ZnO和SnO_2纳米结构的制备表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料因其具有体相材料所不具备的新奇的物理与化学性质引起了人们广泛的关注和研究。而其中纳米金属氧化物材料更是因其特殊的理化性能成为了广泛使用的功能材料,如在微电子器件、催化剂、能量储存与转化等众多领域有着非常广泛的应用。氧化锌(ZnO)和氧化锡(SnO2)都是典型的n型宽禁带半导体氧化物,其室温禁带宽度分别为3.37 eV和3.65 eV。纳米氧化锌和氧化锡具有优异的光电性能以及高灵敏的气敏特性,一直被认为是金属氧化物中最有应用前景的两种功能材料,近年来,科研人员对各种形貌与结构的ZnO和SnO2纳米材料的合成、表征以及它们在纳米器件领域中的应用进行了深入研究。鉴于它们在未来功能器件中的重要性,本人在硕士期间也对ZnO和SnO2这两种金属氧化物的各种结构及性能进行了研究。
     本论文利用水热法成功合成了ZnO纳米棒、ZnO纳米花及SnO2纳米空心球。并且利用扫描电镜(SEM)、X射线衍射仪(XRD)分析了ZnO纳米棒、ZnO纳米花的结构形貌,分析了ZnO纳米棒阵列的生长机理,利用扫描近场光学显微镜采用波长为448nm的氩离子激光器为激发源在室温下对ZnO纳米棒阵列进行了Raman光谱测试,纳米棒阵列室温下的拉曼光谱表现出纯的ZnO的拉曼特征峰,对牡丹花状ZnO纳米花和莲花状ZnO纳米花进行了光致发光(PL)测试,比较发光谱得知牡丹花状ZnO纳米花中的缺陷密度低于莲花状ZnO纳米花。重点对SnO2空心纳米球进行EDS、XRD、SEM、TEM等表征,并且将已制备好的SnO2空心球均匀分散到酒精中,然后涂在陶瓷管上的两个金电极之间做成一个简单的气敏元件,将其接入工作回路进行了气敏性研究,研究结果发现用这种SnO2纳米空心球制成的传感器具有更高的灵敏度和更快的响应和恢复时间。
Nano-materials have attracted much attention due to their novel physical and chemical properties which are different from their corresponding bulk materials and have potential technology applications in the fields of microelectronic devices, chemical and biological sensors, light-emitting, displays, catalysis, and energy conversion and storage devices as reported in literatures. ZnO and SnO2 with the large band gap of 3.37 eV and 3.65 eV, respectively, and highly achievable carrier concentration are suitable for application as the gas sensors, transparent electrodes, and other optoelectronic devices. Recently, much effort has been dedicated to the morphology-controllable synthesis of ZnO, SnO2 nanostructures and prototype nanodevices design and demonstration in some areas.
     In this work, the study is mainly focused on the synthesis and characterization of ZnO and SnO2 nanostructures and gas sensing applications. A hydrothermal method has been developed for the preparation of the ZnO nanorods nanoarrays, nanoflowes and nanosheets, SnO2 hollow spheres. The morphologies, structure and compositions of the nanostructures have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence (PL) and transmission electron microscopy (TEM) techniques. Based on the measured PL spectra of the ZnO nanostructures with the peony-like and lotus flower-like morphologies the density of defects in these nanostructures has been studied. A simple gas sensor was fabricated by dispersing the as-prepared SnO2 hollow spheres between two gold electrodes on a ceramic tube in order to investigate the gas sensors properties of the SnO2 nanostructures in detail. The results showed that the gas sensor of the SnO2 hollow spheres exhibited good sensitivity to ethanol, as well as good responsibility, low detection limit and short response/recovery times.
引文
[1]张立德.全国第二届纳米材料和技术应用会议论文集.北京:中科院电子期刊出版社,2001,14-23
    [2]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001,3-9
    [3]薛增泉,刘惟敏.纳米电子学.北京:电子工业出版,2003,9-27
    [4]赵于文.低温等离子体在化学合成中的应用.现代化工,1991,1:48-52
    [5]Berkowitz A E, Mitekell J R, Corey M J, et al. Giant magnetoresi-stance in heterogeneous Cu-Co alloys. Phys. Rev. Lett.,1992,68:3745-3748
    [6]Cozzoli P D, Curri M L, Agostiano A.Efficient charge storage in photoexcited 100 TiO2 nanorod-noble metal nanoparticle composite systems. Chem. Comm.,2005, 25:3186-3188
    [7]Bavykin D V, Friedrich J M, Walsh F C. Protonated titanates and TiO2 nanostructured materials:synthesis properties and applications. Adv. Mater., 2006,18(114):2807-2824
    [8]Grimes C A. Synthesis Application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem.,2007,17:1451-1457
    [9]Yeredla R R, Xu H F. An investigation of nano structured rutile and anatase platesfor improving the photosplitting of water. Nanotechnology,2008,19(5): 055706-055709
    [10]Ohtomo A, Kawasaki M, Sakurai Y, et al. Room temperature ultraviolet laser emission fromZnO nanocrystal thin films grown by laser MBE. Mat. Sci. & Eng., 1998, B54:24-28
    [11]Tang Z K, Wong G K L, Yu P, et al. Room temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett.,1998, 72(27):3270-3272
    [12]Bagnall D M, Chen Y F, Zhu Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett.,1998,73(8):1038-1040
    [13]Cao H, Ling Y, Xu J Yet al. Photon statistics of random lasers with resonant feedback. Phys. Rev. Lett.,2001,86:4524-4527
    [14]Yu P, Tang Z, Wong G K L, et al. Ultraviolet spontaneous and stimulated emission from ZnO microcrystallite thin films at room temperature. Sol. Sta. Comm.,1997,103(8):459-463
    [15]Kawasaki M, Ohtomo A, Koinuma H, et aL. Ultraviolet excitonic laser action at room temperature in ZnO nanocrystalline epitaxial films. Mater. Sci. Forum., 1998,264-268:1459-1462
    [16]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science,2001,292(5523):1897-1899
    [17]Pan Z W, Dai Z, Wang Z L. Nanobelts of semiconducting oxides. Science,2001, 291(5510):1947-1949
    [18]Wu J J, Liu S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Advanced Materials,2002,14(3):215-218
    [19]Yan H, He R, Pham J, et al. Morphogenesis of one-dimensional ZnO nano-and microcrystals. Advanced Materials,2003,15(5):402-405
    [20]Liu B, Yu S H, Zhang F, et al. Ring-like nanosheets standing on spindle-like rods:unusual ZnO superstructures synthesized from a flakelike precursor Zn5(OH)8C12·H2O. Journal of Physical Chemistry B,2004,108(14):4338-4341
    [21]Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters,2003,3(12): 1625-1631
    [22]Gao P X, Ding Y, Mai W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science,2005,309(5741):1700-1704
    [23]Wang Z L, Kong X Y, Zuo J M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Physical Review Letters,2003,91(18):185502
    [24]Shen G Z, Bando Y S, Lee C J. Growth of self-organized hierarchical ZnO nanoarchitectures by a simple In/In2S3 controlled thermal evaporation process. Journal of Physical Chemistry B,2005,109(21):10779-10785
    [25]Park W I, Yi G C, Kim M, et al. ZnO nanoneedles grown vertically on si substrates by non-catalytic vapor-phase epitaxy. Advanced Materials,2002, 14(24):1841-1843
    [26]Wang J X, Sun X W, Wei A, et al. Zinc oxide nanocomb biosensor for glucose detection. Applied Physics Letters,2006,88(23):233106-233108
    [27]Wang F F, Cao L, Pan A L, et al. Synthesis of tower-like ZnO structures and visible photoluminescence origins of varied-shaped ZnO nano structures. Journal of Physical Chemistry C,2007,111(21):7655-7660
    [28]Pan A L, Yu R C, Xie S S, et al. ZnO flowers made up of thin nanosheets and their optical properties. Journal of Crystal Growth,2005,282(1-2):165-172
    [29]Wang Z L, Kong X Y, Ding Y, et al. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Advanced Functional Materials,2004, 14(10):943-956
    [30]Gao P X, Wang Z L. Nanopropeller arrays of zinc oxide. Applied Physics Letters, 2004,84(15):2883-2885
    [31]Lao J Y, Huang J Y, Wang D Z, et al. ZnO nanobridges and nanonails. Nano Letters,2003,3(2):235-238
    [32]Lao J Y, Wen J G, Ren Z F. Hierarchical ZnO nanostructures. Nano Letters,2002, 2(11):1287-1291
    [33]Eiden-Assmann S, Widoniak J, Maret G. Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles. Chem. Mater.,2004,16: 6-11
    [34]Chemseddine A, Morotz T. Nanostructuring titania:Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem.,1999,2:235-245.
    [35]Liu S M, Gan L M, Liu L H. Synthesis of Single-Crystalline TiO2 Nanotubes. Chem. Mater.,2002,14(3):1391-1397
    [36]Vayssieres L. Growth of arrayed nanorods and nano wires of ZnO from aqueous solusions. Advanced Materials,2003,15(5):464-466
    [37]Vayssieres L, Keis K, Lindquist S E, Hagfeldt A. Purpose-built anisotropic metal oxide material:3D highly oriented microrod array of ZnO. Journal of Physical Chemistry B,2001,105(17):3350-3352
    [38]Greene L E, Law M, Goldberger J, et al. Low-temperature wafer-scale production of ZnO nanowire arrays. Angewandte Chemine International Edition, 2003,42(26):3031-3034
    [39]Banerjee D, Lao J Y, Wang D Z, Huang J Y, Ren Z F, Steeves D, Kimball B, and Sennett M. Large-quantity free-standing ZnO nanowires. Applied Physics Letters,2003,83(10):2061-2063
    [40]Jie J S, Wang G Z, ChenY M, et al. Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film. Applied Physics Letters,2005,86(3):031909-031911
    [41]丁秉钧.纳米材料.北京:机械工业出版社,2003,55-57
    [42]Liu C H, Yiu W C, Au F C K, et al. Electrical properties of zinc oxide nanowires and intramolecular p-n junctions. Applied Physics Letters,2003,83(15): 3168-3170
    [43]Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials,2001,13(2):113-116
    [44]Ogata K, Maejima K, Fujita S, et al. Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy. Journal of Crystal Growth,2003,248(2):25-30
    [45]Park W I, Yi G C, Kim M, et al. ZnO nanoneedles grown vertically on si substrates by non-catalytic vapor-phase epitaxy. Advanced Materials,2002, 14(24):1841-1843
    [46]Park W I, Yi G C, Kim M Y, et al. Quantum confinement observed in ZnO/ZnMgO nanorod heterstructures. Advanced Materials,2003,15(6):526-529
    [47]Decremps F, Porres J P, Saitta A M, et al. High-pressure Raman Spectrosco py Study of Wurtzite ZnO. Phys. Rev. B,2002,65:092101-092104
    [48]Singhal A, Achary S N, Manjanna J, et al. Chemical Synthesis and Structural and Magnetic Properties of Dispersible Cobalt-and Nickel-Doped ZnO Nanocrystals. Journal of Physical Chemistry C,2010,114(8):3422-3430
    [49]Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics,1996, 79(10):7983-7990
    [50]Wang F F, Cao L, Pan A L, et al. Synthesis of tower-like ZnO structures and visible photoluminescence origins of varied-shaped ZnO nanostructures. Journal of Physical Chemistry C,2007,111(21):7655-7660
    [51]Zhang D H, Wang Q P, Xue Z Y. Photoluminescence of ZnO films excited with light of different wavelength. Applied Surface Science,2003,207(1-4):20-25
    [52]Zhang R Q, Lifshitz Y, Lee S T. Oxide-Assisted Growth of Semiconducting Nanowires. Advanced Materials,2003,15(7-8):635-640
    [53]Chen Y, Cui X, Zhang K, et al. Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem. Phys. Lett., 2003,369(1-2):16-20
    [54]Chen Y X, Campbell L J, Zhou W L. Self-catalytic branch growth of SnO2 nanowire junctions. Journal of Crystal Growth,2004,270:505-510
    [55]Wang B, Yang Y H, Wang C X, et al. Nanostructures and self-catalyzed growth of SnO2. Journal of Applied Physics,2005,98(7):073520
    [56]Liu Z, Zhang D, Han S, et al. Laser Ablation Synthesis and Electron Transp ort Studies of Tin Oxide Nanowires. Advanced Materials,2003,15(20):1754-1757
    [57]Nguyen P, Hou T N, Jing Kong. Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays. Nano Letters,2003,3(7):925-928
    [58]Sanjay Mathur, Sven Barth, Hao Shen, et al. Ulf Werner Size-Dependent Photoconductance in SnO2 Nanowires. Small,2005,1:713-717
    [59]He J H, Wu T H, Hsin C L, et al. Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties. Small,2006,2(1):116-120
    [60]Dai Z R, Gole J L, Stout J D, et al. Tin Oxide Nanowires, Nanoribbons, and Nanotubes. J Phys Chem B,2002,106(6):1274-1279
    [61]Chen Z W, Lai J K L, Shek C H. Nucleation mechanism and microstructural assessment of SnO2 nanowires prepared by pulsed laser deposition. Physics Letter A,2005,345(4-6):391-397
    [62]Ling C, Qian W Z, Wei F. Gas-flow assisted bulk synthesis of V-type SnO2 nanowires. Journal of Crystal Growth,2005,285(1-2):49-53
    [63]Calestani D, Zha M, zappettini A, et al. Structural and opitical study of SnO2 nanobelts and nanowires. Material Science and Engineering C,2005,25(5-8): 625-630
    [64]Vayssieres L. Highly ordered SnO2 nanorod arrays from controlled aqueous growth. Chem. Int. Ed.,2004,43(28):3666-3670
    [65]Guo C X, Cao M H, Hu C W. A novel and low Temperature hydrothermal synthesis of SnO2 nanorods. Inorg. Chem. Comm.,2004,7(7):929-931
    [66]Hu C X, Wu Y S, Ma X J, et al. PVA-assisted solvothermal fabrication of tin oxide sub-microrods. Journal of Crystal Growth,2004,265(1-2):235-240
    [67]Xu C K, Zhao X L, Liu S, et al. Large-scale synthesis of rutile SnO2 nanorods. Solid State Comm.,2003,125(6):301-304
    [68]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science,2001, 291:1947-1949
    [69]Dai Z R, Pan Z W, Wang Z L. Ultra-long Single Crystalline Nanoribbon of Tin Oxide. Solid State Comm.,2001,118(7):351-354
    [70]Sun S H, Meng G W, Zhang G X, et al. Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chem. Phys. Lett., 2003,376(1-2):103-107
    [71]Hu J Q, Bando Y, Liu Q L, et al. Laser-Ablation Growth and Optical Properties of Wide and Long Single-Crystal SnO2 Ribbons. Advanced Function Materials, 2003,13(6):493-496
    [72]Zhang R Q, Lifshitz Y, Lee S T. Oxide-Assisted Growth of Semiconducting Nanowires. Advanced Materials,2003,15(7-8):635-640
    [73]Ma X L, Li Y, Zhu Y L. Growth mode of the SnO2 nanobelts synthesized by rapid oxidation. Chemical Physics Letters,2003,376(5-6):794-798
    [74]Liu Y, Liu M L. Growth of aligned Square-shaped SnO2 tube arrays. Advanced Materials,2005,15(1):57-62
    [75]Mastre D, Cremades A, Piqueras J. Growth and luminescence properties of micro-and nanotubes in sintered tin oxide. J. Appl. Phys,2005,97(4): 044316-044319
    [76]Duan J, Cao Q, Yang S, et al. Preparation and characterization of rectangular tin dioxide microtubes. J. Cryst. Growth,2006,289(1):164-167
    [77]Huang J, Matsunaga N, Shimanoe K, et al. Nanotubular SnO2 Templated by Cellulose Fibers:Synthesis and Gas Sensing. Chem. Mater.,2005,17(13): 3513-3518
    [78]Liu B, Zeng H C. Salt-Assisted Deposition of SnO2 on a-MoO3 Nanorods and Fabrication of Polycrystalline SnO2 Nanotubes. J. Phys. Chem. B,2004,108(19): 5867-5874
    [79]Chen Y H, Zhang X T, Xue Z H, et al. Fabrication and structural characterization of large-scale uniform SnO2 nanotube arrays by sol-gel method. Chinese Science Bulletin,2005,50(7):618-621
    [80]Zhu W, Wang W Z, Xu H L, et al. Fabrication of ordered SnO2 nanotube arrays via a template rout. Mater. Chem. Phys,2006,99(1):127-130
    [81]Sun X M, Liu J F, Li Y D. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres. Chem. Eur. J.,2006,12: 2039-2047
    [82]Azad M, Akbar S A, Mhaisalkar S G, et al. Solid-State Gas Sensors:A Review. J. Electrochem. Soc.,1992,139:3690-3704
    [83]Ferro R, Rodrigue J A, Bertrand P. Metal-decorated multi-wall carbon nanotubes for low temperature gas sensing. Thin Solid Films,2007,515(23):8322-8327
    [84]Yamazoe N. Toward innovations of gas sensor technology. Sensors and Actuators B,2005,108:2-14
    [85]Saxenal V, Aswal D K, Kaur M, et al. Enhanced NO2 selectivity of hybrid poly(3-hexylthiophene):ZnO-nanowire thin films. Appl. Phys. Lett.,2007,90(4): 043516-043518
    [86]Feng P, Wan Q, Wang T H. Contact-controlled sensing properties of flowerlike ZnO nanostructures. Appl. Phys. Lett.,2005,87:213111-213113
    [87]Chen L M. Hydrothermal synthesis and ethanol sensing properties of CeVO4 and CeVO4-CeO2 powders. Mater. Lett.,2006,60:1859-1862
    [88]Gong J W, Chen Q F, Fei W F, et al. Micromachined nanocrystalline SnO2 chemical gas sensors for electronic nose. Actuators B,2004,102:117-125
    [89]Paulose M, Varghese O K, Mor G K, et al. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology,2006,17:398-402
    [90]Briand D, Wingbrant H, Sundgren H, et al, Modulated operating temperature for MOSFET gas sensors:hydrogen recovery time reduction and gas discrimination. Sensors and Actuators B,2003,93:276-285
    [91]Li J, Lu Y J, Ye Q, et al. Carbon Nanotube Sensors for Gas and Organic Vapor Detection. Nano Letters,2003,3:929-933
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.