PDMS芯片表面修饰及其在生物分子分离分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芯片毛细管电泳是近年来快速发展和具有广泛应用前景的新技术。该技术是在常规毛细管电泳原理的基础上发展起来的,利用微电子机械系统(MicroElectro Mechanical System,MEMS)技术在玻璃、硅、聚合物等基片上制作一系列微管道等结构单元,利用微芯片体积小、热传导效率高等优点实现对生化样本更加快速、高效的分离分析。PDMS由于具有良好的光学透明性、容易封合、无毒、低电导率、价格低廉、多功能性、固化温度低和生物相容性等优点,在制作微芯片装置中得到了广泛的应用与发展。然而,将PDMS用于微芯片电泳仍需克服其不足,如电渗流(EOF)不稳定、表面疏水性较强、易于吸附分析物等。这些缺点大大限制了可在PDMS上分离的分析物种类,并导致低的分离效率。对PDMS微通道表面进行适当的改性和修饰,可以有效控制EOF,减小分析物和管壁之间的作用,解决分析物在PDMS通道上的吸附问题,我们开展了以下几个方面的工作。
     1.绪论部分对芯片毛细管电泳的工作原理、特点、评价标准和研究进展进行了总结。介绍了芯片毛细管电泳中芯片材料种类及制作和各种芯片毛细管联用检测技术。简介了高分子聚合物PDMS芯片毛细管电泳的优缺点,讨论了PDMS表面改性和修饰技术。PDMS表面改性及修饰技术主要有高能氧化、动态修饰、本体修饰和层层组装(LBL)技术等技术。非共价键作用力常被用来构建各种薄膜,最有效的非共价键驱动力是静电相互作用力,被广泛应用于聚离子间的层层组装。本论文中我们采用层层组装技术通过静电作用在通道表面组装了不同物质,并研究了修饰后的芯片的表面性质。
     2.利用LBL技术,将壳聚糖(chitosan)和DNA交替组装于PDMS微芯片通道表面,构建了chitosan-DNA生物分子功能化PDMS微芯片通道。采用衰减全反射傅里叶变换红外吸收光谱(ATR-FT-IR)和接触角实验对chitosan-DNA功能化PDMS芯片进行了表征。结果表明,经chitosan-DNA修饰后的PDMS芯片,EOF得到了稳定控制,而且表面亲水性得到了明显改善。以尿酸和抗坏血酸为分离模型体系,对chitosan-DNA功能化PDMS芯片的性能进行了考察。与未经修饰的PDMS芯片相比,尿酸和抗坏血酸在chitosan-DNA修饰PDMS芯片上的分离分析时间大大缩短了,从未修饰时的200 s减少到修饰后的85 s,并且分离效率和分析灵敏度都得到了有效提高,在分离电压为1300V时,尿酸和抗坏血酸的理论塔板数分别为43450和46790N/m。将chitosan-DNA修饰PDMS芯片应用于尿样中尿酸和抗坏血酸的分离和检测,获得满意效果。
     3.利用LBL技术将TiO_2 NPs组装到预修饰了一层聚阳离子PDDA的PDMS通道表面,实现了PDMS表面纳米功能化。经PDDA-TiO_2 NPs修饰后的芯片改变了EOF和溶质的迁移速度,提高了分离效率。将该修饰芯片用于神经递质多巴胺和肾上腺素的分离。与未修饰芯片相比,多巴胺和肾上腺素在PDDA-TiO_2NPs修饰芯片上不仅达到了良好的基线分离,而且峰电流显著增大,峰宽变窄,在通道表面的吸附作用得到了有效抑制,分离效率和分析灵敏度也明显提高,在pH 7.0的PBS(40 mM)缓冲液中,分离度由空白芯片上的0.61增加到修饰芯片上的1.55。在1000V的分离电压下,修饰芯片上多巴胺和肾上腺素的理论塔板数分别为1.2534×10~5N/m和9.5757×10~4N/m。多巴胺和。肾上腺素的线性范围均为30-600μM,检测限分别为2.1μM和3.2μM。此外,该修饰方法呈现长期的稳定性和很好的重现性,修饰的PDMS芯片可以连续使用两周。
     4.氨基酸是构建许多生物相关分子的基本单元,其在神经信息的传递、维持和调节新陈代谢行为、生物合成蛋白质和多肽、为机体和大脑提供能源等方面起着重要的作用。建立快速、简单的氨基酸分析方法具有十分重要的意义。然而,在电泳分离过程中,氨基酸在PDMS芯片微通道内吸附严重,致使样品峰拖尾,分离效率低下。本文以Cu微盘电极为工作电极,采用柱端安培检测模式,在PDDA-TiO_2 NPs/PDMS修饰芯片上对五种氨基酸进行了分离检测。与未修饰芯片相比,经PDDA-TiO_2 NPs修饰的PDMS芯片在5.0mM硼砂缓冲液中获得了稳定、降低的EOF,这非常有利于在短的分离通道内,分离具有相似迁移时间的氨基酸。实验结果表明,精氨酸、脯氨酸、组氨酸、缬氨酸和苏氨酸在PDDA-TiO_2NPs/PDMS修饰芯片表面的吸附得到了有效抑制,90 s内即得到良好的基线分离,而且分离效率大大提高。
Microchip capillary electrophoresis (MCE) system is a newly rapidly developed research technology which was based on the routine capillary electrophoresis (CE) principle and has extensive application perspective. MicroChannel networks on the microchip are manufactured by the technology of Micro Electro Mechanical System (MEMS) on the substrate of glass, fused silica, and polymers, etc. For its small dimension and high thermal conductivity, MCE system can realize more rapid analysis. PDMS has become a popular material for building microfluidic devices mainly due to its excellent optical transparency, easy sealing with other materials, nontoxicity, low electrical conductivity, low cost, increasing versatility, relatively low curing temperature, and biocompatibility. However, PDMS microfluidic devices employed for electrophoresis show some defects that need to be overcome. These disadvantages include the unstable electroosmotic flow (EOF), extreme hydrophobicity and easy adsorption of samples onto the channel surface, etc. Through modification of appropriate substance on the PDMS surface, the adsorption on the PDMS fabricated microchip can be suppressed. The thesis was composed of four parts:
     1. In chapter 1, the working principles, characteristics, evaluation standards and recent developments of microchip capillary electrophosis were reviewed. We introduced the materials and fabrication techniques of microchip and some detection techniques. The advantages and disadavantages of PDMS microchip were mentioned, and the modification techniques on PDMS surface were discussed, which included modification by exposure to energy, dynamic coating, bulk-modification and layer-by-layer (LBL) technique, and so on. Non-covalent interactions were often used to construct various films, and the most effective non-covalent driving force was electrostatic interaction which was widely used in LBL technique between polyions. In this thesis, we assembled different substances via electrostatic interactions through LBL technique, and studied the surface property of modified microchips.
     2. A new fabrication of hydrophilic and biologically active PDMS microchip channel based on surface modification with chitosan and DNA using the LBL technique was proposed. The properties of the modifiers were investigated by Fourier transformed infrared adsorption by total attenuated reflection (ATR-FT-IR) spectra of the surface and the contact angle measurement. The results showed that after modification, EOF was more stable and the surface hydrophilicity was improved. Uric acid and ascorbic acid as a group of separation models were used to evaluate the effect of the functional PDMS microfluidic devices. On the chitosan-DNA modified PDMS microchip, the separation time was obviously decreased, and the sensitivity and separation efficiency were greatly enhanced. The separation time for uric acid and ascorbic acid was dramatically decreased from 200 to 85 s on native and chitosan-DNA modified microchips, respectively. The theoretical plate numbers were 43450 and 46790 N/m at the separation voltage of 1300 V for UA and AA, respectively. In addition, this method has been successfully applied to real human urine samples with satisfactory results.
     3. TiO_ 2 NPs were employed to construct a nano-structure functional film on the PDMS microchip channel surface through LBL assembly technique on a pre-layer of polycation PDDA. Results showed that on the PDDA-TiO_2 NPs coated microchip, the apparent mobilities of target analytes as well as EOF can be altered, which led to enhanced separation efficiencies. Dopamine and epinephrine served as a model system to evaluate the impact of TiO_2 NPs on EOF and separation. The analytes were well separated on the modified microchip, and it was clearly evident that TiO_2 NPs modification improved the separation efficiencies of dopamine and epinephrine, and the resolution for them was largely enhanced from 0.61 on native PDMS microchip to 1.55 on coated PDMS microchip in 40 mM PBS. The theoretical plate numbers were 1.2534×10~5 N/m and 9.5757×10~4 N/m at the separation voltage of 1300 V for dopamine and epinephrine, respectively. Linear responses of them were obtained both from 25 to 600 uM with detection limits of 2.1μM for dopamine and 3.2μM for epinephrine, respectively. Moreover, the modified PDMS channels have a long-term stability and an excellent reproducibility within two weeks.
     4. Amino acids as the main components in organism play an essential role in physiological procedures such as transfer nerve information, regulation metabolic activity, and biosynthesis protein and peptide. Therefore, to establish a rapid and simple method for the analysis of amino acids is very important. However, the strong interactions between PDMS surface and amino acids resulted in unavoidable adsorption on channel surface and poor separation efficiency. In this paper, five amino acids have been detected with an end-channel amperometric detection mode at a copper microdisk electrode on the PDDA-TiO_2 NPs modified microchip. Here, the copper microdisk electrode was used as a working electrode. Compared with the native PDMS microchip, EOF on the PDDA-TiO_2 NPs modified microchip was decreased and more stable, which was favorable for the separation of amino acids since they had similar migration times in the short channels. As a result, the phenomenon of adsorption was well suppressed, and arginine, proline, histidine, valine and serine were successfully separated within 90 s.
引文
[1] 方肇伦 等 编著.微流控分析芯片[M].北京,科学出版社,2003
    
    [2] Jakeway S C, deMello A J, Russell E L. Miniaturized total analysis systems for biological analysis [J]. Fresenius Jounal of Analytical Chemistry, 2000, 366(6-7):525-539
    [3] Fritz J S, Steiner S A. Effect of a soluble ionic polymer on the separation of anions by capillary electrophoresis [J]. Journal of Chromatography A, 2001, 934(1-2): 87-93
    [4] Kim M S, Cho S I, Lee K N, et al. Fabrication of microchip electrophoresis devices and effects of channel surface properties on separation efficiency [J]. Sensors and Actuators B-Chemical, 2005, 107(2): 818-824
    [5] Huang X H, Gordon M J, Zare R N. Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis [J]. Analytical Chemistry, 1988,60(17): 1837-1838
    [6] Chen R, Guo H Z, Shen Y W, et al. Determination of EOF of PMMA microfluidic chip by indirect laser-induced fluorescence detection [J]. Sensors and Actuators B-Chemical, 2006, 114(2): 1100-1107
    [7] Wang W, Zhao L, Jiang L P, et al. EOF measurement by detection of a sampling zone with end-channel amperometry in microchip CE [J]. Electrophoresis, 2006, 27(24):5132-5137
    [8] Xu J J, Bao N, Xia X H, et al. Electrochemical detection method for nonelectroactive and electroactive analytes in microchip electrophoresis [J]. Analytical Chemistry, 2004, 76(23): 6902-6907
    [9] Walker P A, Morris M D, Burns M A, et al. Isotachophoretic separations on a microchip. Normal Raman spectroscopy detection [J]. Analytical Chemistry, 1998, 70(18):3766-3769
    [10] Rodriguez I, Lee H K, Li S F Y. MicroChannel electrophoretic separation of biogenic amines by micellar electrokinetic chromatography [J]. Electrophoresis, 1999, 20(1):118-126
    [11] Becker H, Gartner C. Polymer microfabrication methods for microfluidic analytical applications [J]. Electrophoresis, 2000, 21(1): 12-26
    [12] Rodriguez I, Zhang Y, Lee H K, et al. Conventional capillary electrophoresis in comparison with short-capillary capillary electrophoresis and microfabricated glass chip capillary electrophoresis for the analysis of fluorescein isothiocyanate anti-human immunoglobulin G [J]. Journal of Chromatography A, 1997, 781(1-2): 287-293
    [13] McDonald J C, Whitesides G M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices [J]. Accounts of Chemical Research, 2002, 35(7): 491-499
    [14] Sung W C, Lee G B, Tzeng C C, et al. Plastic microchip electrophoresis for genetic screening: The analysis of polymerase chain reactions products of fragile X (CGG)_n alleles [J]. Electrophoresis, 2001, 22(6): 1188-1193
    [15] Shadpour H, Musyimi H, Chen J F, et al. Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance [J]. Journal of Chromatography A, 2006, 1111(2): 238-251
    [16] Yang Y N, Kameoka J, Wachs T, et al. Quantitative mass spectrometric determination of methylphenidate concentration in urine using an electrospray ionization source integrated with a polymer microchip [J]. Analytical Chemistry, 2004, 76(9): 2568-2574
    [17] Hong J W, Fujii T, Seki M, et al. Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip [J]. Electrophoresis,2001, 22(2): 328-333
    [18] Ross D, Johnson T J, Locascio L E. Imaging of electroosmotic flow in plastic microchannels [J]. Analytical Chemistry, 2001, 73(11): 2509-2515
    [19] Chabinyc M L, Chiu D T, McDonald J C, et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications [J]. Analytical Chemistry,2001, 73(18): 4491-4498
    [20] Zeng H L, Li H F, Lin J M. Chiral separation of dansyl amino acids by PDMS microchip gel monolithic column electrochromatography with gamma-cyclodextrin bonded in polyacrylamide [J]. Analytica Chimica Acta, 2005, 551(1-2): 1-8
    [21] Dahlin A P, Bergstrom S K, Andren P E, et al. Poly(dimethylsiloxane)-based microchip for two-dimensional solid-phase extraction-capillary electrophoresis with an integrated electrospray emitter tip [J]. Analytical Chemistry, 2005, 77(16): 5356-5363
    [22] Hofmann O, Wang X H, de Mello J C, et al. Towards microalbuminuria determination on a disposable diagnostic microchip with integrated fluorescence detection based on thin-film organic light emitting diodes [J]. Lab on a Chip, 2005, 5(8): 863-868
    [23] Ping G C, Zhu B M, Jabasini M, et al. Analysis of lipoproteins by microchip electrophoresis with high speed and high reproducibility [J]. Analytical Chemistry, 2005,77(22): 7282-7287
    [24] Chen G, Li J H, Qu S, et al. Low temperature bonding of poly(methylmethacrylate) electrophoresis microchips by in situ polymerisation [J]. Journal of Chromatography A,2005, 1094(1-2): 138-147
    [25] Chen Y H, Chen S H. Analysis of DNA fragments by microchip electrophoresis fabricated on poly(methyl methacrylate) substrates using a wire-imprinting method [J]. Electrophoresis, 2000, 21(1): 165-170
    [26] Grass B, Neyer A, Johnck M, et al. A new PMMA-microchip device for isotachophoresis with integrated conductivity detector [J]. Sensors and Actuators B-Chemical, 2001, 72(3):249-258
    [27] Lee G B, Chen S H, Huang G R, et al. Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection [J]. Sensors and Actuators B-Chemical, 2001, 75(1-2): 142-148
    [28] Wang J, Pumera M, Chatrathi M P, et al. Towards disposable lab-on-a-chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection [J]. Electrophoresis, 2002, 23(4): 596-601
    [29] Ye M Y, Yin X F, Fang Z L. DNA separation with low-viscosity sieving matrix on microfabricated polycarbonate microfluidic chips [J]. Analytical and Bioanalytical Chemistry, 2005, 81(4): 820-827
    [30] Wang Y X, Zhou Y, Balgley B M, et al. Electrospray interfacing of polymer microfluidics to MALDI-MS [J]. Electrophoresis, 2005, 26(19): 3631-3640
    [31] Lange D, Storment C W, Conley C A, et al. A microfluidic shadow imaging system for the study of the nematode Caenorhabditis elegans in space [J]. Sensors and Actuators B-Chemical, 2005, 107(2): 904-914
    [32] Liu Y, Lu H J, Zhong W, et al. Multi layer-assembled microchip for enzyme immobilization as reactor toward low-level protein identification [J]. Analytical Chemistry, 2006, 78(3): 801-808
    [33] Lionello A, Josserand J, Jensen H, et al. Protein adsorption in static microsystems: effect of the surface to volume ratio [J]. Lab on a Chip, 2005, 5(3): 254-260
    [34] Malmstadt N, Hoffman A S, Stayton P S. "Smart" mobile affinity matrix for microfluidic immunoassays [J]. Lab on a Chip, 2004, 4(4): 412-415
    [35] Li C, Yang Y N, Craighead H G, et al. Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method [J].Electrophoresis, 2005,26(9): 1800-1806
    [36] Bedair M F, Oleschuk R D. Fabrication of porous polymer monoliths in polymeric microfluidic chips as an electrospray emitter for direct coupling to mass spectrometry [J].Analytical Chemistry, 2006, 78(4): 1130-1138
    [37] Wu Z Y, Xanthopoulos N, Reymond F, et al. Polymer microchips bonded by O_2 plasma activation [J]. Electrophoresis, 2002, 23(5): 782-790
    [38] Sabbert D, Landsiedel J, Bauer H D, et al. ArF-excimer laser ablation experiments on Cycloolefin Copolymer (COC) [J]. Applied Surface Science, 1999, 150(1-4): 185-189
    [39] Duffy D C, Gillis H L, Lin J, et al. Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays [J]. Analytical Chemistry, 1999, 71(20):4669-4678
    [40] McCormick R M, Nelson R J, AlonsoAmigo M G, et al. MicroChannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates [J]. Analytical Chemistry,1997, 69(14): 2626-2630
    
    [41] 吴明华.曝光技术[J].微细加工技术,1994, 1(1): 39-44
    
    [42] Qin D, Xia Y N, Rogers J A, et al. Microsystem Technology in Chemistry and Life Science[M]. Springer Berlin / Heidelberg, 1998
    [43] Dou Y H, Bao N, Xu J J, et al. A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis [J]. Electrophoresis, 2002, 23(20): 3558-3566
    [44] Schwarz M A, Hauser P C. Recent developments in detection methods for microfabricated analytical devices [J]. Lab on a Chip, 2001, 1(1): 1-6
    [45] Xiao Y, Yu X D, Wang K, et al. Study on the separation of amino acids in modified poly(dimethylsiloxane) microchips [J]. Talanta, 2007, 71(5): 2048-2055
    [46] Liu B F, Sera Y, Matsubara N, et al. Signal denoising and baseline correction by discrete wavelet transform for microchip capillary electrophoresis [J]. Electrophoresis, 2003,24(18): 3260-3265
    [47] Throckmorton D J, Shepodd T J, Singh A K. Electrochromatography in microchips: Reversed-phase separation of peptides and amino acids using photopatterned rigid polymer monoliths [J]. Analytical Chemistry, 2002, 74(4): 784-789
    [48] Dang F Q, Tabata O, Kurokawa M, et al. High-Performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding [J]. Analytical Chemistry, 2005, 77(7): 2140-2146
    [49] Nakanishi H, Nishimoto T, Arai A, et al. Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems [J]. Electrophoresis, 2001, 22(2): 230-234
    [50] Verpoorte E, Manz A, Ludi H, et al. A silicon flow cell for optical detection in miniaturized total chemical analysis systems [J]. Sensors and Actuators B-Chemical,1992, 6(1-3): 66-70
    [51] Moosavi H S, Jiang Y T, Lester I, et al. A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices [J]. Electrophoresis, 2000, 21(7): 1291-1299
    [52] Greenway G M, Nelstrop L J, Port S N. Tris(2,2-bipyridyl)ruthenium (II) chemiluminescence in a microflow injection system for codeine determination [J]. Analytica Chimica Acta, 2000, 405(1-2): 43-50
    [53] Xu Y, Bessoth F G, Eijkel J C T, et al. On-line monitoring of chromium(III) using a fast micromachined mixer/reactor and chemiluminescence detection [J]. Analyst, 2000,125(4): 677-683
    [54] Nakamura H, Murakami Y, Yokoyama K, et al. A compactly integrated flow cell with a chemiluminescent FIA system for determining lactate concentration in serum [J].Analytical Chemistry, 2001, 73(2): 373-378
    [55] Arora A, deMello A J, Manz A. Sub-microliter electrochemiluminescence detector - A model for small volume analysis systems [J]. Analytical Communications, 1997, 34(12):393-395
    [56] Qiu H B, Yin X B, Yan J L, et al. Simultaneous electrochemical and electrochemilumine -scence detection for microchip and conventional capillary electrophoresis [J]. Electrophoresis, 2005, 26(3): 687-693
    [57] Huang X Y, Ren J C. Chemiluminescence detection for capillary electrophoresis and microchip capillary electrophoresis [J]. Trac-Trends in Analytic Chemistry, 2006, 25(2):155-166
    [58] Xu N X, Lin Y H, Hofstadler S A, et al. A microfabricated dialysis device for sample cleanup in electrospray ionization mass spectrometry [J]. Analytical Chemistry, 1998,70(17): 3553-3556
    [59] Wen J, Lin Y H, Xiang F, et al. Microfabricated isoelectric focusing device for direct electrospray ionization-mass spectrometry [J]. Electrophoresis, 2000, 21(1): 191-197
    [60] Licklider L, Wang X Q, Desai A, et al. A micromachined chip-based electrospray source for mass spectrometry [J]. Analytical Chemistry, 2000, 72(2): 367-375
    [61] Kim J S, Knapp D R. Miniaturized multichannel electrospray ionization emitters on poly(dimethylsiloxane) microfluidic devices [J]. Electrophoresis, 2001, 22(18):3993-3999
    [62] Schultz G A, Corso T N, Prosser S J, et al. A fully integrated monolithic microchip electrospray device for mass spectrometry [J]. Analytical Chemistry, 2000, 72(17): 4058-4063
    [63] Rossier J S, Ferrigno R, Girault H H. Electrophoresis with electrochemical detection in a polymer microdevice [J]. Journal of Electroanalytical Chemistry, 2000, 492(1): 15-22
    [64] Chen D C, Hsu F L, Zhan D Z, et al. Palladium film decoupler for amperometric detection in electrophoresis chips [J]. Analytical Chemistry, 2001, 73(4): 758-762
    [65] Wu C C, Wu R G, Huang J G, et al. Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection [J]. Analytical Chemistry, 2003, 75(4): 947-952
    [66] Wang J, Tian B M, Sahlin E. Micromachined electrophoresis chips with thick-film electrochemical detectors [J]. Analytical Chemistry, 1999, 71(23): 5436-5440
    [67] Wang Y R, Chen H W. Integrated capillar electrophoresis amperometric detection microchip with replaceable microdisk working electrode - II. Influence of channel cross-sectional area on the separation and detection of dopamine and catechol [J]. Journal of Chromatography A, 2005, 1080(2): 192-198
    [68] Ertl P, Emrich C A, Singhal P, et al. Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system [J]. Analytical Chemistry, 2004, 76(13):3749-3755
    [69] Gawron A J, Martin R S, Lunte S M. Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips [J]. Electrophoresis, 2001, 22(2): 242-248
    [70] Martin R S, Gawron A J, Fogarty B A, et al. Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry [J]. Analyst, 2001,126(3), 277-280
    [71] Martin R S, Ratzlaff K L, Huynh B H, et al. In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat [J]. Analytical Chemistry, 2002, 74(5): 1136-1143
    [72] Baldock S J, Fielden P R, Goddard N J, et al. Integrated moulded polymer electrodes for performing conductivity detection on isotachophoresis microdevices [J]. Journal of Chromatography A, 2003,990(1-2): 11-22
    [73] Pumera M, Wang J, Opekar F, et al. Contactless conductivity detector for microchip capillary electrophoresis [J]. Analytical Chemistry, 2002, 74(9): 1968-1971
    [74] Tantra R, Manz A. Integrated potentiometric detector for use in chip-based flow cells [J]. Analytical Chemistry, 2000, 72(13): 2875-2878
    [75] Effenhauser C S, Bruin G J M, Paulus A, et al. Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips [J]. Analytical Chemistry, 1997, 69(17): 3451-3457
    [76] Makamba H, Kim J H, Lim K, et al. Surface modification of poly(dimethylsiloxane) microchannels [J]. Electrophoresis, 2003, 24(21): 3607-3619
    [77] Liu J K, Lee M L. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis [J]. Electrophoresis, 2006, 27(18): 3533-3546
    [78] Fritz J L, Owen M J. Hydrophobic recovery of plasma-treated polydimethylsiloxane [J]. Journal of Adhesion, 1995, 54(1-2): 33-45
    [79] Lai J Y, Lin Y Y, Denq Y L, et al. Surface modification of silicone rubber by gas plasma treatment [J]. Journal of Adhesion Science and Technology, 1996, 10(3): 231-242
    [80] Efimenko K, Wallace W E, Genzer J. Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment [J]. Journal of Colloid and Interface Science, 2002, 254(2): 306-315
    [81] Ye H K, Gu Z Y, Gracias D H. Kinetics of ultraviolet and plasma surface modification of poly(dimethylsiloxane) probed by sum frequency vibrational spectroscopy [J]. Langmuir, 2006, 22(4): 1863-1868
    [82] Toth A, Bertoti I, Blazso M, et al. Oxidative damage and recovery of silicone-rubber surfaces. 1. X-ray photoelectron spectroscopic study [J]. Journal of applied polymer science, 1994,52(9): 1293-1307
    [83] Owen M J, Smith P J. Plasma treatment of polydimethylsiloxane [J]. Journal of adhesion science and technology, 1994, 8(10): 1063-1075
    [84] Hettlich H J, Otterbach F, Mittermayer C, et al. Plasma-induced surface modifications on silicone intraocular lenses - chemical-analysis and invitro characterization [J]. Biomaterials, 1991, 12(5): 521-524
    [85] Lee S, Voros J. An aqueous-based surface modification of poly(dimethylsiloxane) with polyethylene glycol) to prevent biofouling [J]. Langmuir, 2005,21(25): 11957-11962
    [86] Ocvirk G, Munroe M, Tang T, et al. Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices [J]. Electrophoresis, 2000,21(1): 107-115
    [87] Kang J Z, Yan J L, Liu J F, et al. Dynamic coating for resolving rhodamine B adsorption to poly (dimethylsiloxane)/glass hybrid chip with laser-induced fluorescence detection [J]. Talanta, 2005, 66(4): 1018-1024
    [88] Wang A J, Xu J J, Chen H Y. Nonionic surfactant dynamic coating of poly(dimethylsiloxane) channel surface for microchip electrophoresis of amino acids [J]. Analytica Chimica Acta, 2006, 569(1-2): 188-194
    [89] Luo Y Q, Huang B, Wu H, et al. Controlling electroosmotic flow in poly(dimethylsiloxane) separation channels by means of prepolymer additives [J]. Analytical Chemistry, 2006, 78 (13): 4588-4592
    [90]Xiao Y,Yu X D,Xu J J,et al.Bulk modification of PDMS microchips by an amphiphilic copolymer[J].Electrophoresis,2007,28(18):3302-3307
    [91]Xiao Y,Wang K,Yu X D,et al.Separation of aminophenol isomers in polyelectrolyte multilayers modified PDMS microchip[J].Talanta,2007,72(4):1316-1321
    [92]Wang A J,Xu J J,Chen H Y.Proteins modification of poly(dimethylsiloxane)microfluidic channels for the enhanced microchip electrophoresis[J].Journal of Chromatography A,2006,1107(1-2):257-264
    [93]Wang W,Zhao L,Zhang J R,et al.Modification of poly(dimethylsiloxane) microfluidic channels with silica nanoparticles based on layer-by-layer assembly technique.Journal of Chromatography A[J],2006,1136(1):111-117
    [94]Hu S W,Ren X Q,Bachman M,et al.Surface modification of poly(dimethylsiloxane)microfluidic devices by ultraviolet polymer grafting[J].Analytical Chemistry,2002,74(16):4117-4123
    [95]田玉平,吴会灵,陈淑桂,等.一体化微流控芯片的酶固定化技术[J].高等学校化学报,2004,25(5):847-849
    [96]Wang A J,Xu J J,Chen H Y.In-situ grafting hydrophilic polymer on chitosan modified poly(dimethylsiloxane) microchip for separation of biomolecules[J],Journal of Chromatography A,2007,1147(1):120-126
    [97]Micr total Analysis 2006 "Tenth International Conference on Miniaturized system for Chemistry and life sciences"[C].Tokyo,Japan,2006
    [98]第四届全国微全分析系统学术会议论文集[C].大连,2007
    [99]Kopp M U,de Mello A J,Manz A.Chemical amplification:Continuous-flow PCR on a chip[J].Science,1998,280(5366):1046-1048
    [100]Schilling E A,Kamholz A E,Yager P.Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay[J].Analytical Chemistry,2002,74(8):1798-1804
    [101]Olsen K G,Ross D J,Tarlov M J.Immobilization of DNA hydrogel plugs in microfluidic channels[J].Analytical Chemistry,2002,74(6):1436-1441
    [102]Soper S A,Ford S M,Qi S,et al.Polymeric microelectromechanical systems[J].Analytical Chemistry,2000,72(19):642-651
    [103]Peterson D S,Rohr T,Svec F,et al.Enzymatic microreactor-on-a-chip:Protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices[J].Analytical Chemistry,2002,74(16):4081-4088
    [104]Ren X Q,Bachman M,Sims C,et al.Electroosmotic properties of microfluidic channels composed of poly(dimethylsiioxane)[J].Journal of Chromatography B,2001,762(2):117-125
    [105]Martin R S,Gawron A J,Lunte S M,et al.Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips[J].Analytical Chemistry,2000,72(14):3196-3202
    [106]Duffy D C,McDonald J C,Schueller O J A,et al.Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)[J].Analytical Chemistry,1998,70(23):4974-4984
    [107] Spehar A M, Koster S, Linder V, et al. Electrokinetic characterization of poly(dimethylsiloxane) microchannels [J]. Electrophoresis, 2003, 24(21): 3674-3678
    [108] Lacher N A, de Rooij N F, Verpoorte E, et al. Comparison of the performance characteristics of poly(dimethyl siloxane) and Pyrex microchip electrophoresis devices for peptide separations [J]. Journal of Chromatography A, 2003, 1004(1-2): 225-235
    [109] Belder D, Ludwig M. Surface modification in microchip electrophoresis [J]. Electrophoresis, 2003, 24(21): 3595-3606
    [110] Katayama H, Ishihama Y, Asakawa N. Stable capillary coating with successive multiple ionic polymer layers [J]. Analytical Chemistry, 1998, 70(11): 2254-2260
    [111] Roman G T, Hlaus T, Bass K J, et al. Sol-Gel Modified Poly(dimethylsiloxane) Microfluidic Devices with High Electroosmotic Mobilities and Hydrophilic Channel Wall Characteristics [J]. Analytical Chemistry, 2005, 77(5): 1414-1422
    [112] Wang A J, Xu J J, Zhang Q, et al. The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis [J]. Talanta, 2006,69(1): 210-215
    [113] Phillips K S, Cheng Q. Microfluidic immunoassay for bacterial toxins with supported phospholipid bilayer membranes on poly(dimethylsiloxane) [J]. Analytical Chemistry, 2005, 77(1): 327-334
    [114] Linder V, Verpoorte E, Thormann W, et al. Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection [J]. Analytical Chemistry, 2001, 73(17): 4181-4189
    [115] Eteshola E, Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels [J]. Sensors and Actuators B-Chemical, 2001, 72(2): 129-133
    [116] Siontorou C G, Nikolelis D P, Krull U J. Flow injection monitoring and analysis of mixtures of hydrazine compounds using filter-supported bilayer lipid membranes with incorporated DNA [J]. Analytical Chemistry, 2000, 72(1): 180-186
    [117] Steel A B, Herne T M, Tarlov M J. Electrochemical quantitation of DNA immobilized on gold [J]. Analytical Chemistry, 1998, 70(22): 4670-4677
    [118] Jin Y D, Shao Y, Dong S J. Direct electrochemistry and surface plasmon resonance characterization of alternate layer-by-layer self-assembled DNA-myoglobin thin films on chemically modified gold surfaces [J]. Langmuir, 2003, 19(11): 4771-4777
    [119] Mao H Q, Roy K, Troung-Le V L, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency [J]. Journal of Controlled Release, 2001, 70(3): 399-421
    [120] Bozkir A, Saka O M. Chitosan nanoparticles for plasmid DNA delivery: Effect of chitosan molecular structure on formulation and release characteristics [J]. Drug Delivery, 2004, 11(2): 107-112
    [121] Kim J K, Shin D S, Chung W J, et al. Effects of polymer grafting on a glass surface for protein chip applications [J]. Colloids and Surfaces B-Biointerfaces, 2004, 33(2): 67-75
    [122] Jorgenson J W, Lukacs K D. Zone electrophoresis in open-tubular glass-capillaries [J]. Analytical Chemistry, 1981,53(8): 1298-1302
    [123] Liu Y, Fanguy J C, Bledsoe J M, et al. Dynamic coating using polyelectrolyte multilayers for chemical control of electroosmotic flow in capillary electrophoresis microchips [J]. Analytical Chemistry, 2000, 72(24): 5939-5944
    [124] Erim F B, Cifuentes A, Poppe H, et al. Performance of a physically adsorbed high-molecular-mass polyethyleneimine layer as coating for the separation of basic-proteins and peptides by capillary electrophoresis [J]. Journal of Chromatography A, 1995, 708(2): 356-361
    [125] Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles [J]. Electroanalysis, 2004, 16(1-2): 19-44
    [126] Jing A H, Dong J, Ma X Y, et al. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on coralloid gold nanostructures [J]. Journal of Nanoscience and Nanotechnology, 2008, 8(7): 3439-3446
    [127] Liu S Q, Dai Z H, Chen H Y, et al. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor [J]. Biosensors & Bioelectronics, 2004, 19(9): 963-969
    [128] Lei J, Fan J, Yu C Z, et al. Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace [J]. Microporous and Mesoporous Materials, 2004, 73(3): 121-128
    [129] Feng J J, Xu J J, Chen H Y. Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode [J]. Journal of Electroanalytical Chemistry, 2005, 585(1): 44-50
    [130] Xiao X L, Lu W, Yao X. Direct electron transfer and electrocatalysis of hemoglobin on chitosan-TiO2 nanorods-glass carbon electrode [J]. Electroanalysis, 2008, 20(20): 2247-2252
    [131] Jia J B. Hydrogen peroxide biosensor based on horseradish peroxidase-Au nanoparticles at a viologen grafted glassy carbon electrode [J]. Microchimica Acta, 2008, 163(3-4):237-241
    [132] Zhao G, Feng J J, Xu J J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO_2 film [J]. Electrochemistry Communications, 2005, 7(7): 724-729
    [133] Liu M C, Shi G Y, Zhang L, et al. Quantum dots modified electrode and its application in electroanalysis of hemoglobin [J]. Electrochemistry Communications, 2006, 8(2):305-310
    [134] Huang X, Li Y X, Chen Y L, et al. Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode [J]. Sensors and Actuators B-Chemical, 2008, 134(2): 780-786
    [135] O'Mahony T, Owens V P, Murrihy J P, et al. Alkylthiol gold nanoparticles in open-tubular capillary electrochromatography [J]. Journal of Chromatography A, 2003, 1004(1-2): 181-193
    [136] Guihen E, Glennon J D. Nanoparticles in separation science - Recent developments [J]. Analytical Letters, 2003, 36(15): 3309-3336
    [137] Silva C R, Airoldi C, Collins K E, et al. Influence of the TiO_2 content on the chromatographic performance and high pH stability of C-18 titanized phases [J]. Journal of Chromatography A, 2006, 1114(1): 45-52
    [138] Liang S S, Makamba H, Huang S Y, et al. Nano-titanium dioxide composites for the enrichment of phosphopeptides [J]. Journal of Chromatography A, 2006, 1116(1-2): 38-45
    [139] Xi F, Wu J. Macroporous chitosan layer coated on non-porous silica gel as a support for metal chelate affinity chromatographic adsorbent [J]. Journal of Chromatography A,2004, 1057(1-2): 41-47
    [140] Zhang A, Kuraoka E, Hoshi H, et al. Synthesis of two novel macroporous silica-based impregnated polymeric composites and their application in highly active liquid waste partitioning by extraction chromatography [J]. Journal of Chromatography A, 2004, 1061(2): 175-182
    [141] Luong J H T, Bouvrette P, Liu Y L, et al. Electrophoretic separation of aniline derivatives using fused silica capillaries coated with acid treated single-walled carbon nanotubes [J]. Journal of Chromatography A, 2005, 1074(1-2): 187-194
    [142] Wang Z H, Luo G A, Chen J F, et al. Carbon nanotubes as separation carrier in capillary electrophoresis [J]. Electrophoresis, 2003,24(24): 4181-4188
    [143] Lin Y W, Huang M J, Chang H T. Analysis of double-stranded DNA by microchip capillary electrophoresis using polymer solutions containing gold nanoparticles [J]. Journal of Chromatography A, 2003, 1014(1-2): 47-55
    [144] Lin Y W, Chang H T. Modification of poly(methyl methacrylate) microchannels for highly efficient and reproducible electrophoretic separations of double-stranded DNA [J]. Journal of Chromatography A, 2005, 1073(1-2): 191-199
    [145] Pumera M, Wang J, Grushka E, et al. Gold nanoparticle-enhanced microchip capillary electrophoresis [J]. Analytical Chemistry, 2001, 73(22): 5625-5628
    [146] Tsai P, Wu C T, Lee C S. Electrokinetic studies of inorganic coated capillaries [J]. Journal of Chromatography B, 1994, 657(2): 285-290
    [147] Fujimoto C. Titanium dioxide coated surfaces for capillary electrophoresis and capillary electrochromatography [J]. Electrophoresis, 2002,23(17): 2929-2937
    [148] Hsieh Y L, Chen T H, Liu C P, et al. Titanium dioxide nanoparticles-coated column for capillary electrochromatographic separation of oligopeptides [J]. Electrophoresis, 2005, 26(21): 4089-4097
    [149] Hsieh Y L, Chen T H, Liu C Y. Capillary electrochromatographic separation of proteins on a column coated with titanium dioxide nanoparticles [J]. Electrophoresis, 2006, 27(21): 4288-4294
    [ 150] Zhou S S, Wang Y Q, De Beer T, et al. Simultaneous separation of eight p-adrenergic drugs using titanium dioxide nanoparticles as additive in capillary electrophoresis [J]. Electrophoresis, 2008, 29(11): 2321-2329
    [151] Neiman B, Grushka E, Lev O. Use of gold nanoparticles to enhance capillary electrophoresis [J]. Analytical Chemistry, 2001, 73(21): 5220-5227
    [152] Lacher N A, Lunte S M, Martin R S. Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device [J]. Analytical Chemistry, 2004, 76(9): 2482-2491
    [153] Hebert N E, Snyder B, McCreery R L, et al. Performance of pyrolyzed photoresist carbon films in a microchip capillary electrophoresis device with sinusoidal voltammetric detection [J]. Analytical Chemistry, 2003, 75(16): 4265-4271
    [154] Wang A J, Xu J J, Chen H Y. Enhanced microchip electrophoresis of neurotransmitters on glucose oxidase modified poly(dimethylsiloxane) microfluidic devices [J]. Electroanalysis, 2007, 19(6): 674-680
    [155] Oliva F Y, Avalle L B, Cámara O R, et al. Adsorption of human serum albumin (HSA) onto colloidal TiO_2 particles, Part I [J]. Journal of Colloid and Interface Science, 2003,261(2): 299-311
    [156] Connor P A, McQuillan A J. Phosphate adsorption onto TiO2 from aqueous solutions: An in situ internal reflection infrared spectroscopic study [J]. Langmuir, 1999, 15(8):2916-2921
    [157] Michaud M, Jourdan E, Ravelet C, et al. Immobilized DNA aptamers as target-specific chiral stationary phases for resolution of nucleoside and amino acid derivative enantiomers [J]. Analytical Chemistry, 2004, 76(4): 1015-1020
    [158] Yang C L, Jiang X M, Guo L Y, et al. Analysis of free amino acids in islets of Langerhans by high-performance liquid chromatography using pre-column derivatization with 4-chloro-7-nitrobenzo-2-oxa-l,3-diazole [J]. Journal of Separation Science, 2007, 30(18): 3154-3163
    [159] Prata C, Bonnafous P, Fraysse N, et al. Recent advances in amino acid analysis by capillary electrophoresis [J]. Electrophoresis, 2001, 22(19): 4129-4138
    [160] Poinsot V, Bayle C, Couderc F. Recent advances in amino acid analysis by capillary electrophoresis [J]. Electrophoresis, 2003,24(22-23): 4047-4062
    [161] Ueno H, Wang J, Kaji N, et al. Quantitative determination of amino acids in functional foods by microchip electrophoresis [J]. Journal of Separation Science, 2008, 31(5):898-903
    [162] Wang H X, Meng S, Guo K, et al. Microfluidic immunosensor based on stable antibody-patterned surface in PMMA microchip [J]. Electrochemistry Communications, 2008, 10(3): 447-450
    [163] Tokuyama T, Fujii S I, Sato K, et al. Microbioassay system for antiallergic drug screening using suspension cells retaining in a poly(dimethylsiloxane) microfluidic device [J]. Analytical Chemistry, 2005, 77(10): 3309-3314
    [164] Schwarz M A, Galliker B, Fluri K, et al. A two-electrode configuration for simplified amperometric detection in a microfabricated electrophoretic separation device [J]. Analyst, 2001,126(2): 147-151
    [165] Wang J, Chatrathi M P, Tian B M. Micromachined separation chips with a precolumn reactor and end-column electrochemical detector [J]. Analytical Chemistry, 2000, 72(23): 5774-5778
    [166] Wang J, Chen G, Pumera M. Microchip separation and electrochemical detection of amino acids and peptides following precolumn derivatization with naphthalene-2,3-dicarboxyaldehyde [J]. Electroanalysis, 2003, 15(10): 862-865
    [167] Xu H W, Roddy T P, J.A. Lapos J, et al. Parallel analysis with optically gated sample introduction on a multichannel microchip [J]. Analytical Chemistry, 2002, 74(21): 5517-5522
    [168] Harrison D J, Fluri K, Seiler K, et al. Micromachining a miniaturized capillary electrophoresis-based chemical-analysis system on a chip [J]. Science, 1993, 261(5123):895-897
    [169] Liang R P, Gan G H, Qiu J D, Surface modification of poly(dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine [J]. Journal of Separation Science, 2008, 31(15):2860-2867
    [170] Herrmann M, Roy E, Veres T, et al. Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels [J]. Lab on a Chip, 2007,7(11): 1546-1552
    [171] Kang C, Back SK, Song I, et al. DNA separation using cellulose derivatives and PEO by PDMS microchip [J]. Bulletin of the Korean Chemical Society, 2006, 27(4): 519-523
    [172] Prakash A R, Adamia S, Sieben V, et al. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier [J]. Sensors and Actuators B-Chemical, 2006,113(1): 398-409
    [173] Mourzina Y L, Steffen A, Kalyagin D, et al. Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip [J]. Electrophoresis, 2005, 26(9): 1849-1860
    [174] Xu J J, Peng Y, Bao N, et al. Simple method for the separation and detection of native amino acids and the identification of electroactive and non-electroactive analytes [J]. Journal of Chromatography A, 2005, 1095(1-2): 193-196
    [175] Ye J N, Baldwin R P. Determination of amino acids and peptides by capillary electrophoresis and electrochemical detection at a copper electrode [J]. Analytical Chemistry, 1994, 66(17): 2669-2674
    [176] 王爱军. PDMS微电泳芯片表面修饰及其应用研究[D]. 南京大学,2007
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.