单相多铁性纳米材料的水热法合成及物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单相磁电多铁性材料同时具有磁性和铁电性,且二者可以通过磁电耦合效应相互影响,所以其在信息存储等诸多领域有着巨大的应用前景。因此,近十年来多铁性材料已经成为了凝聚态物理和材料物理等学科的研究热点,并且在研究过程中涌现了许多性能优异的多铁性材料。例如,铁酸铋就是目前已发现的多铁性材料中的佼佼者,它具有室温以上的反铁磁和铁电转变温度,室温环境下具有非常大剩余电极化强度。然而,铁酸铋的G型反铁磁磁基态使其受到磁场的调控很弱。实际上,目前发现的单相多铁性材料大多是反铁磁性的,同时具有铁磁性和铁电性的材料非常稀少。幸运的是,实验研究发现纳米化可以在保持结构不变的基础上增强反铁磁材料的磁性。所以把纳米技术引入到多铁性材料的研究中来,一方面可以增强很多反铁磁性的多铁性材料的磁性,进而获得更大的磁电耦合效应;另一方面,可能会出现一些新的物理现象,可以让人们对磁电耦合效应的理解和调控进入一个全新的层次。不过,多铁性材料多为多元的复杂氧化物,高质量的纳米晶体生长比较难以调控,相关的物性研究更是还处于初级阶段。
     针对上述问题,本论文主要研究了水热法生长高质量的铁酸铋纳米晶体和具有多铁性的新型纳米材料,系统研究了它们在纳米化后的磁学特性,比如自旋团簇玻璃态的动力学行为和交换偏置效应。此外,论文最后还对非典型磁电材料的磁介电特性进行了深入的研究。论文内容共分为五章,每章的主要内容分别概括如下:
     第一章综述了单相磁电多铁性材料的研究进展,其中重点介绍了铁酸铋的基本特性和相关研究,然后介绍了多铁性材料中的磁介电效应和与之相关的各个材料体系,最后介绍了多铁性纳米材料的相关研究,并根据以上几个方面给出了当前研究中存在的一些问题。
     第二章提出了一种水热法合成铁酸铋纳米晶粒的途径,首次系统研究了铁酸铋纳米晶粒的自旋团簇玻璃态的动力学行为。相比于传统的固相反应法,水热法可以大大降低铁酸铋的成相温度,得到高质量、纯相的铁酸铋纳米晶粒。通过多种表征手段得到纳米晶粒的平均直径约为170nm,反铁磁转变温度为640K,铁电转变温度为1064K。通过测量BiFeO3内米晶粒在不同交流磁场频率和不同直流磁场大小下的交流磁化率随温度依赖关系,研究其磁动力学行为。利用不同的动力学方程对结果进行拟合,确认了铁酸铋纳米晶粒在低温下存在一个自旋团簇玻璃转变,这一转变的出现很可能与铁酸铋在纳米化后出现的大量未补偿自旋有关。
     第三章系统研究了铁酸铋纳米晶粒的交换偏置效应。通过研究发现,铁酸铋纳米晶粒在2K到300K的温度范围内都存在交换偏置效应,且交换偏置场大小和温度之间具有非单调的依赖关系。其中,铁酸铋纳米晶粒在其自旋团簇玻璃转变温度以上的交换偏置效应非常特别,因为在其他自旋玻璃态的磁性纳米体系中的交换偏置效应会在此温度以上消失。针对这个问题,我们分别用随机场模型和2D-DAFF模型(two-dimensional diluted antiferromagnet in a field model)予以解释,并且同时给出了铁酸铋纳米晶粒中存在2D-DAFF的实验证据。
     第四章利用水热法合成了一种新型室温多铁性材料Bi5Fe2O10o.5单晶纳米带。通过结构分析,发现Bi5Fe2O10.5内米带同构于高温超导体Bi2Sr2CaCu208+δ,并存在一个波矢为q*=(0,0.25,1)的公度的调制结构。因此,Bi5Fe2O10.5内米带在c轴方向上由结构上类似BiFeO3的钙钛矿层和绝缘性好的[Bi2O2]2+盐岩层交替排列而成,具有天然的磁电一介电超晶格结构。最重要的是,室温下在Bi5Fe2O10.5纳米带中发现了同时存在的磁性和铁电性,而巨大的磁介电效应表明其内部可能存在着磁有序和铁电有序的相互耦合。Bi5Fe2O10.5纳米带的设计与水热合成为探索新型的单相多铁性材料提供有益的帮助。
     第五章系统研究了LaMn1-xFexO3(0.1≤x≤0.5)体系在外磁场和外电场作用下的介电响应。在x≤0.2的样品里观察到了显著的低场磁介电效应,并且随着Fe含量的增加,磁介电效应消失。同时,所有的样品都表现出了巨介电常数,且介电常数随外加偏置电场增大而减小。我们通过研究发现上述现象是由Maxwell-Wagner效应引起的。值得注意的是,在x=0.2的样品高频测量结果里发现了本征的磁介电效应,暗示了这一体系内可能存在内禀的磁电耦合效应。
Single-phase magnetoelectric multiferroic materials with broad application prospects in many fields, such as information storage and so on, have magnetism and ferroelectricity simultaneously, and these two orders can affect each other via magnetoelectric effect. Hence, multiferroic materials have become a hotspot for condensed-matter physics and materials physics during the past ten years, and many high-performanced multiferroics have been found in this upsurge. For example, BiFeO3is one of the best multiferroics, and its magnetic and ferroelectric transition temperatures are both above room temperature. Moreover, BiFeO3has a large remanent polarization at room temperature. But the G-type antiferromagnetism ground state makes it difficult for the magnetic control of the multiferroic in single phase bulk BiFeO3. In fact, most of the multiferroics are antiferromagnetic, and ferromagnetic ones are very rare so far. Fortunately, nanorization can be an effective way to enhance the magnetism in an antiferromagnetic material without a crystal structure alteration. Therefore, it will be useful for introducing nanotechnology to the multiferroic research. On one hand, it can enhance magnetism of the antiferromangetic multiferroics. On the other hand, nanotechnology could bring new physics, and allow people reach a whole new level for understanding and manipulating the mangetoeletric coupling effect. However, multiferroic materials are mostly multi-element complex oxides, so the high-quality nanocrystals are hard to controllably grow, and the correlative propery study is still in the initial stage.
     This dissertation focuses on the above challenges:the hydro thermal methods were used to grow high-quality BiFeO3nanocrystals and new type multiferroic nanobelts. The magnetic properties of them were systematically investigated, such as the dynamic properties of spin cluster glass and exchange bias effects. In addition, the magnetodielectric effect in an atypical magnetoelectric material was studied in-depth. The detailed experimental results and discussions are shown as follows:
     In chapter1, we introduced the history and research progresses of multiferroic materials. The main contents include:the basic property study of BiFeO3, magnetodielectric effects and the related multiferroic systems, the research progresses of multiferroic nanomaterials. According to the general analyses, several open questions have been proposed at the end.
     In chapter2, a hydrothermal method was developed for the fabrication of BiFeO3nanocrystals, and the dynamic properties of spin cluster glass in nanosized BiFeO3sample were systematically studied for the first time. Compared to conventional solid state method, the hydrothermal method can effectively reduce the formation temperature of BiFeO3, through which high-quality BiFeO3nanocrystals were produced. The BiFeO3nanocrystals were characterized with an average diameter of170nm, a Neel temperature of640K and a ferroelectric Curie temperature of1064K. We studied the dynamic properties of spin-glass-like state in BiFeO3nanocrystals by measuring the temperature dependence of ac susceptibility under different ac magnetic field frequencies or under different dc magnetic field values. By fitting the results with different dynamic laws, the spin cluster glass transition was confirmed, and it may be originated from a lot of the new uncompensated spins after the nanorization.
     In chapter3, exchange bias effect in BiFeO3nanocrystals was fully investigated. It was found that exchange bias exist in BiFeO3nanocrystals for the whole temperature range we measured (from2K to300K), and exchange bias field changed non-monotonically with increasing temperature. The exchange bias above the spin cluster glass transition temperature is very special, as the exchange bias would vanish for other systems in the same condition. To explain this new phenomenon, a Malozemoff's random-field model and a2D-DAFF model were established, respectively. The evidence for the existence of2D-DAFF in the BiFeO3nanocrystals was also given.
     In chapter4, a simple hydrothermal method was developed for the synthesis of single-crystal Bi5Fe2O10.5nanobelts. The products were characterized to be a layered structure with a commensurate modulation wave vector q*=(0,0.25,1) and isostructural with the high-temperature superconductor Bi2Sr2CaCu2O8+δ. The regular stacking of the BiFeO3-like perovskite blocks and the rock salt [Bi2O2]2+slabs along the c axis of the crystal makes the Bi5Fe2O10.5nanobelts have a natural magnetoelectric-dielectric superlattice structure. The most important result was the room-temperature multiferroic behavior in this new compound, and the giant magnetodielectric effect indicated the magnetoelectric coupling interactions. This finding may be useful for developing single phase multiferroics.
     In chapter5, the dielectric properties of LaMn1-xFexO3(0.1≤x≤0.5) system under magnetic fields and electrical biases were studied. A low-field magnetodielectric effect is observed for x≤0.2samples, but it is suppressed by further Fe substitution. Besides the giant magnetodielectric effect, the dielectric constants can also be tuned by the dc electrical bias. These results have been explained by a contribution of the Maxwell-Wagner effect. It is notable that an intrinsic magnetodielectric effect in LaMno.8Fe0.2O3was observed, indicating the existence of a magnetoelectric coupling effect.
引文
[1]H. Schmid, Multi-ferroic magnetoelectrics, Ferroelectrics,162 (1994) 317-338.
    [2]B.B. Van Aken, J.P. Rivera, H. Schmid, M. Fiebig, Observation of ferrotoroidic domains, Nature,449 (2007) 702-705.
    [3]Y. Tokura, Multiferroics-toward strong coupling between magnetization and polarization in a solid, J. Magn. Magn. Mater.,310 (2007) 1145-1150.
    [4]C. Chappert, A. Fert, F.N. Van Dau, The emergence of spin electronics in data storage, Nat. Mater.,6 (2007) 813-823.
    [5]M. Dawber, K.M. Rabe, J.F. Scott, Physics of thin-film ferroelectric oxides, Rev. Mod. Phys., 77 (2005) 1083.
    [6]H. Schmid, Magnetic Ferroelectric Materials, Bull. Mater. Sci.,17 (1994) 1411-1414.
    [7]N.A. Hill, Why are there so few magnetic ferroelectrics?, J. Phys. Chem. B,104 (2000) 6694-6709.
    [8]P. Curie, Sur la symetric dans les phenomenes physiques, symetrie dun champ electrique et dun champ magnetique, Journal of Physique,3(1894) 393-415.
    [9]P. Debye, Remark to some new trials on a magneto-electrical direct effect, Z. Angew. Phys.,36 (1926)300-301.
    [10]D. Khomskii, Classifying multiferroics:mechanisms and effects, Physics,2 (2009) 20.
    [11]G.T. Rado, V.J. Folen, Observation of the Magnetically Induced Magnetoelectric Effect and Evidence for Antiferromagnetic Domains, Phys. Rev. Lett.,7 (1961) 310-311.
    [12]J. Van Suchtelen, Product properties-new application of composite-materials, Philips Research Reports,27 (1972) 28.
    [13]S.X. Dong, J.Y. Zhai, J.F. Li, D. Viehland, Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity, Appl. Phys. Lett.,89 (2006) 252904.
    [14]R. Thomas, J.F. Scott, D.N. Bose, R.S. Katiyar, Multiferroic thin-film integration onto semiconductor devices, J. Phys.:Condens. Matter,22 (2010) 423201.
    [15]M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D:Appl. Phys.,38 (2005) R123-R152.
    [16]S.W. Cheong, M. Mostovoy, Multiferroics:a magnetic twist for ferroelectricity, Nat. Mater.,6 (2007) 13-20.
    [17]迟振华,靳常青,单相磁电多铁性体研究进展,物理学进展,27(2007)225-238.
    [18]王克峰,刘俊明,王雨,单相多铁性材料——极化和磁性序参量的耦合与调控,科学通报,53(2008)1098-1135.
    [19]C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites:Historical perspective, status, and future directions, J. Appl. Phys.,103(2008)031101.
    [20]K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity:the coupling between magnetic and polarization orders, Adv. Phys.,58 (2009) 321-448.
    [21]J. Ma, J.M. Hu, Z. Li, C.W. Nan, Recent Progress in Multiferroic Magnetoelectric Composites:from Bulk to Thin Films, Adv. Mater.,23 (2011) 1062-1087.
    [22]S. Picozzi, C.Ederer, First principles studies of multiferroic materials, J. Phys.:Condens. Matter,21 (2009)303201.
    [23]G. A. Smolensky, V. A. Isupov, A. I. Agronovskaya, New ferroelectrics of complex composition of the type A22+(BI3+BII5+)O-6.1., Soviet Physics-Solid State 1(1959) 150-151.
    [24]J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science,299 (2003) 1719-1722.
    [25]J.M. Moreau, C. Michel, R. Gerson, W.J. James, Ferroelectric BiFeO3 X-Ray and Neutron Diffraction Study, J. Phys. Chem. Solids,32 (1971) 1315.
    [26]R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G Schlom, N.A. Spaldin, L.W. Martin, R. Ramesh, A Strain-Driven Morphotropic Phase Boundary in BiFeO3, Science,326 (2009) 977-980.
    [27]Z.H. Chen, Z.L. Luo, C.W. Huang, YJ. Qi, P. Yang, L. You, C.S. Hu, T. Wu, J.L. Wang, C. Gao, T. Sritharan, L. Chen, Low-Symmetry Monoclinic Phases and Polarization Rotation Path Mediated by Epitaxial Strain in Multiferroic BiFeO3 Thin Films, Adv. Funct. Mater.,21 (2011)133-138.
    [28]S.H. Baek, H.W Jang, CM. Folkman, Y.L. Li, B. Winchester, J.X. Zhang, Q. He, Y.H. Chu, C.T. Nelson, M.S. Rzchowski, X.Q. Pan, R. Ramesh, L.Q. Chen, C.B. Eom, Ferroelastic switching for nanoscale non-volatile magnetoelectric devices, Nat. Mater.,9 (2010) 309-314.
    [29]R. Haumont, LA. Kornev, S. Lisenkov, L. Bellaiche, J. Kreisel, B. Dkhil, Phase stability and structural temperature dependence in powdered multiferroic BiFeO3, Phys. Rev. B,78 (2008) 134108.
    [30]R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, beta phase and gamma-beta metal-insulator transition in multiferroic BiFeO3, Phys. Rev. B,77 (2008) 014110.
    [31]D.C. Arnold, K.S. Knight, G. Catalan, S.A.T. Redfern, J.F. Scott, P. Lightfoot, F.D. Morrison, The beta-to-gamma Transition in BiFeO3:A Powder Neutron Diffraction Study, Adv. Funct. Mater.,20 (2010) 2116-2123.
    [32]G. Catalan, J.F. Scott, Physics and Applications of Bismuth Ferrite, Adv. Mater.,21 (2009) 2463-2485.
    [33]F. Kubel, H. Schmid, Structure of a Ferroelectric and Ferroelastic Monodomain Crystal of the Perovskite BiFeO3, Acta Crystallographica Section B-Structural Science,46 (1990) 698-702.
    [34]D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, A. Gukasov, Electric-field-induced spin flop in BiFeO3 single crystals at room temperature, Phys. Rev. Lett.,100(2008)227602.
    [35]I. Sosnowska, T.P. Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite, Journal of Physics C (Solid State Physics),15 (1982) 4835-4846.
    [36]图片摘Seoul National University中子散射和磁性实验室的网站 http://magnetism.snu. ac.kr/sub/subl_l.php.
    [37]P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, Temperature-dependence of the crystal and magnetic-structures of BiFeO3, Journal of Physics C-Solid State Physics,13 (1980)1931-1940.
    [38]M.K. Singh, R.S. Katiyar, J.F. Scott, New magnetic phase transitions in BiFeO3, J. Phys.: Condens. Matter,20 (2008) 252203.
    [39]M. Cazayous, Y. Gallais, A. Sacuto, R. de Sousa, D. Lebeugle, D. Colson, Possible Observation of Cycloidal Electromagnons in BiFeO3, Phys. Rev. Lett.,101 (2008) 037601.
    [40]M.K. Singh, R.S. Katiyar, W. Prellier, J.F. Scott, The Almeida-Thouless line in BiFeO3:is bismuth ferrite a mean field spin glass?, J. Phys.:Condens. Matter,21 (2009) 042202.
    [41]M.K. Singh, W. Prellier, M.P. Singh, R.S. Katiyar, J.F. Scott, Spin-glass transition in single-crystal BiFeO3, Phys. Rev. B,77 (2008) 144403.
    [42]CM. Newman, D.L. Stein, Ordering and broken symmetry in short-ranged spin glasses, J. Phys.:Condens. Matter,15 (2003)R1319-R1364.
    [43]A.P. Ramirez, Strongly Geometrically Frustrated Magnets, Annu. Rev. Mater. Sci.,24 (1994) 453-480.
    [44]D. Sherrington, S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett,35 (1975) 1792-1796.
    [45]J.R.L. de Almeida, D.J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model, Journal of Physics A (Mathematical and General),11 (1978) 983-990.
    [46]H. Kawamura, D. Imagawa, Ordering of the three-dimensional Heisenberg spin glass in magnetic fields, Phys. Rev. Lett.,87 (2001) 207203.
    [47]D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J.F. Marucco, S. Fusil, Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals, Phys. Rev. B,76 (2007) 024116.
    [48]J. Lu, M. Schmidt, P. Lunkenheimer, A. Pimenov, A.A. Mukhin, V.D. Travkin, A. Loidl, Magnetic susceptibility, phonons and dielectric constant of single crystalline BiFeO3, International Conference on Magnetism (Icm 2009),200 (2010) 012106.
    [49]J.R. Teague, R. Gerson, W.J. James, Dielectric Hysteresis in Single Crystal BiFeO3, Solid State Commun.,8 (1970) 1073-&.
    [50]D. Lebeugle, D. Colson, A. Forget, M. Viret, Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields, Appl. Phys. Lett.,91 (2007) 022907.
    [51]V.V. Shvartsman, W. Kleemann, R. Haumont, J. Kreisel, Large bulk polarization and regular domain structure in ceramic BiFeO3, Appl. Phys. Lett.,90 (2007) 172115.
    [52]R. Seshadri, N.A. Hill, Visualizing the role of Bi 6s "Lone pairs" in the off-center distortion in ferromagnetic BiMnO3, Chem. Mater.,13 (2001) 2892-2899.
    [53]T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nat. Mater.,5 (2006) 823-829.
    [54]Y.H. Chu, L.W. Martin, M.B. Holcomb, R. Ramesh, Controlling magnetism with multiferroics, Mater. Today,10 (2007) 16-23.
    [55]W.H. Meiklejohn, C.P. Bean, New Magnetic Anisotropy, Phys. Rev.,102 (1956) 1413-1414.
    [56]W.H. Meiklejohn, C.P. Bean, New Magnetic Anisotropy, Phys. Rev.,105 (1957) 904-913.
    [57]D. Mauri, H.C. Siegmann, P.S. Bagus, E. Kay, Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate, J. Appl. Phys.,62 (1987) 3047-3049.
    [58]A.P. Malozemoff, Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces, Phys. Rev. B,35 (1987) 3679-3682.
    [59]A.P. Malozemoff, Heisenberg-to-Ising crossover in a random-field model with uniaxial anisotropy, Phys. Rev. B,37 (1988) 7673-7679.
    [60]Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.J. Han, Q. He, N. Balke, C.H. Yang, D. Lee, W. Hu, Q. Zhan, PL. Yang, A. Fraile-Rodriguez, A. Scholl, S.X. Wang, R. Ramesh, Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nat. Mater.,7 (2008) 478-482.
    [61]C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev. B,71 (2005) 060401.
    [62]L.W. Martin, Y.H. Chu, M.B. Holcomb, M. Huijben, P. Yu, S.J. Han, D. Lee, S.X. Wang, R. Ramesh, Nanoscale control of exchange bias with BiFeO3 thin films, Nano Lett.,8 (2008) 2050-2055.
    [63]H. Bea, M. Bibes, F. Ott, B. Dupe, X.H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, A. Barthelemy, Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films, Phys. Rev. Lett.,100 (2008) 017204.
    [64]S. Dong, K. Yamauchi, S. Yunoki, R. Yu, S.H. Liang, A. Moreo, J.M. Liu, S. Picozzi, E. Dagotto, Exchange Bias Driven by the Dzyaloshinskii-Moriya Interaction and Ferroelectric Polarization at G-Type Antiferromagnetic Perovskite Interfaces, Phys. Rev. Lett.,103 (2009) 127201.
    [65]M. Bibes, A. Barthelemy, Multiferroics:Towards a magnetoelectric memory, Nat. Mater.,7 (2008) 425-426.
    [66]S.M. Wu, S.A. Cybart, P. Yu, M.D. Rossell, J.X. Zhang, R. Ramesh, R.C. Dynes, Reversible electric control of exchange bias in a multiferroic field-effect device, Nat. Mater.,9 (2010) 756-761.
    [67]M. Hambe, A. Petraru, N.A. Pertsev, P. Munroe, V. Nagarajan, H. Kohlstedt, Crossing an Interface:Ferroelectric Control of Tunnel Currents in Magnetic Complex Oxide Heterostructures, Adv. Funct. Mater,20 (2010) 2436-2441.
    [68]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization, Nature,426 (2003) 55-58.
    [69]T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3, Phys. Rev. B,67 (2003) 180401.
    [70]F. Sugawara, S. Iiida, Y. Syono, S.I. Akimoto, Magnetic properties and crystal distortions of BiFeO3 and BiCrO3, J. Phys. Soc. Jpn.,25 (1968) 1553-&.
    [71]T. Moriya, Anisotropic Superexchange Interaction and Weak Ferromagnetism, Phys. Rev., 120(1960)91-98.
    [72]I. Dzyaloshinsky, A thermodynamic theory of weak ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids,4 (1958) 241-255.
    [73]H. Katsura, N. Nagaosa, A.V. Balatsky, Spin Current and Magnetoelectric Effect in Noncollinear Magnets, Phys. Rev. Lett.,95 (2005) 057205.
    [74]M. Mostovoy, Ferroelectricity in Spiral Magnets, Phys. Rev. Lett.,96 (2006) 067601.
    [75]Y.J. Choi, H.T. Yi, S. Lee, Q. Huang, V. Kiryukhin, S.W. Cheong, Ferroelectricity in an Ising Chain Magnet, Phys. Rev. Lett.,100 (2008) 047601.
    [76]Y. Tokunaga, S. Iguchi, T. Arima, Y. Tokura, Magnetic-Field-Induced Ferroelectric State in DyFeO3, Phys. Rev. Lett.,101 (2008) 097205.
    [77]Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T.H. Arima, Y. Tokura, Composite domain walls in a multiferroic perovskite ferrite, Nat. Mater.,8 (2009) 558-562.
    [78]Y. Tokura, S. Seki, Multiferroics with Spiral Spin Orders, Adv. Mater.,22 (2010) 1554-1565.
    [79]F. Kagawa, M. Mochizuki, Y. Onose, H. Murakawa, Y. Kaneko, N. Furukawa, Y. Tokura, Dynamics of Multiferroic Domain Wall in Spin-Cycloidal Ferroelectric DyMnO3, Phys. Rev. Lett.,102(2009)057604.
    [80]T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites, Phys. Rev. Lett.,92 (2004) 257201.
    [81]N.S. Rogado, J. Li, A.W. Sleight, M.A. Subramanian, Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor:La2NiMn06, Adv. Mater.,17 (2005) 2225-2227.
    [82]D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, D.D. Sarma, Near-Room-Temperature Colossal Magnetodielectricity and Multiglass Properties in Partially Disordered La2NiMnO6, Phys. Rev. Lett.,108(2012) 127201.
    [83]J. van den Brink, D.I. Khomskii, Multiferroicity due to charge ordering, J. Phys.:Condens. Matter,20 (2008) 434217.
    [84]M.A. Subramanian, T. He, J.Z. Chen, N.S. Rogado, T.G. Calvarese, A.W. Sleight, Giant room-temperature magnetodielectric response in the electronic ferroelectric LuFe2O4, Adv. Mater.,18(2006) 1737-+.
    [85]P. Mondal, D. Bhattacharya, P. Choudhury, P. Mandal, Dielectric anomaly at TN in LaMnO3 as a signature of coupling between spin and orbital degrees of freedom, Phys. Rev. B,76 (2007)172403.
    [86]G. Catalan, J.F. Scott, Magnetoelectrics-Is CdCr2S4 a multiferroic relaxor?, Nature,448 (2007) E4-E5.
    [87]J.F. Scott, R. Blinc, Multiferroic magnetoelectric fluorides:why are there so many magnetic ferroelectrics?, J. Phys.:Condens. Matter,23 (2011) 113202.
    [88]L. Zhao, T.-L. Hung, C.-C. Li, Y.-Y. Chen, M.-K. Wu, R.K. Kremer, M.G. Banks, A. Simon, M.-H. Whangbo, C. Lee, J.S. Kim, I. Kim, K.H. Kim, CuBr2-A New Multiferroic Material with High Critical Temperature, Adv. Mater., (2012).
    [89]X.H. Huang, J.F. Ding, G.Q. Zhang, Y. Hou, Y.P. Yao, X.G. Li, Size-dependent exchange bias in La0.25Ca0.75Mn03 nanoparticles, Phys. Rev. B,78 (2008) 224408.
    [90]T. Zhang, T.F. Zhou, T. Qian, X.G. Li, Particle size effects on interplay between charge ordering and magnetic properties in nanosized La0.25Ca0.75Mn03, Phys. Rev. B,76 (2007) 174415.
    [91]G.Q. Zhang, X.L. Lu, T. Zhang, J.F. Qu, W. Wang, X.G. Li, S.H. Yu, Microstructure and superconductivity of highly ordered YBa2Cu3O7_delta nanowire arrays, Nanotechnology,17 (2006) 4252-4256.
    [92]X.L. Lu, T. Zhang, J.F. Qu, C.G. Jin, X.G. Li, Microstructure and superconductivity of La1.85Sr0.15Cu04 nanowire arrays, Adv. Funct. Mater.,16 (2006) 1754-1758.
    [93]X.L. Lu, G.Q. Zhang, W. Wang, X.G. Li, Superconducting and oxidation-resistant coaxial lead-polymer nanocables, Angewandte Chemie-International Edition,46 (2007) 5772-5774.
    [94]G.Q. Zhang, W. Wang, X.L. Lu, X.G. Li, Solvothermal Synthesis of V-VI Binary and Ternary Hexagonal Platelets:The Oriented Attachment Mechanism, Crystal Growth& Design,9 (2009)145-150.
    [95]T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles, Nano Lett.,7 (2007) 766-772.
    [96]R. Mazumder, P.S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Ferromagnetism in nanoscale BiFeO3, Appl. Phys. Lett.,91 (2007) 062510.
    [97]X.Y. Zhang, C.W. Lai, X. Zhao, D.Y. Wang, J.Y. Dai, Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays, Appl. Phys. Lett.,87 (2005) 143102.
    [98]X.Q. Xu, T. Qian, G.Q. Zhang, T. Zhang, G Li, W. Wang, X.G. Li, Fabrication and magnetic properties of multiferroic BiFeO3 nanotube arrays, Chem. Lett.,36 (2007) 112-113.
    [99]B. Liu, B.B. Hu, Z.L. Du, Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO3 nanowires, Chem. Commun.,47 (2011) 8166-8168.
    [100]J.T. Han, Y.H. Huang, W. Huang, J.B. Goodenough, Selective synthesis of TbMn2O5 nanorods and TbMnO3 micron crystals, J. Am. Chem. Soc,128 (2006) 14454-14455.
    [101]H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 nanostructures, Science, 303(2004)661-663.
    [102]X.L. Lu, Y. Kim, S. Goetze, X.G. Li, S.N. Dong, P. Werner, M. Alexe, D. Hesse, Magnetoelectric Coupling in Ordered Arrays of Multilayered Heteroepitaxial BaTiO3/CoFe2O4 Nanodots, Nano Lett.,11 (2011) 3202-3206.
    [1]I. Sosnowska, T.P. Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite, Journal of Physics C (Solid State Physics),15 (1982) 4835-4846.
    [2]G Catalan, J.F. Scott, Physics and Applications of Bismuth Ferrite, Adv. Mater.,21 (2009) 2463-2485.
    [3]T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature, Nat. Mater,5 (2006) 823-829.
    [4]D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, A. Gukasov, Electric-field-induced spin flop in BiFeO3 single crystals at room temperature, Phys. Rev. Lett.,100 (2008) 227602.
    [5]S. Lee, W. Ratcliff, S.W. Cheong, V. Kiryukhin, Electric field control of the magnetic state in BiFeO3 single crystals, Appl. Phys. Lett.,92 (2008) 192906.
    [6]M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D:Appl. Phys.,38 (2005) R123-R152.
    [7]S.W. Cheong, M. Mostovoy, Multiferroics:a magnetic twist for ferroelectricity, Nat. Mater.,6 (2007) 13-20.
    [8]R. Ramesh, N.A. Spaldin, Multiferroics:progress and prospects in thin films, Nat. Mater.,6 (2007)21-29.
    [9]H. Bea, M. Bibes, S. Cherifi, F. Nolting, B. Warot-Fonrose, S. Fusil, G. Herranz, C. Deranlot, E. Jacquet, K. Bouzehouane, A. Barthelemy, Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films, Appl. Phys. Lett., 89(2006)242114.
    [10]L.W. Martin, Y.H. Chu, M.B. Holcomb, M. Huijben, P. Yu, SJ. Han, D. Lee, S.X. Wang, R. Ramesh, Nanoscale control of exchange bias with BiFeO3 thin films, Nano Lett.,8 (2008) 2050-2055.
    [11]Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.J. Han, Q. He, N. Balke, C.H. Yang, D. Lee, W. Hu, Q. Zhan, P.L. Yang, A. Fraile-Rodriguez, A. Scholl, S.X. Wang, R. Ramesh, Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nat. Mater.,7 (2008) 478-482.
    [12]H. Bea, M. Bibes, F. Ott, B. Dupe, X.H. Zhu, S. Petit, S. Fusil, C. Deranlot, K. Bouzehouane, A. Barthelemy, Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films, Phys. Rev. Lett.,100 (2008) 017204.
    [13]L. You, C.L. Lu, P. Yang, G.C. Han, T. Wu, U. Luders, W. Prellier, K. Yao, L. Chen, J.L. Wang, Uniaxial Magnetic Anisotropy in La0.7Sr0.3MnO3 Thin Films Induced by Multiferroic BiFeO3 with Striped Ferroelectric Domains, Adv. Mater.,22 (2010) 4964-4968.
    [14]C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite, Phys. Rev. B,71 (2005) 060401.
    [15]T.J. Park, G.C. Papaefthymiou, AJ. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles, Nano Lett.,7 (2007) 766-772.
    [16]S.H. Xie, J.Y. Li, R. Proksch, Y.M. Liu, Y.C. Zhou, Y.Y. Liu, Y. Ou, L.N. Lan, Y. Qiao, Nanocrystalline multiferroic BiFeO3 ultrainme fibers by sol-gel based electrospinning, Appl. Phys. Lett.,93 (2008) 222904.
    [17]X.Q. Xu, T. Qian, G.Q. Zhang, T. Zhang, G. Li, W. Wang, X.G. Li, Fabrication and magnetic properties of multiferroic BiFeO3 nanotube arrays, Chem. Lett.,36 (2007) 112-113.
    [18]B. Liu, B.B. Hu, Z.L. Du, Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO3 nanowires, Chem. Commun.,47 (2011) 8166-8168.
    [19]A. Jaiswal, R. Das, K. Vivekanand, P.M. Abraham, S. Adyanthaya, P. Poddar, Effect of Reduced Particle Size on the Magnetic Properties of Chemically Synthesized BiFeO3 Nanocrystals, J. Phys. Chem. C,114 (2010) 2108-2115.
    [20]S.N. Dong, Y.P. Yao, Y. Hou, Y.K. Liu, Y. Tang, X.G. Li, Dynamic properties of spin cluster glass and the exchange bias effect in BiFeO3 nanocrystals, Nanotechnology,22 (2011) 385701.
    [21]R. Haumont, LA. Kornev, S. Lisenkov, L. Bellaiche, J. Kreisel, B. Dkhil, Phase stability and structural temperature dependence in powdered multiferroic BiFeO3, Phys. Rev. B,78 (2008) 134108.
    [22]R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, beta phase and gamma-beta metal-insulator transition in multiferroic BiFeO3, Phys. Rev. B,77 (2008) 014110.
    [23]D.C. Arnold, K.S. Knight, G. Catalan, S.A.T. Redfern, J.F. Scott, P. Lightfoot, F.D. Morrison, The beta-to-gamma Transition in BiFeO3:A Powder Neutron Diffraction Study, Adv. Funct. Mater.,20 (2010) 2116-2123.
    [24]J. Macutkevic, J. Banys, R. Grigalaitis, Comment on "Revisit of the Vogel-Fulcher freezing in lead magnesium niobate relaxors" [Appl. Phys. Lett.97,132905, (2010)], Appl. Phys. Lett., 98(2011).
    [25]S, Bedanta, W. Kleemann, Supermagnetism, J. Phys. D:Appl. Phys.,42 (2009) 013001.
    [26]M.D. Mukadam, S.M. Yusuf, P. Sharma, S.K. Kulshreshtha, G.K. Dey, Dynamics of spin clusters in amorphous Fe2O3, Phys. Rev. B,72 (2005) 174408.
    [27]J.L. Tholence, On the Frequency-Dependence of the Transition-Temperature in Spin-Glasses (Reprinted from Solid-State Commun, Vol 35, Pg 113-117,1980), Solid State Commun.,88 (1993)917-921.
    [28]A.T. Ogielski, Dynamics of three-dimensional Ising spin glasses in thermal equilibrium, Phys. Rev. B,32 (1985) 7384.
    [29]P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys.,49 (1977)435.
    [30]K. Gunnarsson, P. Svedlindh, P. Nordblad, L. Lundgren, H. Aruga, A. Ito, Dynamics of an Ising Spin-Glass in the Vicinity of the Spin-Glass Temperature, Phys. Rev. Lett.,61 (1988) 754.
    [31]S. Taketomi, R.D. Shull, Experimental verification of interactions between randomly distributed fine magnetic particles, J. Magn. Magn. Mater.,266 (2003) 207-214.
    [32]J. Wu, C. Leighton, Glassy ferromagnetism and magnetic phase separation in La1-xSrxCoO3, Phys. Rev. B,67 (2003) 174408.
    [33]D.N.H. Nam, R. Mathieu, P. Nordblad, N.V. Khiem, N.X. Phuc, Spin-glass dynamics of La0.95Sr0.05CoO3, Phys. Rev. B,62 (2000) 8989-8995.
    [34]J.R.L. de Almeida, D.J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model, Journal of Physics A (Mathematical and General),11 (1978) 983-990.
    [35]H. Kawamura, D. Imagawa, Ordering of the three-dimensional Heisenberg spin glass in magnetic fields, Phys. Rev. Lett.,87 (2001) 207203.
    [36]M.K. Singh, W. Prellier, M.P. Singh, R.S. Katiyar, J.F. Scott, Spin-glass transition in single-crystal BiFeO3, Phys. Rev. B,77 (2008) 144403.
    [37]B. Martinez, X. Obradors, L. Balcells, A. Rouanet, C. Monty, Low temperature surface spin-glass transition in gamma-Fe2O3 nanoparticles, Phys. Rev. Lett.,80 (1998) 181-184.
    [38]R.H. Kodama, A.E. Berkowitz, J.E.J. McNiff, S. Foner, Surface Spin Disorder in NiFe2O4 Nanoparticles, Phys. Rev. Lett.,77 (1996) 394.
    [39]H. Wang, T. Zhu, K. Zhao, W.N. Wang, C.S. Wang, Y.J. Wang, W.S. Zhan, Surface spin glass and exchange bias in Fe3O4 nanoparticles compacted under high pressure, Phys. Rev. B,70 (2004)092409.
    [40]M. Gruyters, Spin-Glass-Like Behavior in CoO Nanoparticles and the Origin of Exchange Bias in Layered CoO/Ferromagnet Structures, Phys. Rev. Lett.,95 (2005) 077204.
    [1]W.F. Egelhoff, P.J. Chen, C.J. Powell, M.D. Stiles, R.D. McMichael, C.L. Lin, J.M. Sivertsen, J.H. Judy, K. Takano, A.E. Berkowitz, T.C. Anthony, J.A. Brag, Optimizing the giant magnetoresistance of symmetric and bottom spin valves, J. Appl. Phys.,79(1996) 5277-5281.
    [2]AA. Tulapurkar, Y. Suzuki, A. Fukushima, H. KLubota, H. Maehara, K. Tsunekawa, D.D. Djayaprawira, N. Watanabe, S. Yuasa, Spin-torque diode effect in magnetic tunnel junctions, Nature,438 (2005) 339-342.
    [3]J. Nogues, I.K. Schuller, Exchange bias, J. Magn. Magn. Mater.,192 (1999) 203.
    [4]A.E. Berkowitz, K. Takano, Exchange anisotropy-a review, J. Magn. Magn, Mater,200 (1999) 552-570.
    [5]M. Kiwi, Exchange bias theory, J. Magn. Magn. Mater.,234 (2001) 584-595.
    [6]R.L. Stamps, Mechanisms for exchange bias, J. Phys. D:Appl. Phys.,33 (2000) R247-R268.
    [7]J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baro, Exchange bias in nanostructures, Physics Reports-Review Section of Physics Letters,422 (2005) 65-117.
    [8]TJ. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles, Nano Lett.,7 (2007) 766-772.
    [9]A. Jaiswal, R. Das, K. Vivekanand, P.M. Abraham, S. Adyanthaya, P. Poddar, Effect of Reduced Particle Size on the Magnetic Properties of Chemically Synthesized BiFeO3 Nanocrystals, J. Phys. Chem. C,114 (2010) 2108-2115.
    [10]R. Mazumder, PS. Devi, D. Bhattacharya, P. Choudhury, A. Sen, M. Raja, Ferromagnetism in nanoscale BiFeO3, Appl. Phys. Lett.,91 (2007) 062510.
    [11]N. Wang, X. Cao, G. Lin, Y. Shihe, lambda-MnO2 nanodisks and their magnetic properties, Nanotechnology,18 (2007)475605.
    [12]C. Diaz-Guerra, M. Vila, J. Piqueras, Exchange bias in single-crystalline CuO nanowires, Appl. Phys. Lett.,96 (2010) 193105.
    [13]Mart, iacute, Xavi, P. Ferrer, J. Herrero-Albillos, J. Narvaez, V. Holy, N. Barrett, M. Alexe, G. Catalan, Skin Layer of BiFeO3 Single Crystals, Phys.Rev. Lett.,106 (2011) 236101.
    [14]S.N. Dong, Y.P. Yao, Y. Hou, Y.K. Liu, Y. Tang, X.G. Li, Dynamic properties of spin cluster glass and the exchange bias effect in BiFeO3 nanocrystals, Nanotechnology,22 (2011) 385701.
    [15]J. Saha, R.H. Victora, Spontaneous exchange bias:Unidirectional anisotropy in an otherwise isotropic system, Phys. Rev. B,76 (2007) 100405.
    [16]B.M. Wang, Y. Liu, P. Ren, B. Xia, K.B. Ruan, J.B. Yi, J. Ding, X.G. Li, L. Wang, Large Exchange Bias after Zero-Field Cooling from an Unmagnetized State, Phys. Rev. Lett.,106 (2011).
    [17]A. Dutta, N. Gayathri, R. Ranganathan, Effect of particle size on the magnetic and transport properties of La0.875Sr0.125MnO3,Phys. Rev. B,68 (2003) 054432.
    [18]M.I. Belinsky, High-order double exchange in mixed-valence [Fe(Ⅲ)Fe(Ⅱ)] cluster, Chem. Phys.,240 (1999) 303-311.
    [19]A.P. Malozemoff, Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces, Phys. Rev. B,35 (1987) 3679.
    [20]A.P. Malozemoff, Heisenberg-to-Ising crossover in a random-field model with uniaxial anisotropy, Phys. Rev. B,37 (1988) 7673-7679.
    [21]X.H. Huang, J.F. Ding, G.Q. Zhang, Y. Hou, Y.P. Yao, X.G. Li, Size-dependent exchange bias in La0.25Ca0.75MnO3 nanoparticles, Phys. Rev. B,78 (2008) 224408.
    [22]V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues, Beating the superparamagnetic limit with exchange bias, Nature,423 (2003) 850-853.
    [23]D.V. Dimitrov, S. Zhang, J.Q. Xiao, G.C. Hadjipanayis, C. Prados, Effect of exchange interactions at antiferromagnetic/ferromagnetic interfaces on exchange bias and coercivity, Phys. Rev. B,58(1998)12090.
    [24]S.M. Zhou, K. Liu, C.L. Chien, Dependence of exchange coupling in permalloy/Cr82Al18 bilayers on the constituent layer thickness, J. Appl. Phys.,87 (2000) 6659-6661.
    [25]C. Leighton, M.R. Fitzsimmons, A. Hoffmann, J. Dura, C.F. Majkrzak, M.S. Lund, I.K. Schuller, Thickness-dependent coercive mechanisms in exchange-biased bilayers, Phys. Rev. B,65 (2002)064403.
    [26]M.J. Benitez, O. Petracic, E.L. Salabas, F. Radu, H. Tuysuz, F. Schuth, H. Zabel, Evidence for Core-Shell Magnetic Behavior in Antiferromagnetic Co3O4 Nanowires, Phys. Rev. Lett., 101 (2008)097206.
    [27]M.J. Benitez, O. Petracic, H. Tuysuz, F. Schuth, H. Zabel, Fingerprinting the magnetic behavior of antiferromagnetic nanostructures using remanent magnetization curves, Phys. Rev. B,83(2011)134424.
    [28]U.Nowak, K.D. Usadel, J. Keller, Milt, eacute, P. nyi, B. Beschoten, uuml, G. ntherodt, Domain state model for exchange bias. I. Theory, Phys. Rev. B,66 (2002) 014430.
    [29]E. Winkler, R.D. Zysler, M.V. Mansilla, D. Fiorani, Surface anisotropy effects in NiO nanoparticles, Phys. Rev. B,72 (2005) 132409.
    [30]C. Binek, Training of the exchange-bias effect:A simple analytic approach, Phys. Rev. B,70 (2004)014421.
    [31]C.M. Newman, D.L. Stein, Multiple states and thermodynamic limits in short-ranged Ising spin-glass models, Phys. Rev. B,46 (1992) 973.
    [32]O.L. White, D.S. Fisher, Scenario for spin-glass phase with infinitely many states, Phys. Rev. Lett.,96 (2006) 137204.
    [1]E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.M. Triscone, P. Ghosez, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature,452 (2008) 732-U734.
    [2]G. Rijnders, D.H.A. Blank, Materials science-Build your own superlattice, Nature,433 (2005) 369-370.
    [3]M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, P. Ghosez, J.M. Triscone, Tailoring the properties of artificially layered ferroelectric superlattices, Adv. Mater,19 (2007) 4153-4159.
    [4]R.R. Das, Y.I. Yuzyuk, P. Bhattacharya, V. Gupta, R.S. Katiyar, Folded acoustic phonons and soft mode dynamics in BaTiO3/SrTiO3 superlattices, Phys. Rev. B,69 (2004) 132302.
    [5]R. Ranjith, B. Kundys, W. Prellier, Periodicity dependence of the ferroelectric properties in BiFeO3/SrTiO3 multiferroic superlattices, Appl. Phys. Lett.,91 (2007) 222904.
    [6]J.M. Hu, Z. Li, L.Q. Chen, C.W. Nan, High-density magnetoresistive random access memory operating at ultralow voltage at room temperature, Nature Communications,2 (2011) 553.
    [7]S.J. Chiu, Y.T. Liu, H.Y. Lee, G.P. Yu, J.H. Huang, Growth of BiFeO3/SrTiO3 artificial superlattice structure by RF sputtering, J. Cryst. Growth,334 (2011) 90-95.
    [8]B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories, Nature,401 (1999) 682-684.
    [9]M. Dawber, K.M. Rabe, J.F. Scott, Physics of thin-film ferroelectric oxides, Rev. Mod. Phys., 77(2005) 1083.
    [10]X.Y. Mao, W. Wang, X.B. Chen, Y.L. Lu, Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics, Appl. Phys. Lett,95 (2009) 082901.
    [11]S.M. Sun, W.Z. Wang, H.L. Xu, L. Zhou, M. Shang, L. Zhang, Bi5FeTi3015 Hierarchical Microflowers:Hydrothermal Synthesis, Growth Mechanism, and Associated Visible-Light-Driven Photocatalysis, J. Phys. Chem. C,112 (2008) 17835-17843.
    [12]M.L. Munzarova, R. Hoffmann, Strong electronic consequences of intercalation in cuprate superconductors:The case of a trigonal planar AuI3 complex stabilized in the Bi2Sr2CaCu2Oy lattice, J. Am. Chem. Soc,124 (2002) 5542-5549.
    [13]R. Kleiner, P. Muller, Intrinsic Josephson effects in high-Tc superconductors, Phys. Rev. B, 49(1994)1327-1341.
    [14]K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity:the coupling between magnetic and polarization orders, Adv. Phys.,58 (2009) 321-448.
    [15]Y. Le Page, W.R. McKinnon, J.M. Tarascon, P. Barboux, Origin of the incommensurate modulation of the 80-K superconductor Bi2Sr2CaCu2O8.21 derived from isostructural commensurate Bi10Sr15Fe10O46, Phys. Rev. B,40 (1989) 6810.
    [16]T. Stoto, D. Pooke, L. Forro, K. Kishio, Oxygen distribution, incommensurate modulation, and structural disorder in Bi2Sr2Cai_yCu208+deita and Bi10Sr15Fe10O46 single crystals, Phys. Rev. B,54(1996)16147-16159.
    [17]O. Perez, H. Leligny, D. Grebille, P. Labbe, D. Groult, B. Raveau, X-ray investigation of the incommensurate modulated structure of Bi2+xSr3-xFe2O9+delta, J.Phys.:Condens. Matter,7 (1995) 10003-10014.
    [18]R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hatt, Q. He, C.H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, R. Ramesh, A Strain-Driven Morphotropic Phase Boundary in BiFeO3, Science,326 (2009) 977-980.
    [19]Z.H. Chen, Z.L. Luo, C.W. Huang, Y.J. Qi, P. Yang, L. You, C.S. Hu, T. Wu, J.L. Wang, C. Gao, T. Sritharan, L. Chen, Low-Symmetry Monoclinic Phases and Polarization Rotation Path Mediated by Epitaxial Strain in Multiferroic BiFeO3 Thin Films, Adv. Funct. Mater.,21 (2011) 133-138.
    [20]R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, beta phase and gamma-beta metal-insulator transition in multiferroic BiFeO3, Phys. Rev. B,77 (2008) 014110.
    [21]R. Seshadri, N.A. Hill, Visualizing the role of Bi 6s "Lone pairs" in the off-center distortion in ferromagnetic BiMnO3, Chem. Mater.,13 (2001) 2892-2899.
    [22]J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science,299 (2003) 1719-1722.
    [23]S.N. Dong, Y.P. Yao, Y. Hou, Y.K. Liu, Y. Tang, X.G. Li, Dynamic properties of spin cluster glass and the exchange bias effect in BiFeO3 nanocrystals, Nanotechnology,22 (2011) 385701.
    [24]X.H. Huang, J.F. Ding, Z.L. Jiang, Y.W. Yin, Q.X. Yu, X.G. Li, Dynamic properties of cluster glass in Lao.25Cao.75Mn03 nanoparticles, J. Appl. Phys.,106 (2009) 083904.
    [25]T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles, Nano Lett.,7 (2007) 766-772.
    [26]X.H. Huang, J.F. Ding, G.Q. Zhang, Y. Hou, Y.P. Yao, X.G. Li, Size-dependent exchange bias in La0.25Ca0.75Mn03 nanoparticles, Phys. Rev. B,78 (2008) 224408.
    [27]J.R.L. de Almeida, D.J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model, Journal of Physics A (Mathematical and General),11 (1978) 983-990.
    [1]T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization, Nature,426 (2003) 55-58.
    [2]M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D:Appl. Phys.,38 (2005) R123-R152.
    [3]Y. Tokura, Multiferroics-toward strong coupling between magnetization and polarization in a solid, J. Magn. Magn. Mater.,310 (2007) 1145-1150.
    [4]T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, Y. Tokura, Magnetocapacitance effect in multiferroic BiMnO3, Phys. Rev. B,67 (2003) 180401.
    [5]T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites, Phys. Rev. Lett.,92 (2004) 257201.
    [6]J. Hemberger, P. Lunkenheimer, R. Fichtl, H.A.K. von Nidda, V. Tsurkan, A. Loidl, Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4, Nature, 434 (2005)364-367.
    [7]G. Catalan, Magnetocapacitance without magnetoelectric coupling, Appl. Phys. Lett.,88 (2006) 102902.
    [8]G. Catalan, J.F. Scott, Magnetoelectrics-Is CdCr2S4 a multiferroic relaxor?, Nature,448 (2007) E4-E5.
    [9]R.P. Rairigh, G. Singh-Bhalla, S. Tongay, T. Dhakal, A. Biswas, A.F. Hebard, Colossal magnetocapacitance and scale-invariant dielectric response in phase-separated manganites, Nat. Phys.,3 (2007) 551-555.
    [10]J.B. Goodenough, Theory of the Role of Covalence in the Perovskite-Type Manganites [La, M(II)]MnO3, Phys. Rev.,100 (1955) 564.
    [11]P. Mondal, D. Bhattacharya, P. Choudhury, P. Mandal, Dielectric anomaly at TN in LaMnO3 as a signature of coupling between spin and orbital degrees of freedom, Phys. Rev. B,76 (2007)172403.
    [12]R. Raffaelle, H.U. Anderson, D.M. Sparlin, P.E. Parris, Evidence for a Crossover from Multiple Trapping to Percolation in the High-Temperature Electrical-Conductivity of Mn-Doped LaCrO3) Phys. Rev. Lett.,65 (1990) 1383-1386.
    [13]J.B. Goodenough, A. Wold, R.J. Arnott, N. Menyuk, Relationship Between Crystal Symmetry and Magnetic Properties of Ionic Compounds Containing Mn3+, Phys. Rev.,124 (1961) 373.
    [14]W. Tong, B. Zhang, S. Tan, Y. Zhang, Probability of double exchange between Mn and Fe in LaMn1-xFexO3, Phys. Rev. B,70 (2004) 014422.
    [15]A. Yamamoto, K. Oda, The electromagnetic effect of the Mn4+content in LaMn1-xNixO3 (0<= x<= 0.1), J. Phys.:Condens. Matter,14 (2002) 1075-1083.
    [16]M. Pissas, G. Kallias, E. Devlin, A. Simopoulos, D. Niarchos, Mossbauer study of La0.75Ca0.25Mn0.98Fe0.02O3 compound, J. Appl. Phys.,81 (1997) 5770-5772.
    [17]W.C. Koehler, E.O. Wollan, M.K. Wilkinson, Neutron Diffraction Study of the Magnetic Properties of Rare-Earth-Iron Perovskites, Phys. Rev.,118 (1960) 58.
    [18]M. Eibschiitz, S. Shtrikman, D. Treves, Mossbauer Studies of Fe57 in Orthoferrites, Phys. Rev.,156(1967)562.
    [19]K. Ueda, H. Tabata, T. Kawai, Atomic arrangement and magnetic properties of LaFeO3-LaMnO3 artificial superlattices, Phys. Rev. B,60 (1999) R12561.
    [20]M. Patra, K. De, S. Majumdar, S. Giri, Exchange bias with Fe substitution in LaMnO3, Eur. Phys. J.B,58(2007)367-371.
    [21]X.J. Liu, Z.Q. Li, A. Yu, M.L. Liu, W.R. Li, B.L. Li, P. Wu, H.L. Bai, E.Y. Jiang, Magnetic, electrical transport and electron spin resonance studies of Fe-doped manganite LaMn0.7Fe0.303+delta, J. Magn. Magn. Mater.,313 (2007) 354-360.
    [22]D.V. Karpinsky, I.O. Troyanchuk, V.V. Sikolenko, Inhomogeneous magnetic states in Fe and Cr substituted LaMnO3, J. Phys.:Condens. Matter,19 (2007) 036220.
    [23]A. Karmakar, S. Majumdar, A.K. Singh, S. Giri, Intragrain electrical inhomogenities and compositional variation of static dielectric constant in LaMn1-xFexO3, J. Phys. D:Appl. Phys,42 (2009)092004.
    [24]S.N. Dong, Y. Hou, Y.P. Yao, Y.W. Yin, D. Ding, Q.X. Yu, X.G. Li, Magnetodielectric Effect and Tunable Dielectric Properties of LaMn1-xFexO3, J. Am. Ceram. Soc,93 (2010) 3814-3818.
    [25]C. Ritter, M.R. Ibarra, J.M. De Teresa, P.A. Algarabel, C. Marquina, J. Blasco, J. Garca, S. Oseroff, S.W. Cheong, Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+delta, Phys. Rev. B,56 (1997) 8902.
    [26]K. De, R. Ray, R.N. Panda, S. Giri, H. Nakamura, T. Kohara, The effect of Fe substitution on magnetic and transport properties of LaMnO3, J. Magn. Magn. Mater,288 (2005) 339-346.
    [27]O.F. de Lima, J.A.H. Coaquira, R.L. de Almeida, L.B. de Carvalho, S.K. Malik, Magnetic phase evolution in the LaMn1-xFexO3+y system, J. Appl. Phys,105 (2009) 013907.
    [28]K. De, M. Patra, S. Majumdar, S. Giri, Exchange bias in La-deficient cluster-glass compound La0.87Mn0.7Fe0.3O3, J. Phys. D:Appl. Phys,41 (2008) 175007.
    [29]V.L.J. Joly, S.D. Bhame, P.A. Joy, S.K. Date, Magnetic properties of La2MnCo1-xFexO6, J. Magn. Magn. Mater,261 (2003) 433-441.
    [30]R.S. Freitas, J.F. Mitchell, P. Schiffer, Magnetodielectric consequences of phase separation in the colossal magnetoresistance manganite Pr0.7Ca0.3MnO3, Phys. Rev. B,72 (2005) 144429.
    [31]N. Biskup, A. de Andres, J.L. Martinez, C. Perca, Origin of the colossal dielectric response of Pr0.6Ca0.4MnO3, Phys. Rev. B,72 (2005) 024115.
    [32]J.L. Cohn, M. Peterca, J.J. Neumeier, Giant dielectric permittivity of electron-doped manganite thin films, Ca1-xLaxMnO3 (0<= x<= 0.03), J. Appl. Phys,97 (2005) 034102.
    [33]Y. Hou, Y.P. Yao, G.Q. Zhang, Q.X. Yu, X.G. Li, Giant Dielectric Response with an Electric Field in Charge-Ordered La1-xCaxMnO3 Compounds, J. Am. Ceram. Soc,92 (2009) 1366-1369.
    [34]P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Origin of apparent colossal dielectric constants, Phys. Rev. B,66 (2002) 052105.
    [35]L. He, J.B. Neaton, M.H. Cohen, D. Vanderbilt, C.C. Homes, First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12, Phys. Rev. B,65 (2002) 214112.
    [36]P. Mandal, V.S. Bhadram, Y. Sundarayya, C. Narayana, A. Sundaresan, C.N.R. Rao, Spin-Reorientation, Ferroelectricity, and Magnetodielectric Effect in YFe1-xMnxO3(0.1≤x ≤0.40), Phys. Rev. Lett.,107 (2011) 137202.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.