanowires. [J]. Eur. J. Inorg. Chem., 2006,2454-2459.
    [14] Guo L,Liang F,Wen X,Yang S,He L,Zheng W, Chen C, Zhong Q. Uniform Magnetic Chains of Hollow Cobalt Mesospheres from One-Pot Synthesis and Their Assembly in Solution. [J]. Adv. Funct. Mater. 2007, 17, 425-430.
    [15] Deng H, Li XX, Peng Q, Wang X, Chen JP, Li YD. Monodisperse magnetic single-crystal ferrite microspheres. [J]. Angew. Chem. Int. Ed. 2005, 44, 2782-2785.
    [16] Zhong L-S, Hu J-S, Liang H-P, Cao A-M, Song W-G, Wan L-J. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment [J]. Adv. Mater. 2006, 18, 2426-2431.
    [17] Liu C M, Guo L, Wang RM, Deng Y, Xua HB, Yang S. Magnetic nanochains of metal formed by assembly of small nanoparticles. [J]. Chem. Commun. 2004, 2726-2727 .
    [18] Yu D, Sun X, Zou J, Wang Z, Wang F, Tang K. Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres [J]. J. Phys. Chem. B 2006, 110, 21667-21671.
    [19] Wang JW, Wang X, Peng Q, Li YD. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. [J]. Inorg. Chem. 2004, 43, 7552-7556.
    [20] Wang YL, Xia YN. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. [J]. Nano Lett. 2004, 4, 2047-2050.
    [21] Zhu LP, Xiao HM, Zhang WD, et al. One-pot template-free synthesis of monodisperse and single-crystal magnetite hollow spheres by a simple solvothermal route. [J]. Cryst. Growth & Des. 2008, 8, 957-963.
    [22] Zhao LJ, Zhang HJ, Xing Y, et al. Morphology-Controlled Synthesis of Magnetites with Nanoporous Structures and Excellent Magnetic Properties. [J]. Chem. Mater. 2008, 20, 198-204.
    [23] Liu XM, Fu SY, Xiao HM. Synthesis of maghemite sub-microspheres by simple solvothermal reduction method. [J ]. J. Solid State Chem. 2006, 179, 1554-1558.
    [24]Yuan JK, Laubernds K, Zhang QH, Suib SL. Self-Assembly of Microporous Manganese Oxide Octahedral Molecular Sieve Hexagonal Flakes into Mesoporous Hollow Nanospheres. [J]. J. Am. Chem. Soc. 2003, 125, 4966-4967.
    [25] Hou Y, Kondoh H, Ohta T. Self-assembly of Co nanoplatelets into spheres: Synthesis and characterization. [J]. Chem. Mater. 2005, 17, 3994-3996.
    [26] Cao H Q, Xu Z, Sang H, Sheng D, Tie CY. Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanotubules. [J]. Adv. Mater. 2001, 13, 121-123.
    [27] Dumpich G, Krome TP, Hausmanns B. Magnetoresistance of single Co nanowires. [J]. J. Magn. Magn. Mater. 2002, 248, 241-247.
    [28] Hausmanns B, Krome TP, Dumpich G. Magnetoresistance and magnetization reversal process of Co nanowires covered with Pt. [J]. J. Appl. Phys. 2003, 93, 8095-8097.
    [29] van Leeuwen DA, van Ruitenbeek JM, de Jongh LJ, et. al. Quenching of Magnetic Moments by Ligand-Metal Interactions in Nanosized Magnetic Metal Clusters. [J]. Phys. Rev. Lett. 1994, 73, 1432-1435.
    [30] Zhu LP, Xiao HM, Fu SY. Surfactant-assisted synthesis and characterization of novel chain-like CoNi alloy assemblies. [J]. Eur. J. Inorg. Chem. 2007, 3947-3951.
    [31] Zhang D, Ni X, Zheng H. Surfactant-controlled synthesis of Fe nanorods in solution. [J]. J. Colloid & Interface Sci. 2005, 292, 410-412.
    [32] Jia ZJ, Zhu LP, Liao GH, Yu Y, Tang YW. Preparation and characterization of SnO nanowhiskers. [J]. Solid State Commun. 2004, 132, 78-82.
    [33] Yu Y, Du FP, Yu JC, Zhuang YY, Wong P. One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template. [J]. J. Solid State Chem. 2004, 177, 4640-4647.
    [34] Zhu LP, Zhang WD, Xiao HM et. al. Facile Synthesis of Metallic Co Hierarchical Nanostructured Microspheres by a Simple Solvothermal Process. [J]. J. Phys. Chem. C. in press.
    [35] Peng XG, Manna L, Yang WD, Wichham JT, Scher E, Kadavanich A, Alivisatos AP. Shape control of CdSe nanocrystals. [J]. Nature 2000, 404, 59-61.
    [36] Tang ZY, Kotov NA, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. [J]. Science 2002, 297, 237-240.
    [37] Cao AM, Hu JS, Liang HP, Wan LJ. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. [J]. Angew. Chem. Int. Ed. 2005, 44, 4391-4395.
    [38] Wu C, Xie Y, Wang D, Yang J, Li T. Selected-Control Hydrothermal Synthesis of MnO2 3D Nanostructures. [J]. J. Phys. Chem. B 2003, 107, 13583-13587.
    [39] Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. [J]. Adv. Mater. 2006, 18, 2426.
    [1] Kato T. [J]. Ind. Mater. 1983, 31, 18-21.
    [2] Ozaki M. [J]. Mater. Res. Soc. Bull. 1989, 14, 35-41.
    [3] Wagner ML, Schmidt LD. Model Catalytic Oxidation Reactions: Oxygen with H2, NH3, and N2H4 on Rh(111). [J]. J. Phys. Chem. 1995, 99, 805-815.
    [4] Schmid G, Chi LF. Metal Clusters and Colloids. [J]. Adv. Mater. 1998, 10, 515-526.
    [5] Giersig M, Hilgendorff M. Magnetic nanoparticle superstructures. [J]. Eur. J. Inorg. Chem. 2005, 3571-3583.
    [6] Ung D, Viau G, Ricolleau C. CoNi Nanowires Synthesized by Heterogeneous Nucleation in Liquid Polyol. [J]. Adv. Mater. 2005, 17, 338-344.
    [7] Cullity BD. (Ed.), Introduction to Magnetic Materials, Addison-Wesley: London, UK, 1972, pp 240-243, 386-389.
    [8] Fert A, Piraux L. Magnetic nanowires. [J]. J. Magn. Magn. Mater. 1999, 200, 338-358.
    [9] Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogues J. Beating the superparamagnetic limit with exchange bias. [J]. Nature 2003, 423, 850-853.
    [10] Yu M, Liu Y, Sellmyer DJ. Nanostructure and magnetic properties of composite CoPt : C films for extremely high-density recording. [J]. J. Appl. Phys. 2000, 87, 6959-6961.
    [11] Christodoulides JA, Huang Y, Zhang Y, Hadjipanayis GC, Panagiotopoulos I, Niarchos D. CoPt and FePt thin films for high density recording media. [J]. J. Appl. Phys. 2000, 87, 6938-6940.
    [12] Sun SH, Murray CB, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. [J]. Science 2000, 287, 1989-1992.
    [13] Feng J, Zhang CP. Preparation of Cu-Ni alloy nanocrystallites in water-in-oil microemulsions. [J]. J. Colloid Interface Sci. 2006, 293, 414-420.
    [14] Liao Q, Tannenbaum Q, Wang ZL. Synthesis of FeNi3 Alloyed Nanoparticles by Hydrothermal Reduction. [J]. J. Phys. Chem. B 2006, 110, 14262-14265.
    [15] 乔桂英. 块体纳米晶Co-Ni合金的JED制备及其结构性能的研究. [M]. 燕山大学工学博士学位论文. 秦皇岛, 2006, 10.
    [16] Tang Z, Ozturk B, Wang Y, Kovtov NA. Simple Preparation Strategy and One-Dimensional Energy Transfer in CdTe Nanoparticle Chains. [J]. J. Phys.Chem. B 2004, 108, 6927-6931.
    [17] Penn RL. Kinetics of Oriented Aggregation. [J]. J. Phys. Chem. B 2004, 108, 12707-12712.
    [18] Giersig M, Pastoriza-Santos I, Liz-Marzán LM. Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide. [J]. J. Mater. Chem. 2004, 14, 607-610.
    [19] Polleux J, Pinna N, Antonietti M, Niederberger M. Ligand-Directed Assembly of Preformed Titania Nanocrystals into Highly Anisotropic Nanostructures. [J]. Adv. Mater. 2004, 16, 436-439.
    [20] Golodnitsky D, Rosenberg Y, Ulus A. The role of anion additives in the electrodeposition of nickel-cobalt alloys from sulfamate electrolyte. [J]. Electrochim. Acta 2002, 47, 2707-2714.
    [21] Armyanov S. Crystallographic structure and magnetic properties of electrodeposited cobalt and cobalt alloys. [J]. Electrochim. Acta 2000, 45, 3323-3335.
    [22] Qiao G, Jing T, Wang N, Gao Y, Zhao X, Zhou J, Wang W. High-speed jet electrodeposition and microstructure of nanocrystalline Ni-Co alloys. [J]. Electrochim. Acta 2005, 51, 85-92.
    [23] Syukri, Ban T, Ohya Y, Takahashi Y. A simple synthesis of metallic Ni and Ni-Co alloy fine powders from a mixed-metal acetate precursor. [J]. Mater. Chem. Phys. 2003, 78, 645-649.
    [24] Sangregorio C, de Julián Fernández C, Battaglin G, De G, Gatteschi D, Mattei G, Mazzoldi P. [J]. J. Magn. Magn. Mater. 2004, 272-276, e1251-e1252.
    [25] Elumalai P, Vasan HN, Verelst M, Lecante P, Carles V, Taihades P. Synthesis and characterization of sub-micron size Co-Ni alloys using malonate as precursor. [J]. Mater. Res. Bull. 2002, 37, 353-363.
    [26] Uzawa M, Inoue A, Masumoto T. Mechanical damping of rapidly quenched Ti-Ni-Cu alloys. [J]. Mater. Sci. Eng, A 1994, 181-182, 1176-1183.
    [27] Shafi KVPM, Gedanken A, Prozorov R. Sonochemical preparation and characterization of nanosized amorphous Co-Ni alloy powders. [J]. J. Mater. Chem. 1998, 8, 769-773.
    [28] Zhang DE, Ni XM, Zhang XJ, Zheng H G. Synthesis and characterization of Ni-Co needle-like alloys in water-in-oil. [J]. J. Magn. Magn. Mater. 2006, 302, 290-293.
    [29] Zhang XY, Xu LH, Dai JY, Chan HLW. Fabrication and magnetic behavior of Co-Ni nanowire arrays with small diameters. [J]. Phys. B 2004, 353, 187-191.
    [30] Liu XM, Fu SY, Huang CJ. Fabrication and characterization of spherical Co/Ni alloy particles. [J]. Mater. Lett. 2005, 59, 3791-3794.
    [31] Tang ZY, Kotov NA. One-Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise. [J]. Adv. Mater. 2005, 17, 951-962.
    [32] Wei G, Nan C, Deng Y, Lin Y. Self-organized Synthesis of Silver Chainlike and Dendritic Nanostructures via a Solvothermal Method. [J]. Chem. Mater. 2003, 15, 4436-4441.
    [33] Du J, Han B, Liu Z, Liu Y. Control Synthesis of Silver Nanosheets, Chainlike Sheets, and Microwires via a Simple Solvent-Thermal Method. [J]. Crystal Growth & Design, 2007, 7, 900-904.
    [34] Zhu J, Huang L, Wang Y, Lu Y. Fluorescence spectrum properties of gold nanochains. [J]. Phys. E 2004, 25, 114-118.
    [35] Chen M, Gao L. From Cd(OH)2 nanoflakes to CdSe nanochains: Synthesis and characterization. [J]. J. Crystal Growth 2006, 286, 228-234.
    [36] Wang D, Yu D, Mo M, Liu X, Qian Y. Hydrothermal preparation of one-dimensional assemblies of PbS nanoparticles. [J]. Solid State Commun.2003, 125, 475-479.
    [37] Liu CM, Guo L, Wang R M, Deng Y, Xua HB, Yang S. Magnetic nanochains of metal formed by assembly of small nanoparticles. [J]. Chem. Commun. 2004, 2726-2727 .
    [38] Salgueirino-Maceira V, Correa-Duarte MA, Hucht A, Farle M. One-dimensional assemblies of silica-coated cobalt nanoparticles: Magnetic pearl necklaces. [J]. J. Magn. Magn. Mater. 2006, 303, 163-166.
    [39] Niu H, Wu M, Tang Y, Yu Y, Chen Q. A case of magnetic field-induced change in final product.[J]. Solid State Commun. 2005,136, 490-493.
    [40] Wu M, Xiong Y, Jia Y, Niu H, Qi H, Ye J, Chen Q. Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. [J]. Chem. Phys. Lett. 2005, 401, 374-379.
    [41] Lu L, Ai Z, Li J, et al. Synthesis and Characterization of Fe-Fe2O3 Core-Shell Nanowires and Nanonecklaces. [J]. Crystal Growth & Design, 2007, 7, 459-464.
    [42] Guo L, Liang F, Wen X,Yang S,He L,Zheng W, Chen C, Zhong Q. Uniform Magnetic Chains of Hollow Cobalt Mesospheres from One-Pot Synthesis and Their Assembly in Solution. [J]. Adv. Funct. Mater. 2007, 17, 425-430.
    [43] Xiao HM, Zhu LP, Liu XM, Fu SY. Anomalous ferromagnetic behavior of CuO nanorods synthesized via hydrothermal method. [J]. Solid State Commun. 2007, 141, 431–435.
    [44] Zhu LP, Xiao HM, Fu SY. Surfactant-assisted synthesis and characterization of novel chain-like CoNi alloy assemblies. [J]. Eur. J. Inorg. Chem. 2007, 3947-3951.
    [45] Wang J, Chen Q W, Zeng C, Hou BY. Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires. [J]. Adv. Mater. 2004, 16, 137-140.
    [46] Yu K, Kim DJ, Chung HS, Liang H. Dispersed rodlike nickel powder synthesized by modified polyol process. [J]. Mater. Lett. 2003, 57, 3992-3997.
    [47] Ni XM, Zhao QB, Zhang DG, et al. Large scaled synthesis of chainlike nickel wires assisted by ligands. [J]. J. Crystal Growth.2005, 280, 217-221.
    [48] Xia Y, Yang P, Sun Y, Wu Y, et al. One-dimensional nanostructures: Synthesis, characterization, and applications. [J]. Adv. Mater. 2003, 15, 353-389.
    [49] Liu Z, Li S, Yang Y, et al. Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts. [J]. Adv. Mater. 2003, 15, 1946-1948.
    [50] Jia ZJ, Zhu LP, Liao GH, Yu Y, Tang YW. Preparation and characterization of SnO nanowhiskers. [J]. Solid State Commun. 2004, 132, 78-82.
    [51] Zielinski R, Ikeda S, Nomura H, Kato S. The salt-induced sphere-rod transition of micelles of dodecyltrimethylammonium bromide in aqueous NaBr solutions as studied by the ultrasound velocity measurements. [J]. J. Colloid Interface Sci. 1988, 125, 497-507.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.