水滑石基核壳结构磁性纳米复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的日益发展,人们对纳米材料的性能提出了更高的要求,具有多功能性的磁性纳米复合材料便应运而生。近年来,人们通过对材料性能的设计,开发了多种新型的磁性纳米复合材料,其中具有核壳结构的磁性纳米复合材料是较为突出的一类。本文以水滑石类化合物(LDHs)为壳层,以具有强磁性的四氧化三铁(Fe304)为核,通过一步共沉淀法制备出了具有典型核壳结构的磁性纳米复合材料。通过对磁性复合材料的结构和性能研究,来进一步揭示它们之间的联系,并为开发类似结构的复合材料提供一种新方法和新思路。本文的主要研究内容和创新点如下:
     (1)采用修饰了的溶剂热法,通过调控起始溶液中的[Fe3+]制备不同尺寸的Fe304纳米粒。通过XRD、SEM/TEM及VSM表征表明,合成出了球形、近单分散分布并具有强的比饱和磁化强度的200 nm和500 nm的Fe304纳米颗粒。
     (2)以500 nm的Fe304为磁核,以具有催化活性的碳酸根插层铜镁铝水滑石(CuMgAl-LDH)为壳,通过对制备方法的选择以及条件优化,成功制备出了具有典型核@壳结构的Fe3O4@CuMgAl-LDH磁性纳米催化剂。其粒子大小约为550 nm,水滑石壳层厚度约为50nm,比饱和磁化强度为53.69 emu/g。低温N2吸脱附曲线呈现出明显的滞后环,说明该复合材料具有丰富的孔道结构。通过对得到的磁性纳米催化剂在不同温度下焙烧,可以得到系列衍生催化剂Fe3O4@CMAO。
     苯酚羟化试验表明,与相关参比催化剂比较,在优化条件下(温度:65℃,时间:40 min,苯酚与催化剂的质量比为34),Fe3O4@CuMgAl-LDH具有最高的催化活性。苯酚的转化率和H202的有效利用率分别为47.2%和45.3%。而且,在外加磁场下该催化剂可实现方便的分离与再利用,其三次转化率均保持在38%以上,回收催化剂的晶体结构和核壳结构仍保持。Fe3O4@CuMgAl-LDH的高活性可归因于催化剂的核@壳结构,使得核与壳之间可以产生电子传递所致。XPS表明CuMgAl-LDH与Fe304之间可能主要通过Mg-O-Fe, Cu-O-Fe键的形式结合并给出了该磁性催化剂在苯酚羟化反应中的催化机理模型。
     (3)以尺寸为200 nm的Fe304为磁核,以正硅酸乙酯(主要成分为二氧化硅)作为荧光物质量子点(QDs) CdSe/ZnS与磁核Fe304的连接层,以具有缓释功能的布洛芬插层镁铝水滑石(IBU-LDH)为壳,利用双滴共沉淀法成功制备出了集磁性、荧光以及药物缓释为一体的复合材料Fe3O4-SiO2-QDs-SiO2@IBU-LDH,其粒子尺寸约为240 nm左右,其中磁核约在200 nm左右,二氧化硅中间层的厚度约为20nm, CdSe/ZnS处于硅烷偶联剂和二氧化硅层之间,IBU-LDH的厚度在10 nm左右,其比饱和磁化强度为4.43 emu/g,荧光发射峰的中心峰位为607 nm。这些结果表明LDH基核壳型磁性荧光纳米载药粒子在磁靶向药物传输系统中具有潜在的应用前景。
With increasing development of the national economy, the versatility of magnetic nanocomposites has aroused wide interest owing to their their special physical and chemical properties. Recently, researchers have prepared a variety of magnetic nanocomposites with specific features, and among the magnetic nanocomposites, the core-shell structured magnetic ones are attracted more interests. In this paper, the core-shell structured magnetic nanocomposites have been successfully prepared involving a Fe3O4 core and a layered double hydroxide shell. We discuss the relationship between the structure and the properties and provide a new vision and new ideas for studying the core-shell structure magnetic nanocomposites. The main contents and innovations are as follows:
     (1) The magnetic Fe3O4 nanoparticles with different diameters (ca. 200 nm and 500 nm) were prepared by a solvothermal reaction via modulating the initial concentration of [Fe3+] and characterized by XRD, SEM and VSM techniques. The obtained magnetic nanoparticles present spherical and nearly uniform morphology with strong saturation magnetization.
     (2) A well-defined core-shell structured magnetic nanocatalyst of Fe3O4@CuMgAl-LDH was fabricated via optimizing preparation method and conditions. The prepared nanocomposites presents well-defined core-shell structure involving CuMgAl-LDH coating of ca.50 nm onto the 500 nm Fe3O4core and strong magnetism as 53.69 emu/g. The low temperature N2 adsorption-desorption curve shows an obvious hysteresis loop, indicating that the nanocomposite material has a rich pore structure.
     The obtained Fe3O4@CuMgAl-LDH nanocomposites was employed in phenol hydroxylation by H2O2 and exhibits high catalytic activity compared with other related catalysts. Under optimal reaction condition the phenol conversion and the efficiency of H2O2 reaches 47.2% and 45.3% over Fe3O4@CuMgAl-LDH, respectively. Moreover after separrtion with a external magnetic field, the activity of the recycled catalyst nearly preserves its initial activity and the basic structure of it unchanged. The mechnism of the phenol hydroxylation and relationship between the core and the shell are discussed base on the H2-TPR and XPS. We proposed that the Fe3O4 core and the CuMgAl-LDH shell are linked via the bond of Cu-O-Fe and Mg-o-Fe. Fe3O4@CMAO at diffierent calcined temperature are obtained by calcined the Fe3O4@CuMgAl-LDH at different temperatures.
     (3) The magentic fluorescent nanocomposites Fe3O4-SiO2-QDs-SiO2 @IBU-LDH are succsessfully synthesised by coprecipitation method. The obtained nanocomposites presents well-defined core-shell structure involving IBU-LDH coating of ca.10 nm onto the 230 nm Fe3O4 core modified by silica and quantum dots with a silica intermediate layer thickness about 20 nm and strong magnetism as 4.43 emu/g. These results show that the LDH-based core-shell fluorescent magnetic nanoparticles in magnetic targeting drug-loaded drug delivery system has potential applications.
引文
[1]J. K. Kenneth Nanoscale Materials In Chemistry[M]. Willy-Interscience,2001.
    [2]G. A. Ozin, L. Cademartiri. Concepts of Nanochemistry[M]. Wiley-VCH, Weinheim, 2009.
    [3]G. A. Ozin, L. Cademartiri. Nanochemistry:What Is Next? [J]. Small,2009,5: 1240-1244.
    [4]李凤生,杨毅,马振叶,姜炜.纳米功能复合材料[M].国防工业出版社,2003,1-35.
    [5]C. Sanchez, G. J. de A. A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer, V. Cabuil. Designed Hybrid Organic-Inorganic Nanocomposites from Functional Nanobuilding Blocks[J]. Chem. Mater.2001,13:3061-3083.
    [6]J. B. Kim, J. W. Grate, P. Wang. Nanobiocatalysis and its potential applications [J]. Cell, 2006,206:639-646.
    [7]'H. Bai, C. Li, G. Q. Shi. Functional Composite Materials Based on Chemically Converted Graphene[J]. Adv. Mater.2011,23:1089-1115.
    [8]S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, Y. Kurihara. Physics of magnetic fluids Original Research Article[J]. J. Magn. Magn. Mater.,1987,245-251.
    [9]N. A. Frey, S. Peng, K. Cheng, S. H. Sun. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage[J]. Chem. Soc. Rev.,2009,38,2532-2542.
    [10]S. Shylesh, V. Schunemann, W. R. Thiel. Magnetically Separable Nanocatalysts:Bridges between Homogeneous and Heterogeneous Catalysis[J]. Angew. Chem. Int. Ed.2010, 49,3428-3459.
    [11]P. Tartaj, M. P. Morales, T. Gonzalez-Carreno, S. Veintemillas-Verdaguer, C. J. Serna. Advances in magnetic nanoparticles for biotechnology applications [J]. J. Magn. Magn. Mater.,2005,290-291,28-34.
    [12]S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications [J]. Chem. Rev.2008,108,2064-2110.
    [13]J. H. Gao, H. W. Gu, B. XU. Multifunctional Magnetic Nanoparticles: Design,Synthesis, and Biomedical Applications[J]. Accounts Chem. Rese.,2009,42,1097-1107.
    [14]J. Guo, W. L. Yang, C.C.Wang, J. He, J. Y. Chen. Poly(N-isopropylacrylamide)- Coated Luminescent/Magnetic Silica Microspheres:Preparation, Characterization, and Biomedical Applications[J]. Chem. Mater.2006,18,5554-5562.
    [15]M. Shokouhimehr, Y.Z. Piao, J. Kim, Y.J. Jang, T. Hyeon. A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation[J]. Angew. Chem.2007,119,7169-7173.
    [16]S. Shylesh, L. Wang, S. Demeshko, W. R. Thiel. Facile Synthesis of Mesoporous Magnetic Nanocomposites and their Catalytic Application in Carbon-Carbon Coupling Reactions[J]. Chem.Cat.Chem.,2010,2,1543-1547.
    [17]Y.H. Zhu, L. P. Stubbs, F. Ho, R.Z. Liu, C. P. Ship, J. A. Maguire, N. S. Hosmane. Magnetic Nanocomposites: A New Perspective in Catalysis[J]. Chem.Cat.Chem.,2010, 2,365-374.
    [18]李玲,向航.功能材料与纳米技术[M].化学工业出版社,2003,93-94.
    [19]E.Wohlfarth,铁磁材料(磁有序物质特性手册卷二),北京:电子工业出版社,1993,53-56.
    [20]田民波.磁性材料,北京:清华大学出版社,2001,73-79.
    [21]J. R. Liu, M. Itoh, K. Machidaa. Magnetic and electromagnetic wave absorption properties of α-Fe/Z-type Ba-ferrite nanocomposites[J]. Appl. Phys. Lett.,2006,88, 062503-062503-3.
    [22]D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, J. Y. Ying. Silica-Coated Nanocomposites of Magnetic Nanoparticles and Quantum Dots[J]. J. Am. Chem. Soc.2005,127,4990-4991.
    [23]H. Zhang, D. K. Pan, K. Zou, J. He, X. Duan. A novel core-shell structured magnetic organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a magnesium ferrite core for magnetically controlled drug release[J]. J. Mater. Chem.,2009,19,3069-3077.
    [24]C.P. Chen, P. Gunawan, R. Xu. Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water[J]. J. Mater. Chem.,2011,21,1218-1225.
    [25]B.M. Berkovdky, V.F. Medvedev, M.S. Krakov. Magnetic Fluids-Engineering Applications [J].1993, Oxford University Press, New York.
    [26]F. Sauzedde, A. ElaoEssari, C. Pichot. Hydrophilic magnetic polymer latexes.1. Adsorption of magnetic iron oxide nanoparticles onto various cationic latexes[J]. Colloid Polym. Sci.1999,277,846-855.
    [27]F. Sauzedde, A. ElaoEssari, C. Pichot. Hydrophilic magnetic polymer latexes.2. Encapsulation of adsorbed iron oxide nanoparticles[J]. Colloid Polym. Sci.1999,277, 1041-1050.
    [28]H. Shiho, Y.J. Manabe. N. Kawahashi. Magnetic compounds as coatings on polymer particles and magnetic properties of the composite particles[J]. J. Mater. Chem.,2000, 10,333-336.
    [29]J. P. Ge, Y. X. Hu, Y. D. Yin. Highly Tunable Superparamagnetic Colloidal Photonic Crystals[J]. Angew. Chem. Int. Ed.2007,46,7428-7431.
    [30]J. Liu, S. Z. Qiao, Q. H. Hu, G Q. Lu. Magnetic Nanocomposites with Mesoporous Structures:Synthesis and Applications[J]. Small,2011,7,425-443.
    [31]D.S. Wang, J.B. He, N. Rosenzweig, Z. Rosenzweig. Superparamagnetic Fe2O3 Beads-CdSe/ZnS Quantum Dots Core-Shell Nanocomposite Particles for Cell Separation[J]. Nano Lett.,2004,4,409-413.
    [32]H.W. Gu, R. K. Zheng, X. X. Zhang, B. Xu. Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles: A Conjugate of Quantum Dot and Magnetic Nanoparticles[J]. J. Am. Chem. Soc.2004,126,5664-5665.
    [33]H. Zhang, D. K. Pan, X. Duan. Synthesis, characterization, and magnetically controlled release behavior of novel core-shell structural magnetic ibuprofen-intercalated LDH nanohybrids[J]. J. Phys. Chem. C.2009,113,12140-12148.
    [34]D. K. Pan, H. Zhang, T. Fan, J.G. Chen, X. Duan. Nearly monodispersed core-shell structural Fe3O4@DFUR-LDH submicro particles for magnetically controlled drug delivery and release[J]. Chem. Commun.2011,47,908-910.
    [35]D. Beydoun, R. Amal, G. Low, S. McEvoy. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide[J]. J. Mole. Catal. A: Chem.,2002,180,193-200.
    [36]M. Z. Wu, Y. D. Zhang, S. Hui, T. D. Xiao,S.H. Ge, W. A. Hines, J. I. Budnick, M. J.Yacaman. Magnetic properties of SiO2-coated Fe nanoparticles[J]. J. Appl.Phys.2002, 92,6809-6812.
    [37]J. Zhang, M. Post, T. Veres, Z. J. Jakubek, J. W. Guan, D. S. Wang, F. Normandin, Y. Deslandes, B. Simard. Laser-Assisted Synthesis of Superparamagnetic Fe@Au Core-Shell Nanoparticles[J]. J. Phys. Chem. B 2006,110,7122-7128.
    [38]D.Y. Geng, Z. D. Zhang, W. S. Zhang, P. Z. Si, X. G Zhao, W. Liu, K. Y. Hu, Z. X. Jin, X.P. Song. Al2O3 coated alpha-Fe solid solution nanocapsules prepared by arc discharge[J]. Scripta Mate.,2003,48,593-598.
    [39]J. H. Schulman, W. Stoeckenius, L. M. Prince. Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy[J]. J. Phys. Chem.,1959,63,1677-1680.
    [40]E. E. Carpenter. Proceedings of the Third International Conference on Scientific and Clinical Applications of Magnetic Carriers[J]. J. Magn. Magn. Mater.,2001,225,17-20.
    [41]J.Jiang, L.C. Lia, M. L. Zhua. Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization[J]. React. Funct. Polym.,2008,68,57-62.
    [42]K. B. Blodgett. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface[J]. J. Am. Chem. Soc.1935,58,1007-1022.
    [43]F. Caruso, H. Caruso, H. MO hwald. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science.1998,282,1111-1114.
    [44]S. Srivastva, N. A. Kotov. Composite Layer-by-Layer (LBL) Assembly with Inorganic Nanoparticles and Nano wires [J]. Accounts Chem. Res.,2008,41,1831-1841.
    [45]X. Hong, J. Li, M. J. Wang, J. J. Xu, W. Guo, J.H. Li, Y. B. Bai, T. J. Li. Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach[J]. Chem. Mater.2004,16,4022-4027.
    [46]X. Q. Shen, M. X. Jing, W. X. Li, D. H. Li. Fabrication of Fe-, Ni-and FeNi-coated A12O3 core-shell microspheres by heterogeneous precipitation[J]. Powder Technol., 2005,160,229-233.
    [47]J.X. Zhou, X.Q. Shen, D. Chen. Fabrication of Ni-, Co-and NiCo-coated graphite microspheres by heterogeneous precipitation[J]. Journal of Wuhan University of Technology--Materials Science Edition,2009,24,397-401.
    [48]I. S. Lee, N. Lee, J. Park, B. H. Kim, Y. W. Yi, T. Kim, T. K. Kim, I. H. Lee, S. R. Paik, T. Hyeon. Ni/NiO Core/Shell Nanoparticles for Selective Binding and Magnetic Separation of Histidine-Tagged Proteins[J]. J. Am. Chem. Soc.2006,128,10658-10659.
    [49]S. I. Stoeva, F. W. Huo, J. S. Lee, C. A. Mirkin. Three-Layer Composite Magnetic Nanoparticle Probes for DNA[J]. J. Am. Chem. Soc.2005,127,15362-15363.
    [50]R. Molday, S. Yen, A. Rembaum, Nature,1977,266,437.
    [51]A.A. Kuznetsova, V. I. Filippova, R. N. Alyautdinb, N.L. Torshinab, O. A, Kuznetsovc. Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs[J]. J. Magn. Magn. Mater.,2001,225, 95-100.
    [52]W. Teunissen, A. A. Bol, J. W. Geus. Magnetic catalyst bodies[J]. Catal. Today,1999,48,329-336.
    [53]D.G Shchukin, A. I. Kulak, D. V. Sviridov. Magnetic photocatalysts of the core-shell type[J]. Photochem. Photobiol. Sci.,2002,1,742-744.
    [54]H. Zhang, R. Hou, Z. L. Lu, X. Duan. A novel magnetic nanocomposite involving anatase titania coating on silica-modified cobalt ferrite via lower temperature hydrolysis of a water-soluble titania precursor[J]. Mater. Res. Bul.2009,44,2000-2008.
    [55]S. H. Xuan, Y. J. Wang, J. C. Yu, K. C. Leung. Preparation, Characterization, and Catalytic Activity of Core/Shell Fe3O4@Polyaniline@Au Nanocomposites[J]. Langmuir,2009,25,11835-11843.
    [56]Y. J. Jiang, J.H. Jiang, Q. M. Gao, M.L. Ruan, H.M. Yu L.J. Qi. A novel nanoscale catalyst system composed of nanosized Pd catalysts immobilized on Fe3O4@SiO2-PAMAM[J]. Nanotechnology,2008,19,075714.
    [57]A. T. Bell. The Impact of Nanoscience on Heterogeneous Catalysis[J]. Science,2003, 299,1688-1691.
    [58]S. Alayoglu A. U. Nilekar, M. Mavrikakis, B. Eichorn. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen[J]. Nature Materials,2008,7, 333-338.
    [59]G.J. Zhou, M.K. Lu, Z.S. Yang. Aqueous Synthesis of Copper Nanocubes and Bimetallic Copper/Palladium Core-Shell Nanostructures[J]. Langmuir,2006,22, 5900-5903.
    [60]Y.B. Sun, X.B. Ding, Z. H. Zheng, X. Cheng, X. H. Hua, Y. X. Peng. Euro. Polym. J., 2007,43,762-772.
    [61]J. L. Zhang, R. S. Srivastava, R. D. K. Misra. Core-Shell Magnetite Nanoparticles Surface Encapsulated with Smart Stimuli-Responsive Polymer: Synthesis, Characterization, and LCST of Viable Drug-Targeting Delivery System[J]. Langmuir 2007,23,6342-6351.
    [62]J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W.K. Moon,T. Hyeon. Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery[J]. Angew. Chem.2008,120,8566-8569.
    [63]J. Park, J. Cheon. Synthesis of "Solid Solution" and "Core-Shell" Type Cobalt-Platinum Magnetic Nanoparticles via Transmetalation Reactions[J]. J. Am. Chem. Soc.2001,123, 5743.5746.
    [64]H. Zhang, R. Qi, D. G. Evans, X. Duan. Synthesis and characterization of a novel nano-scale magneticsolid base catalyst involving a layered double hydroxide supported on a ferrite core[J]. J. Solid State Chem.2004,177,772-780.
    [65]L. Li, Y. J. Feng, Y. S. Li, W. R. Zhao,J. L. Shi. Fe3O4 Core/Layered Double Hydroxide Shell Nanocomposite:Versatile Magnetic Matrix for Anionic Functional Material[J]. Angew. Chem. Int. Ed.2009,48,1-6.
    [66]D. G. Evans, R. C. T. Slade. Structural Aspects of Layered Double Hydroxides[M]. Struct. Bond,2006,119,1-87.
    [67]段雪,张法智.插层组装与功能材料[M].化学工业出版社,2007.
    [68]A. Vaccari Preparation and catalytic properties of cationic and anionic clays[J].Catal. Today,1998,41:53-71.
    [69]F. Cavani, F. Trifirb, A.Vaccari. Hydrotalcite-type Anionic Clays Preparation, Properties and Applications[J]. Catal. Today,1991,11,173-301.
    [70]T. Kwon, G. A. Tsigdinos, T. J. Pinnavaia. Pillaring of layered double hydroxides(LDHs) by polyoxometalate anions[J]. J.Am.Chem.Soc.,1988,110, 3653-3654.
    [71]K. Chibwe, W. Jones.Intercalatio of organic and inorganic anions into layered double hydroxides[J]. J.Am.Chem.Soc.,1989,14,926-927.
    [72]E. D.Dimotakis, T. J.Pinnavaia. New route to layered double hydroxides intercalated by organic anions: precursors to polyoxometalate-pillared derivatives [J], Inorg. Chem., 1990,29,2393-2394.
    [73]G. M. Wolterman, New compositions[P]. USA,1984,454,244.
    [74]G.Fornasari, M.Gazzano, D.Matteuzzi. Structure and reactivity of high-surface-area Ni/Mg/Al mixed oxides[J]. Appl.Clay Sci.,1995,10,69-82.
    [75]V. R. L.Constantino, T. J.Pinnavaia. Basic properties of Mg2+1-xAl3+x layered double hydroxides intercalated by carbonate, hydroxide,chloride,and surface anions[J]. Inorg.Chem.,1995,34,883-892.
    [76]W. T.Reichle. Catalytic reactions by thermally activated, synthetic, anionic clay minerals[J]. J. Catal.,1985,94,547-557.
    [77]Y. J. Feng, D. Q. Li, C. X. Li, Z.Wang, D. G. Evans, X. Duan. Synthesis of Cu-containing layered double hydroxides with a narrow crystallite-size distribution [J]. Clays Clay Miner.,2003,51,566-569.
    [78]D. G. Evans, X. Duan. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine[J]. Chem. Comm.,2006,485-496.
    [79]Y. Zhao, F. Li, R. Zhang, D. G. Evans, X.Duan. Preparation of layered double hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps[J]. Chem. Mater.,2002,14,4286-4291.
    [80]M. Ogawa, H. Kaiho. Homogeneous precipitation of uniform hydrotalcite particles[J]. Langmuir,2002,18,4240-4242.
    [81]H. T. Yogo, W. Sakamoto, S. Yamada. In situ processing of electroceramic fine particles/polyer hybrids[J]. J. Euro. Cera. Soc.,2001,21,1479-1483.
    [82]F. Leroux, C. Taviot-Gueho. Fine tuning between organic and inorganic host structure: new trend in layered double hydroxide hybrid assemblies[J]. J. Mater. Chem. A: Gen., 2005,15,3628-3642.
    [83]J. H. Choy, S. J. Choi, J. M. Oh. Clay minerals and layered double hydroxides for novel biological applications[J]. Appl. Clay Sci.,2007,36,122-132.
    [84]V. Rives. Comment on "Direct observation of a metastable solid phase of Mg/Al/CO3-layered double hydroxide by means of high-temperature in situ powder XRD and DTA/TG"[J]. Inorg. Chem.,1999,38,406-407.
    [85]K. Zou, H. Zhang, X. Duan. Studies on the formation of 5-aminosalicylate intercalated Zn-Al layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes [J]. Chem. Engin. Sci.2007,62,2022-2031.
    [86]S. Miyata. Physico-chemical properties of synthetic hydrotalcites in relation to composition[J]. Clays Clay Miner.,1980,28,50-55.
    [87]T. Stanimirova, G. Kirov. Cation composition during recrystallization of layered double hydroxides from mixed (Mg, Al) oxides[J]. Appl. Clay Sci.,2003,22,295-301.
    [88]J. Zhang, F. Zhang, L. L. Ren,D. G. Evans, X. Duan. Synthesis of layered double hydroxide anionic clays intercalated by carboxylate anions[J]. Mater. Chem. Phys., 2004,85,207-214.
    [89]S. Miyata, N. Lijima,T. Manabe. Purifying agent for cooling water used in nuclear reactors, and method for purification of the cooling water[P]. Eur. Patent,152,010.198.
    [90]M. Ogawa, K. Kuroda. Photofunctions of intercalation compounds[J]. Chem. Rev., 1995,95,399-438.
    [91]J. J. Liu, F. Li, D. G. Evans, X. Duan. Stoichiometric synthesis of a pure ferrite from a tailored layered double hydroxide (hydrotalcite-like) precursor[J]. Chem. Commun., 2003,4,542-543.
    [92]H. Zhang, K. Zou, H. Sun, X. Duan. A magnetic organic-inorganic composites: Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides[J].2004,178,3484-3493.
    [93]D. Pan, H. Zhang, T. Zhang, X. Duan. A novel organic-inorganic microhybrids containing anticancer agent doxifluridine and layered double hydroxides:Structure and controlled release properties [J]. Chem. Eng. Sci.2010,65,3762-3771.
    [94]S. Gusi. Catalyst for low-temperature methanol synthesis[J]. J Catal,1985,94,120-127.
    [95]T. K. Dutta,M. Puri. Anion exchange in lithium aluminate hydroxides[J]. J Phys Chem, 1989,93,376-381.
    [96]H. Deng, X. L. Li, Q. Peng, X. Wang, J. P. Chen, Y. D. Li. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angew. Chem. Int. Edit.,2005,44,2782-2785.
    [97]S.H. Xuan, Y. J. Wang, J. C. Yu, K. C. Leung. Tuning the Grain Size and Particle Size of Superparamagnetic Fe3O4 Microparticles[J]. Chem. Mater.2009,21,5079-5087.
    [98]X. Wang, J. Zhuang, Q. Peng, Y. D. Li. A general strategy for nanocrystal synthesis[J]. Nature,2005,437,121-124.
    [99]A. Thangaraj, R. Kumar, P. Ratnasamy. Catalytic properties of crystalline titanium silicalites II. Hydroxylation of phenol with hydrogen peroxide over TS-1 zeolites[J]. J. Catal.,1991,131,294-297.
    [100]A. Yan, X. Liu, G. Qiu, H. Wu, R. Yi, N. Zhang, J. Xu. Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles[J]. J. Alloy. Compd.,2008,458, 487-491.
    [101]盘登科.水滑石型核壳结构磁性纳米载药粒子的组装及其体外释放性能研究[D].北京:北京化工大学博士研究生论文,2010.
    [102]X. Sun, C. Zheng, F. Zhang, Y. Yang, G. Wu, A. Yu, N. Guan. Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method[J]. J. Phys. Chem. C, 2009,113,16002-16008.
    [103]R. M. Cornell, U. Schwertmann. The Iron Oxides[M]. Wiley-VCH:Weinheim, Germany,1996.
    [104]S. Kannan, A. Dubey, H. Knozinger. Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol[J]. J.Catal.,2005,231, 381-392.
    [105]C. A. Antonyraj, M. Gandhi, S. Kannan. Phenol Hydroxylation over Cu-Containing LDHs and Their Calcined Forms:Profound Cobivalent Metal Influence[J]. Ind. Eng. Chem. Res.,2010,49,6020-6026.
    [106]R. D. Shannon, C.T. Prewitt. Effective Ionic Radii in Oxides and Fluorides[J]. Acta. Cryst.1965,B25,925-946.
    [107]Z. P. Xu, H. C. Zeng. Abrupt Structural Transformation in Hydrotalcite-like Compounds Mg1-xAlx(OH)2(NO3)x·nH2O as a Continuous Function of Nitrate Anions[J]. J. Phys. Chem. B,2001,105,1743-1749.
    [108]W. Kagunya, R. Baddour-Hadjean, F. Kooli, W. Jones. Vibrational modes in layered double hydroxides and their calcined derivatives [J]. Chem. Phys.,1998,236,225-234.
    [109]S. Q. Song, H. X. Yang, R. C. Rao, H. D. Liu, A. M. Zhang. High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst[J]. Appl. Catal. A:Gen.,2010,375,265-271.
    [110]'J.T. Kloprogge. Layered Double Hydroxides Present And Futre, Chaper 5, Infrared and Raman Spectroscopic Studies of Layered Double Hydroxides(LDHs)[M]. Nava Science Publishers, Int. New York,2001.
    [111]J. T. Kloprogge, L. Hickey, R. L. Frost. FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites[J]. J. Raman Spect.,2004,35,967-974.
    [112]J. T. Kloprogge, D. WHARTON, L. Hickey, R. L. Frost. Infrared and Raman study of interlayer anions CO32-, NO3-, SO42- and ClO4- in Mg/Alhydrotalcite[J]. Am. Miner., 2002,87,623-629.
    [113]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska. Reporting Physisorption Data for Gas/Solid Systerms with Special Reference to the Determination of Surface Area and Porosity[J]. Pure & Appl. Chem., 1985,57,603-619.
    [114]M. Kruk, M. Jaroniec. Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials[J]. Chem. Mater.2001,13,3169-3183.
    [115]颜爱国.尖晶石型铁氧体纳米晶的控制合成、结构和性能研究[D].长沙,中南大学博士论文,2008.
    [116]张俊梅,冯惠生.不同催化剂在过氧化氢氧化苯酚反应中的催化效果[J],化工进展,2006,4,661-663.
    [117]R. Klaewkla, T. Rirksomboon, S. Kulprathipanja,L. Nemeth, P. Rangsunvigit. Light sensitivity of phenol hydroxylation with TS-1[J]. Catal. Commun.,2006,7,260-263.
    [118]K. M. Parida, S. Mallick. Hydroxylation of phenol over molybdovanadophosphoric acid modified zirconia[J]. J. Mol. Catal. A:Chem.,2008,279,104-111.
    [119]L.F. Gou, C. J. Murphy. Rod-like Cu/La/O nanoparticles as a catalyst for phenol hydroxylation[J]. Chem. Commun.,2005,5907-5909.
    [120]A. Dubey, V. Rives, S. Kannan. Catalytic hydroxylation of phenol over ternary hydrotalcites containing Cu, Ni and Al[J]. J. Mol. Catal. A: Chem.,2002,181,151-160.
    [121]M.R. Maurya, S.J.J. Titinchi, S. Chandb, I.M. Mishra. Zeolite-encapsulated Cr(Ⅲ), Fe(Ⅲ), Ni(Ⅱ), Zn(Ⅱ) and Bi(Ⅲ) salpn complexes as catalysts for the decomposition of H2O2 and oxidation of phenol[J]. J. Mol. Catal. A:Chem.,2002,180,201-209.
    [122]顾晓利,乔旭,崔咪芬,张进平,汤吉海.苯酚羟基化制苯二酚的催化剂研究新 进展[J].工业催化,2005,13,48-53.
    [123]C. Walling, R. A. Johnson. Fenton's Reagent. Ⅴ. Hydroxylation and Side-ChainCleavage of Aromatics[J]. J. Am. Chem.Soc.,1975,97,363-367.
    [124]M. Boudart. Turnover Rates in Heterogeneous Catalysis[J]. Chem. Rev.1995,95, 661-666.
    [125]C. B. Liu, Z. Zhao, X. G. Yang, X. K. Ye, Y. Wu. Superconductor mixed oxides La2-xSrxCuO4±λ for catalytic hydroxylation of phenol in the liquid-solid phase[J]. Chem. Commun.,1996,1019-1020.
    [126]K. Z. Zhu, C. B. Liu, X. K. Ye, Y. Wu. Catalysis of hydrotalcite-like compounds in liquid phase oxidation: (Ⅰ) phenol hydroxylation [J]. Appl. Catal. A: Gen.,1998,168, 365-372.
    [127]F. S. Xiao,1 J. M. Sun, X. J. Meng, R. B. Yu, H. M. Yuan, J. N. Xu, T.Y. Song, D. Z. Jiang, R. R. Xu. Synthesis and Structure of Copper Hydroxyphosphate and Its High Catalytic Activity in Hydroxylation of Phenol by H2O2[J]. J. Catal.,2001,199,273-281.
    [128]L. Norena-Franco, I. Hernandez-Perez, J. Aguilar-Pliego, A. Maubert-Franco. Selective hydroxylation of phenol employing Cu-MCM-41 catalysts [J]. Catal. Today,2002,75, 189-195.
    [129]C. X. Chen, C. H. Xu, L. R. Feng, J. H. Suo, F. L. Qi. Phenol Hydroxylation Catalyzed by the Rare Earth-adulterated Copper-containing Hydrotalcites[J]. Chem. Lett.,2005, 34,206-207.
    [130]C. X. Chen, C. H. Xu, L. R. Feng, Z. J. Li, J. H. Suo, F. L. Qi, Y. C. Yang. Effect of Rare Earth Doping on the Catalytic Activity of Copper-Containing Hydrotalcites in Phenol Hydroxylation[J]. Adv. Synth. Catal.2005,347,1848-1854.
    [131]H. L. Tang, Y. Ren, B. Yue, S. R. Yan, H. Y. He. Cu-incorporated mesoporous materials: Synthesis, characterization and catalytic activity in phenol hydroxylation[J]. J. Mol. Catal. A: Chem.,2006,260,121-127.
    [132]G. P.Yang, X. K. Zhao, X. J. Sun, X. L. Lu. Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction[J]. J. Hazard Mater.2006,126,112-118.
    [133]A. L. Rogach, A. Kornowski, M. Y. Gao, A. Eychmueller, H. Weller. Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals[J]. J. Phys. Chem. B,1999,98,3065-3069.
    [134]X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrvstals with photostability and electronic accessibility[J]. J. Am. Chem. Soc.,1997,119,7019-7029.
    [135]P. Reiss, M. Protie're, L. Li. Core/Shell Semiconductor Nanocrystals[J]. Small,2009,5, 154-168.
    [136]汪瑗,阿里木江·艾拜都拉.波谱综合解析指导[M].化学工业出版社,北京,2008.
    [137]R. Rodriguez, L. C. Alvarez, A. Concheiro. Interactions of ibuprofen with cationic polysaccharides in aqueous dispersions and hydrogels Rheological and diffusional implications[J]. Eur. J. Pharm. Sci.,2003,20,429-438.
    [138]K. H. Drexhage. Influence of a dielectric interface on fluorescence decay time[J]. J. Lumi.,1970,1-2,693-701.
    [139]T. R. Sathe, A. Agrawal, S. M. Nie. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals:Dual-function microcarriers for optical encoding and magnetic separation, Anal. Chem.2006,78,5627-5632.
    [140]郭佳.多功能有机/无机聚合物复合微球的制备、表征及其生物应用[D].上海:复旦大学博士论文,2006.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.