拟南芥精氨酸甲基转移酶SKB1调控植物开花时间的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于开花植物来说,在适宜的条件,适宜的时间实现从营养生长阶段向生殖生长阶段的转变,对植物发育有着重要的意义。通过对大量突变体的遗传分析,在拟南芥中已经发现了四条主要途径通过调节体内因素和外界环境影响开花时间,自主途径、春化途径、赤霉素途径和光周期途径。植物的开花发育受表观遗传调控。表观遗传是一门新学科,主要研究染色质修饰和染色质重塑等对基因转录表达的调控机制。组蛋白的共价修饰包括赖氨酸的乙酰化、甲基化和精氨酸的甲基化等。组蛋白末端氨基酸共价修饰对植物开花发育的调控作用的研究表明FLC的抑制因子和促进因子通过改变组蛋白氨基酸的共价修饰,影响FLC基因所在区域的染色质重塑,调控FLC的转录表达水平,从而调控开花时间。
     哺乳动物SKB1(Shk1 kinase-bingding protein 1,又名PRMT5,Protein Arginine methyltransferases 5)在调控染色质重塑、基因转录、RNA剪切和细胞增殖与分化过程中起重要作用。拟南芥SKB1基因(At4g31120)与其序列高度同源,在拟南芥基因组仅含有单拷贝SKB1基因。目前关于蛋白质精氨酸甲基转移酶及其催化的精氨酸甲基化修饰在植物发育中的作用还没有任何报道。本论文集中研究了拟南芥精氨酸甲基转移酶SKB1基因调控植物开花发育的遗传和生化机理,获得了如下结果:
     1.通过对拟南芥精氨酸甲基转移酶SKB1的序列分析,发现SKB1含有精氨酸甲基转移酶必需的5个保守序列,并且与哺乳动物的同源蛋白PRMT5在序列上具有很高的相似性。利用原核表达系统纯化His-SKB1重组蛋白,运用切胶回收的方法免疫制备SKB1特异性抗体,研究了SKB1的生化功能。纯化GST-SKB1融合蛋白,利用3H标记的甲基供体S-腺苷甲硫氨酸(3H- SAM)分析SKB1的甲基转移酶活性发现组蛋白H4是SKB1的特异底物。
     2.获得了两个SKB1 T-DNA插入突变体株系,突变体表现出晚花的表型,同时叶色深绿,叶片弯曲。通过转化SKB1 cDNA可以回复突变体晚花的表型,超表达SKB1引起拟南芥早花,同时拟南芥开花时间与SKB1的表达量呈正相关,说明SKB1促进植物开花,是拟南芥开花发育的正调控因子。
     3.分析了在不同生理条件下skb1突变体的表型,发现不同光周期处理后,突变体都表现晚花的表型,表明突变体对光周期不敏感;而春化和赤霉素处理则可以部分恢复突变体晚花的表型,由此确定SKB1属于开花自主途径。
     4.RT-PCR分析发现在skb1突变体中FLC的表达量明显高于野生型,同时通过杂交发现flc突变体可以部分恢复skb1突变体晚花的表型,skb1×flc双突变体的开花时间介于野生型和skb1突变体之间。表明FLC过量表达是skb1晚花的原因。
     5.SKB1::GUS融合基因分析,原位杂交以及Western检测SKB1的时空表达模式表明SKB1主要在幼苗的茎顶端分生组织和幼叶中表达,与开花自主途径基因很相似。
     6.利用组蛋白特异位点修饰的抗体,Western检测表明在体内和体外SKB1都可以特异地对称性双甲基化修饰H4R3(H4R3sme2)。
     7.染色质免疫沉淀(ChIP)技术分析表明SKB1特异的结合在FLC基因组DNA启动子区,通过对称性双甲基化修饰组蛋白H4R3调控开花时间。
     综上所述,拟南芥精氨酸甲基转移酶SKB1通过对称性双甲基化目标基因FLC染色质的启动子区域,抑制FLC的表达,从而促进植物开花。本论文不仅阐明了蛋白质精氨酸甲基转移酶SKB1调控开花发育的分子机制,而且还可能揭示表观遗传修饰调控植物发育的新途径。
Plant flowering is a crucial developmental transition from the vegetative to reproductive phase and is properly timed by a number of intrinsic and environmental cues. Investigations in Arabidopsis have identified four major pathways (photoperiod, vernalization, gibberellin (GA), and autonomous) involved in regulating flowering time. Plant flowering is influenced by epigenetic factors. Epigenetic regulations mainly involve the mechanism of histone modification and chromatin remodeling regulating gene transcription. Chromatin covalent modification included acetylation and methylation of lysine and arginine. The recent characterization of FLC repressors and activators has shown that some of these regulatory proteins are involved in the covalent modification of FLC chromatin and controlling the flowering time.
     Mammalian SKB1(Shk1 kinase-bingding protein 1),also called PRMT5( Protein Arginine methyltransferases 5)has been shown to regulate chromatin remodelling, gene transcription, RNA splicing, and cell proliferation and differentiation. The Arabidopsis genome contains a single-copy SKB1 gene (At4g31120) shows high homology with the human PRMT5. However, little is known about the functions of histone arginine methylation in plants. In this dissertation, we focused on the genetic and biochemical mechanism of SKB1 controlling flowering time in Arabidopsis and obtained the following results:
     1. By comparison of Arabidopsis SKB1 amino acid sequence with homologous proteins of diverse organisms, we found that SKB1 contains five conserved motifs of protein arginine methyltransferases. The sequence of SKB1 is highly aligned with PRMT5, which is the homologue of mammalian. To analyze biochemical characterization of SKB1, the His-SKB1 recombinannt protein was purified in E.coli cells. The antibody to SKB1 was produced by using of the method of cutting and reclaiming gels. We assayed in vitro a GST-SKB1 fusion protein for methylation activity with 3H-SAM. Only H4 was methylated.
     2. We identified two T-DNA insertional mutants. SKB1 lesion results in late flowering. The skb1 mutant plants also formed leaves slightly more curled and darker than wild-type plants. We introduced SKB1 cDNA into skb1mutant plants. 35S::SKB1 could rescue the skb1-1 mutant, resulting in transgenic plants with a wild-type phenotype. Plants overexpressing SKB1 had early flowering feature and SKB1-promoted flowering time showed a stoichiometric relation with SKB1 protein level. So SKB1 is a positive regulator of floral initiation and prevents late flowering.
     3. We sought to identify the pathway that SKB1 was involved in by treating skb1 mutant plants with the different conditions. Under long-day or short-day photoperiods, skb1 mutant displayed later flowering than wild-type plants, which indicates that skb1 mutants were sensitive to photoperiod. Vernalization and GA treatment reversed in part the delayed flowering of skb1 mutant plants. Taken together, these results suggest that SKB1 is a new member of the autonomous pathway.
     4. RT-PCR result indicated that the expression of the flowering repressor gene FLC was significantly up-regulated in skb1 mutant. We introduced skb1 into FLC-null mutant. The late-flowering phenotype of skb1 was suppressed by flc mutant. Thus, the flowering time control by SKB1 is targeted towards FLC expression.
     5. The temporal and spatial expression pattern of SKB1 was analyzed with use of a SKB1 promoter driving GUS, in situ hybridization and Western with a specific antibody against SKB1. SKB1 was more abundant in shoot apex and young leaves in seedlings, which was similar to that of genes in autonomous pathway.
     6. We used specific antibodies modificated histone of specific site to examine whether SKB1 methylates H4R3. The results suggested that SKB1 can methylate H4R3 symmetrically in vitro and in vivo.
     7. Chromatin immunoprecipitation (ChIP) assay revealed that SKB1 binds to the FLC promoter and mediates histone H4R3 symmetric dimethylation (H4R3sme2) to control flowering time.
     Thus, SKB1 affects flowering development by alterating FLC expression via symmetric dimethylation of H4R3 in its promoter.SKB1-mediated H4R3sme2 is a novel histone mark required for repression of FLC expression and flowering time control. Base on these results of this dissertation, we not only clarified the molecular mechanism of aginine methyltransferse SKB1 controlling flowering time in Arabidopsis, but the new histone code of epigenetic inheritance to regulate plant development.
引文
[1] Morales V, Giamarchi C, Chailleux C, et al. Chromatin structure and dynamics: functional implications[J]. Biochimie, 2001, 83(11-12):1029-1039.
    [2] Rice JC, Allis CD. Code of silence[J]. Nature, 2001, 414(6861):258-261.
    [3] Ajiro K, Allis CD. Histone code hypothesis[J]. Tanpakushitsu Kakusan Koso, 2002, 47(7):753-760.
    [4] Turner BM. Cellular memory and the histone code[J]. Cell, 2002, 111(3):285-291.
    [5] Rea S, Eisenhaber F, O'Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]. Nature, 2000, 406(6796):593-599.
    [6] Strahl BD, Allis CD. The language of covalent histone modifications[J]. Nature, 2000, 403(6765):41-45.
    [7] Jenuwein T, Allis CD. Translating the histone code[J]. Science, 2001, 293(5532):1074-1080.
    [8] Kaye AM, Sheratzky D. Methylation of protein (histone) in vitro: enzymic activity from the soluble fraction of rat organs[J]. Biochim Biophys Acta, 1969, 190(2):527-538.
    [9] Gallwitz D. Histone methylation: Partial purification of two histone-specific methyltransferases from rat thymus nuclei preferentially methylating histones F2a 1 and F3[J]. Arch Biochem Biophys, 1971, 145(2):650-657.
    [10] Paik WK, Kim S. Protein methylation. Science[J], 1971, 174(5):114-119.
    [11] Morgunkova A, Barlev NA. Lysine methylation goes global[J]. Cell Cycle, 2006, 5(12):1308-1312.
    [12] Ahsan MK, Masutani H, Yamaguchi Y, et al. Loss of interleukin-2-dependency in HTLV-I-infected T cells on gene silencing of thioredoxin-binding protein-2[J]. Oncogene, 2006, 25(15):2181-2191.
    [13] Xiao B, Wilson JR, Gamblin SJ. SET domains and histone methylation. Curr Opin Struct Biol[J], 2003, 13(6):699-705.
    [14] Martin C, Zhang Y.The diverse functions of histone lysine methylation[J]. Nat Rev Mol Cell Biol, 2005, 6(11):838-849.
    [15] Peterson CL, Laniel MA. Histones and histone modifications[J]. Curr Biol, 2004, 14(14):R546-551.
    [16] Schreiber SL, Bernstein BE. Signaling network model of chromatin[J]. Cell, 2002, 111(6):771-778.
    [17] Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression[J]. Annu Rev Biochem, 2006, 75:243-269.
    [18] Villar-Garea A, Imhof A. The analysis of histone modifications[J]. Biochim Biophys Acta, 2006, 1764(12):1932-1939.
    [19] Bannister AJ, Zegerman P, Partridge JF, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain[J]. Nature, 2001, 410(6824):120-124.
    [20] Briggs SD, Bryk M, Strahl BD, et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae[J]. Genes Dev, 2001, 15(24):3286-3295.
    [21] Czermin B, Schotta G, Hulsmann BB, et al. Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila[J]. EMBO Rep, 2001, 2(10):915-919.
    [22] Couture JF, Hauk G, Thompson MJ, et al. Catalytic roles for carbon-oxygen hydrogen bonding inSET domain lysine methyltransferases[J]. J Biol Chem, 2006, 281(28):19280-19287.
    [23] Dillon SC, Zhang X, Trievel RC, et al. The SET-domain protein superfamily: protein lysine methyltransferases[J]. Genome Biol, 2005, 6(8):227.
    [24] Marmorstein R. Structure of SET domain proteins: a new twist on histone methylation[J]. Trends Biochem Sci, 2003, 28(2):59-62.
    [25] Trievel RC, Beach BM, Dirk LM, et al. Structure and catalytic mechanism of a SET domain protein methyltransferase[J]. Cell, 2002, 111(1):91-103.
    [26] Iizuka M, Smith MM. Functional consequences of histone modifications[J]. Curr Opin Genet Dev, 2003, 13(2):154-160.
    [27] Jenuwein T. The epigenetic magic of histone lysine methylation[J]. FEBS J, 2006, 273(14):3121-3135.
    [28] Peters AH, O'Carroll D, Scherthan H, et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability[J]. Cell, 2001, 107(3):323-337.
    [29] Ner SS, Harrington MJ, Grigliatti TA. A role for the Drosophila SU(VAR)3-9 protein in chromatin organization at the histone gene cluster and in suppression of position-effect variegation[J]. Genetics, 2002, 162(4):1763-1774.
    [30] Schotta G, Ebert A, Krauss V, et al. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing[J]. EMBO J, 2002, 21(5):1121-1131.
    [31] Shen WH, Meyer D. Ectopic expression of the NtSET1 histone methyltransferase inhibits cell expansion, and affects cell division and differentiation in tobacco plants[J]. Plant Cell Physiol, 2004, 45(11):1715-1719.
    [32] Malagnac F, Bartee L, Bender J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation[J]. EMBO J, 2002, 21(24):6842-6852.
    [33] Rayasam GV, Wendling O, Angrand PO, et al. NSD1 is essential for early post-implantation development and has a catalytically active SET domain[J]. EMBO J, 2003, 22(12):3153-3163.
    [34] Kourmouli N, Jeppesen P, Mahadevhaiah S, et al. Heterochromatin and tri-methylated lysine 20 of histone H4 in animals[J]. J Cell Sci, 2004, 117(12):2491-2501.
    [35] Roguev A, Schaft D, Shevchenko A, et al. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4[J]. EMBO J, 2001, 20(24):7137-7148.
    [36] Bernstein BE, Humphrey EL, Erlich RL, et al. Methylation of histone H3 Lys 4 in coding regions of active genes[J]. Proc Natl Acad Sci U S A, 2002, 99(13):8695-8700.
    [37] Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters[J]. Mol Cell, 2002, 10(5):1107-1117.
    [38] Nagy PL, Griesenbeck J, Kornberg RD, et al. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3[J]. Proc Natl Acad Sci U S A, 2002, 99(1):90-94.
    [39] Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature, 2002, 419(6905):407-411.
    [40] Byrd KN, Shearn[J] A. ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3[J]. Proc Natl Acad Sci U S A, 2003, 100(20):11535-11540.
    [41] Klymenko T, Muller J. The histone methyltransferases Trithorax and Ash1 prevent transcriptionalsilencing by Polycomb group proteins[J]. EMBO Rep, 2004, 5(4):373-377.
    [42] Dehe PM, Dichtl B, Schaft D, et al. Protein interactions within the Set1 complex and their roles in the regulation of histone 3 lysine 4 methylation[J]. J Biol Chem, 2006, 281(46):35404-35412.
    [43] Li J, Moazed D, Gygi SP. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation[J]. J Biol Chem, 2002, 277(51):49383-49388.
    [44] Strahl BD, Grant PA, Briggs SD, et al. Set2 is a nucleosomal histone H3-selective methyltransferase that mediates transcriptional repression[J]. Mol Cell Biol, 2002, 22(5):1298-1306.
    [45] Schaft D, Roguev A, Kotovic KM, et al. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation[J]. Nucleic Acids Res, 2003, 31(10):2475-2482.
    [46] Kizer KO, Phatnani HP, Shibata Y, et al. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation[J]. Mol Cell Biol, 2005, 25(8):3305-3316.
    [47] Kim SY, He Y, Jacob Y, et al. Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase[J]. Plant Cell, 2005, 17(12):3301-3310.
    [48] Zhao Z, Yu Y, Meyer D, et al. Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36[J]. Nat Cell Biol, 2005, 7(12):1256-1260.
    [49] Derunes C, Briknarova K, Geng L, et al. Characterization of the PR domain of RIZ1 histone methyltransferase[J]. Biochem Biophys Res Commun, 2005, 333(3):925-934.
    [50] Du Y, Carling T, Fang W, et al. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily[J]. Cancer Res, 2001, 61(22):8094-8099.
    [51] Feng Q, Wang H, Ng HH, et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain[J]. Curr Biol, 2002, 12(12):1052-1058.
    [52] Kouzarides T.Histone methylation in transcriptional control[J]. Curr Opin Genet Dev, 2002, 12(2):198-209.
    [53] Noma K, Grewal SI. Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast[J]. Proc Natl Acad Sci U S A, 2002, 99 Suppl 4:16438-16445.
    [54] Zegerman P, Canas B, Pappin D, et al. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex[J]. J Biol Chem, 2002, 277(14):11621-11624.
    [55] Rougeulle C, Navarro P, Avner P. Promoter-restricted H3 Lys 4 di-methylation is an epigenetic mark for monoallelic expression[J]. Hum Mol Genet, 2003, 12(24):3343-3348.
    [56] Ng HH, Dole S, Struhl K. The Rtf1 component of the Paf1 transcriptional elongation complex is required for ubiquitination of histone H2B[J]. J Biol Chem, 2003, 278(36):33625-33628.
    [57] Zhao Z, Shen WH. Plants contain a high number of proteins showing sequence similarity to the animal SUV39H family of histone methyltransferases[J]. Ann N Y Acad Sci, 2004, 1030:661-669.
    [58] Shahbazian MD, Zhang K, Grunstein M. Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1[J]. Mol Cell, 2005, 19(2):271-277.
    [59] Shi X, Hong T, Walter KL, et al. ING2 PHD domain links histone H3 lysine 4 methylation to activegene repression[J]. Nature, 2006, 442(7098):96-99.
    [60] Shukla A, Stanojevic N, Duan Z, et al. Ubp8p, a histone deubiquitinase whose association with SAGA is mediated by Sgf11p, differentially regulates lysine 4 methylation of histone H3 in vivo[J]. Mol Cell Biol, 2006, 26(9):3339-3352.
    [61] Shukla A, Stanojevic N, Duan Z, et al. Functional analysis of H2B-Lys-123 ubiquitination in regulation of H3-Lys-4 methylation and recruitment of RNA polymerase II at the coding sequences of several active genes in vivo[J]. J Biol Chem, 2006, 281(28):19045-19054.
    [62] Wysocka J, Swigut T, Xiao H, et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling[J]. Nature, 2006, 442(7098):86-90.
    [63] Ng HH, Feng Q, Wang H, et al.Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association[J]. Genes Dev, 2002, 16(12):1518-1527.
    [64] Ng HH, Xu RM, Zhang Y, et al. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79[J]. J Biol Chem, 2002, 277(38):34655-34657.
    [65] Krogan NJ, Dover J, Wood A, et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation[J]. Mol Cell, 2003, 11(3):721-729.
    [66] Emre NC, Ingvarsdottir K, Wyce A, et al. Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal Sir2 association and gene silencing[J]. Mol Cell, 2005, 17(4):585-594.
    [67] Bostelman LJ, Keller AM, Albrecht AM, et al. Methylation of histone H3 lysine-79 by Dot1p plays multiple roles in the response to UV damage in Saccharomyces cerevisiae[J]. DNA Repair (Amst), 2007, 6(3):383-395.
    [68] Berger SL. Histone modifications in transcriptional regulation[J]. Curr Opin Genet Dev, 2002, 12(2):142-148.
    [69] Cowell IG, Aucott R, Mahadevaiah SK, et al. Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals[J]. Chromosoma, 2002, 111(1):22-36.
    [70] Jacobs SA, Taverna SD, Zhang Y, et al. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3[J]. EMBO J, 2001, 20(18):5232-5241.
    [71] Lachner M, O'Carroll D, Rea S, et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins[J]. Nature, 2001, 410(6824):116-120.
    [72] Cosgrove MS, Boeke JD, Wolberger C. Regulated nucleosome mobility and the histone code[J]. Nat Struct Mol Biol, 2004, 11(11):1037-1043.
    [73] Kourmouli N, Sun YM, van der Sar S, et al. Epigenetic regulation of mammalian pericentric heterochromatin in vivo by HP1[J]. Biochem Biophys Res Commun, 2005, 337(3):901-907.
    [74] Liu H, Kim JM, Aoki F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos[J]. Development, 2004, 131(10):2269-2280.
    [75] Nakayama J, Rice JC, Strahl BD, et al. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly[J]. Science, 2001, 292(5514):110-113.
    [76] Nielsen PR, Nietlispach D, Mott HR, et al.Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9[J]. Nature, 2002, 416(6876):103-107.
    [77] Bryk M, Briggs SD, Strahl BD, et al. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism[J]. Curr Biol, 2002, 12(2):165-170.
    [78] Heard E, Rougeulle C, Arnaud D, et al. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation[J]. Cell, 2001, 107(6):727-738.
    [79] Jenuwein T. Re-SET-ting heterochromatin by histone methyltransferases[J]. Trends Cell Biol, 2001, 11(6):266-273.
    [80] Lomberk G, Wallrath L, Urrutia R. The Heterochromatin Protein 1 family[J]. Genome Biol, 2006, 7(7):228.
    [81] Min J, Zhang X, Cheng X, et al. Structure of the SET domain histone lysine methyltransferase Clr4[J]. Nat Struct Biol, 2002, 9(11):828-832.
    [82] Saccani S, Natoli G. Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes[J]. Genes Dev, 2002, 16(17):2219-2224.
    [83] Schultz DC, Ayyanathan K, Negorev D, et al. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins[J]. Genes Dev, 2002, 16(8):919-932.
    [84] Shankaranarayana GD, Motamedi MR, Moazed D, et al. Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast[J]. Curr Biol, 2003, 13(14):1240-1246.
    [85] Fang J, Feng Q, Ketel CS, et al. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase[J]. Curr Biol, 2002, 12(13):1086-1099.
    [86] Nishioka K, Rice JC, Sarma K, et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell, 2002, 9(6):1201-1213. [J]
    [87] Rice JC, Nishioka K, Sarma K, et al. Mitotic-specific methylation of histone H4 Lys 20 follows increased PR-Set7 expression and its localization to mitotic chromosomes[J]. Genes Dev, 2002, 16(17):2225-2230.
    [88] Sarg B, Koutzamani E, Helliger W, et al. Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging[J]. J Biol Chem, 2002, 277(42):39195-39201.
    [89] Nishioka K, Chuikov S, Sarma K, et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation[J]. Genes Dev, 2002, 16(4):479-489.
    [90] Xiao B, Jing C, Kelly G, et al. Specificity and mechanism of the histone methyltransferase Pr-Set7[J]. Genes Dev, 2005, 19(12):1444-1454.
    [91] Yin Y, Liu C, Tsai SN, et al. SET8 recognizes the sequence RHRK20VLRDN within the N terminus of histone H4 and mono-methylates lysine 20[J]. J Biol Chem, 2005, 280(34):30025-30031.
    [92] Payne C, Braun RE. Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia[J]. Dev Biol, 2006, 293(2):461-472.
    [93] Fran?ois-Michel Boisvert CAC, and Stéphane Richard. Protein Interfaces in Signaling Regulated by Arginine Methylation[J]. Science's STKE, 2005, 2:1-10.
    [94] Richard MTBaS. Arginine Methylation: An Emerging Regulatorof Protein Function[J]. Molecular Cell, 2005, 18:263–272.
    [95] Davie JK, Dent SY. Transcriptional control: an activating role for arginine methylation[J]. Curr Biol, 2002, 12(2):R59-61.
    [96] Trievel RC. Structure and function of histone methyltransferases[J]. Crit Rev Eukaryot Gene Expr, 2004, 14(3):147-169.
    [97] Wysocka J, Allis CD, Coonrod S. Histone arginine methylation and its dynamic regulation[J]. Front Biosci, 2006, 11:344-355.
    [98] Chen D, Ma H, Hong H, et al. Regulation of transcription by a protein methyltransferase[J]. Science, 1999, 284(5423):2174-2177.
    [99] Chao Qi JC, Yiwei Zhu, Anjana V. Yeldandi, et al. Identification of Protein Arginine Methyltransferase 2 as a Coactivator for Estrogen Receptor[J]. J Biol Chem, 2002, 277(32):28624–28630.
    [100] Jie Tang JDG, Steven Clarke and Harvey R. Herschman. PRMT 3, a Type I Protein Arginine N-Methyltransferase That Differs from PRMT1 in Its Oligomerization, Subcellular Localization, Substrate Specificity, and Regulation[J]. J Biol Chem, 1998, 273(27):16935–16945.
    [101] Daujat S, Bauer UM, Shah V, et al. Crosstalk between CARM1 methylation and CBP acetylation on histone H3[J]. Curr Biol. 2002, 12(24):2090-2097.
    [102] Branscombe TL, Frankel A, Lee JH, et al. PRMT5 (Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins[J]. J Biol Chem, 2001, 276(35):32971-32976.
    [103] Rho J, Choi S, Seong YR, et al.Prmt5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family[J]. J Biol Chem, 2001, 276(14):11393-11401.
    [104] Miranda TB, Miranda M, Frankel A, et al. PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity[J]. J Biol Chem, 2004, 279(22):22902-22907.
    [105] Jeffry R. Cook J-HL, Zhi-Hong Yang , Christopher D. Krause, et al.FBXO11/PRMT9, a new protein arginine methyltransferase, symmetrically dimethylates arginine residues[J]. Biochemical and Biophysical Research Communications, 2006, 342:472–481.
    [106] Lee DY, Teyssier C, Strahl BD, et al. Role of protein methylation in regulation of transcription[J]. Endocr Rev, 2005, 26(2):147-170.
    [107] Lim IK, Park TJ, Kim S, et al. Enzymatic methylation of recombinant TIS21 protein-arginine residues[J]. Biochem Mol Biol Int, 1998, 45(5):871-878.
    [108] Tirone F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? [J] J Cell Physiol, 2001, 187(2):155-165.
    [109] Rizzo G, Renga B, Antonelli E, et al. The methyl transferase PRMT1 functions as co-activator of farnesoid X receptor (FXR)/9-cis retinoid X receptor and regulates transcription of FXR responsive genes[J]. Mol Pharmacol, 2005, 68(2):551-558.
    [110] Miao F, Li S, Chavez V, et al. Coactivator-associated arginine methyltransferase-1 enhances nuclear factor-kappaB-mediated gene transcription through methylation of histone H3 at arginine 17[J]. Mol Endocrinol, 2006, 20(7):1562-1573.
    [111] Strahl BD, Briggs SD, Brame CJ, et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1[J]. Curr Biol, 2001, 11(12):996-1000.
    [112] Wang H, Huang ZQ, Xia L, et al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor[J]. Science, 2001, 293(5531):853-857.
    [113] Bauer UM, Daujat S, Nielsen SJ, et al. Methylation at arginine 17 of histone H3 is linked to gene activation[J]. EMBO Rep, 2002, 3(1):39-44.
    [114] Chevillard-Briet M, Trouche D, Vandel L. Control of CBP co-activating activity by arginine methylation[J]. EMBO J, 2002, 21(20):5457-5466.
    [115] Li H, Park S, Kilburn B, et al. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase[J]. J Biol Chem, 2002, 277(47):44623-44630.
    [116] Chao Qi JC, Yiwei Zhu, Anjana V. Yeldandi, et al. Identification of Protein Arginine Methyltransferase 2 as a Coactivator for Estrogen Receptor[J]. J Biol Chem, 2002, 277(32):28624–28630.
    [117] Shilai Bao, Peirong Yang, HyeWon Kim, et al. The Highly Conserved Protein Methyltransferase, Skb1, Is a Mediator of Hyperosmotic Stress Response in the Fission Yeast Schizosaccharomyces pombe[J]. J Biol Chem, 2001, 276(18):14549–14552.
    [118] Miranda TB, Sayegh J, Frankel A, et al. Yeast Hsl7 (histone synthetic lethal 7) catalyses the in vitro formation of omega-N(G)-monomethylarginine in calf thymus histone H2A[J]. Biochem J, 2006, 395(3):563-570.
    [119] Lee JH, Cook JR, Pollack BP, et al. Hsl7p, the yeast homologue of human JBP1, is a protein methyltransferase[J]. Biochem Biophys Res Commun, 2000, 274(1):105-111.
    [120] Kang Z, Janne OA, Palvimo JJ. Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor[J]. Mol Endocrinol, 2004, 18(11):2633-2648.
    [121] Cheng X, Collins RE, Zhang X. Structural and sequence motifs of protein (histone) methylation enzymes[J]. Annu Rev Biophys Biomol Struct, 2005, 34:267-294.
    [122] Stallcup MR, Chen D, Koh SS, et al. Co-operation between protein-acetylating and protein-methylating co-activators in transcriptional activation[J]. Biochem Soc Trans, 2000, 28(4):415-418.
    [123] Ma H, Baumann CT, Li H, et al. Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter[J]. Curr Biol, 2001, 11(24):1981-1985.
    [124] Schurter BT, Koh SS, Chen D, et al. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1[J]. Biochemistry, 2001, 40(19):5747-5756.
    [125] Xu W, Chen H, Du K, et al. A transcriptional switch mediated by cofactor methylation[J]. Science, 2001, 294(5551):2507-2511.
    [126] Stallcup MR. Role of protein methylation in chromatin remodeling and transcriptional regulation[J]. Oncogene, 2001, 20(24):3014-3020.
    [127] Teyssier C, Chen D, Stallcup MR. Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function. J Biol Chem[J], 2002, 277(48):46066-46072.
    [128] Ananthanarayanan M, Li S, Balasubramaniyan N, et al. Ligand-dependent activation of the farnesoid X-receptor directs arginine methylation of histone H3 by CARM1[J]. J Biol Chem, 2004, 279(52):54348-54357.
    [129] Huang S, Litt M, Felsenfeld G. Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications[J]. Genes Dev, 2005, 19(16):1885-1893.
    [130] Xu W, Cho H, Evans RM. Acetylation and methylation in nuclear receptor gene activation. Methods Enzymol[J], 2003, 364:205-223.
    [131] Pal S, Yun R, Datta A, et al. mSin3A/histone deacetylase 2- and PRMT5-containing Brg1 complex is involved in transcriptional repression of the Myc target gene cad[J]. Mol Cell Biol, 2003, 23(21):7475-7487.
    [132] Schneider R, Bannister AJ. Protein N-methyltransferase assays in the study of gene transcription[J]. Methods, 2002, 26(3):226-232.
    [133] Yu MC, Lamming DW, Eskin JA, et al. The role of protein arginine methylation in the formation of silent chromatin[J]. Genes Dev, 2006, 20(23):3249-3254.
    [134] El Messaoudi S, Fabbrizio E, Rodriguez C, et al. Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene[J]. Proc Natl Acad Sci U S A, 2006, 103(36):13351-13356.
    [135] Majumder S, Liu Y, Ford OH, et al. Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability[J]. Prostate, 2006, 66(12):1292-1301.
    [136] Cheng D, Cote J, Shaaban S, et al. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing[J]. Mol Cell, 2007, 25(1):71-83.
    [137] Naeem H, Cheng D, Zhao Q, et al. The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation[J]. Mol Cell Biol, 2007, 27(1):120-134.
    [138] Narcisi EM, Glover CV, Fechheimer M. Fibrillarin, a conserved pre-ribosomal RNA processing protein of Giardia[J]. J Eukaryot Microbiol, 1998, 45(1):105-111.
    [139] Ai LS, Lin CH, Hsieh M, et al. Arginine methylation of a glycine and arginine rich peptide derived from sequences of human FMRP and fibrillarin[J]. Proc Natl Sci Counc Repub China B, 1999, 23(4):175-180.
    [140] Lin CH, Huang HM, Hsieh M, et al. Arginine methylation of recombinant murine fibrillarin by protein arginine methyltransferase[J]. J Protein Chem, 2002, 21(7):447-453.
    [141] Sedkov Y, Cho E, Petruk S, et al. Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila[J]. Nature, 2003, 426(6962):78-83.
    [142] Kwak YT, Guo J, Prajapati S, et al. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties[J]. Mol Cell, 2003, 11(4):1055-1066.
    [143] Yadav N, Lee J, Kim J, et al. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice[J]. Proc Natl Acad Sci U S A, 2003, 100(11):6464-6468.
    [144] Miranda TB, Khusial P, Cook JR, et al. Spliceosome Sm proteins D1, D3, and B/B' are asymmetrically dimethylated at arginine residues in the nucleus[J]. Biochem Biophys Res Commun, 2004, 323(2):382-387.
    [145] Whitehead SE, Jones KW, Zhang X, et al. Determinants of the interaction of the spinal muscular atrophy disease protein SMN with the dimethylarginine-modified box H/ACA small nucleolarribonucleoprotein GAR1[J]. J Biol Chem, 2002, 277(50):48087-48093.
    [146] Azzouz TN, Pillai RS, Dapp C, et al. Toward an assembly line for U7 snRNPs: interactions of U7-specific Lsm proteins with PRMT5 and SMN complexes[J]. J Biol Chem, 2005, 280(41):34435-34440.
    [147] Chie L, Cook JR, Chung D, et al. A protein methyl transferase, PRMT5, selectively blocks oncogenic ras-p21 mitogenic signal transduction[J]. Ann Clin Lab Sci, 2003, 33(2):200-207.
    [148] Pollack BP, Kotenko SV, He W, et al. The human homologue of the yeast proteins Skb1 and Hsl7p interacts with Jak kinases and contains protein methyltransferase activity[J]. J Biol Chem, 1999, 274(44):31531-31542.
    [149] Grimmler M, Bauer L, Nousiainen M, et al. Phosphorylation regulates the activity of the SMN complex during assembly of spliceosomal U snRNPs[J]. EMBO Rep, 2005, 6(1):70-76.
    [150] Schumperli D, Pillai RS. The special Sm core structure of the U7 snRNP: far-reaching significance of a small nuclear ribonucleoprotein[J]. Cell Mol Life Sci, 2004, 61(19-20):2560-2570.
    [151] Meister G, Fischer U. Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs[J]. EMBO J, 2002, 21(21):5853-5863.
    [152] Friesen WJ, Wyce A, Paushkin S, et al. A novel WD repeat protein component of the methylosome binds Sm proteins[J]. J Biol Chem, 2002, 277(10):8243-8247.
    [153] Meister G, Eggert C, Buhler D, et al. Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln[J]. Curr Biol, 2001, 11(24):1990-1994.
    [154] Pal S, Vishwanath SN, Erdjument-Bromage H, et al. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes[J]. Mol Cell Biol, 2004, 24(21):9630-9645.
    [155] Liu Z, Zhou Z, Chen G, et al. A putative transcriptional elongation factor hIws1 is essential for mammalian cell proliferation[J]. Biochem Biophys Res Commun, 2007, 353(1):47-53.
    [156] Dacwag CS, Ohkawa Y, Pal S, et al. The protein arginine methyltransferase Prmt5 is required for myogenesis because it facilitates ATP-dependent chromatin remodeling[J]. Mol Cell Biol, 2007, 27(1):384-394.
    [157] Metzger E, Wissmann M, Yin N, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription[J].Nature,2005, 437(7057):436-439.
    [158] Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation[J]. Nat Rev Mol Cell Biol, 2007, 8(4):307-318.
    [159] Forneris F, Binda C, Vanoni MA, et al. Human histone demethylase LSD1 reads the histone code[J]. J Biol Chem, 2005, 280(50):41360-41365.
    [160] Gamble MJ, Kraus WL. Visualizing the histone code on LSD1[J]. Cell, 2007, 128(3):433-434.
    [161] Wang Y, Wysocka J, Sayegh J, et al. Human PAD4 regulates histone arginine methylation levels via demethylimination[J]. Science, 2004, 306(5694):279-283.
    [162] Denman RB. PAD: the smoking gun behind arginine methylation signaling? [J] Bioessays, 2005, 27(3):242-246.
    [163] Klose RJ, Yamane K, Bae Y, et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36[J]. Nature, 2006, 442(7100):312-316.
    [164] Trojer P, Reinberg D. Histone lysine demethylases and their impact on epigenetics[J]. Cell, 2006,125(2):213-217.
    [165] Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins[J]. Nature, 2006, 439(7078):811-816.
    [166] Whetstine JR, Nottke A, Lan F, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases[J]. Cell, 2006, 125(3):467-481.
    [167] Lang A. Physiology of Flowering[J]. Annual Review of Plant Physiology, 1952, 3:265-306.
    [168] Bernier G. The Control of Floral Evocation and Morphogenesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1988, 39:175-219
    [169] Amasino RM. Flowering time: a pathway that begins at the 3' end[J]. Curr Biol, 2003, 13(17):R670-672.
    [170] Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity[J]. Plant Cell, 2002, 14 Suppl:S111-130.
    [171] Simpson GG, Dean C. Arabidopsis, the Rosetta stone of flowering time? [J]Science, 2002, 296(5566):285-289.
    [172] He Y, Amasino RM. Role of chromatin modification in flowering-time control[J]. Trends Plant Sci, 2005, 10(1):30-35.
    [173] Suarez-Lopez P, Wheatley K, Robson F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature, 2001, 410(6832):1116-1120.
    [174] Guo H, Duong H, Ma N, et al. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism[J]. Plant J, 1999, 19(3):279-287.
    [175] Fowler S, Lee K, Onouchi H, et al. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains[J]. EMBO J, 1999, 18(17):4679-4688.
    [176] Putterill J, Robson F, Lee K, et al. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors[J]. Cell, 1995, 80(6):847-857.
    [177] Park DH, Somers DE, Kim YS, et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene[J]. Science, 1999, 285(5433):1579-1582.
    [178] Huq E, Tepperman JM, Quail PH. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2000, 97(17):9789-9794.
    [179] Curtis IS, Nam HG, Yun JY, et al. Expression of an antisense GIGANTEA (GI) gene fragment in transgenic radish causes delayed bolting and flowering[J]. Transgenic Res, 2002, 11(3):249-256.
    [180] Coupland G, Igeno MI, Simon R, et al. The regulation of flowering time by daylength in Arabidopsis[J]. Symp Soc Exp Biol, 1998, 51:105-110.
    [181] Wilson RN, Heckman JW, Somerville CR. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days[J]. Plant Physiol, 1992, 100(1):403-408.
    [182] Michaels SD, Amasino RM. The gibberellic acid biosynthesis mutant ga1-3 of Arabidopsis thaliana is responsive to vernalization[J]. Dev Genet, 1999, 25(3):194-198.
    [183] Dill A, Sun T. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana[J]. Genetics, 2001, 159(2):777-785.
    [184] Eriksson S, Bohlenius H, Moritz T, et al. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation[J]. Plant Cell, 2006, 18(9):2172-2181.
    [185] Silverstone AL, Mak PY, Martinez EC, et al. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana[J]. Genetics, 1997, 146(3):1087-1099.
    [186] Jacobsen SE, Binkowski KA, Olszewski NE. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis[J]. Proc Natl Acad Sci U S A, 1996, 93(17):9292-9296.
    [187] Shindo C, Aranzana MJ, Lister C, et al. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis[J]. Plant Physiol, 2005, 138(2):1163-1173.
    [188] Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering[J]. Plant Cell, 1999, 11(5):949-956.
    [189] Clarke JH, Dean C. Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana[J]. Mol Gen Genet, 1994, 242(1):81-89.
    [190] Ratcliffe OJ, Kumimoto RW, Wong BJ, et al. Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold[J]. Plant Cell, 2003, 15(5):1159-1169.
    [191] Purugganan MD, Rounsley SD, Schmidt RJ, et al. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family[J]. Genetics, 1995, 140(1):345-356.
    [192] Gregis V, Sessa A, Colombo L, et al. AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis[J]. Plant Cell, 2006, 18(6):1373-1382.
    [193] Kankel MW, Ramsey DE, Stokes TL, et al. Arabidopsis MET1 cytosine methyltransferase mutants[J]. Genetics, 2003, 163(3):1109-1122.
    [194] Gendall AR, Levy YY, Wilson A, et al. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis[J]. Cell, 2001, 107(4):525-535.
    [195] Levy YY, Mesnage S, Mylne JS, et al. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control[J]. Science, 2002, 297(5579):243-246.
    [196] Sung S, Amasino RM. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3[J]. Nature, 2004, 427(6970):159-164.
    [197] Parcy F. Flowering: a time for integration[J]. Int J Dev Biol, 2005, 49(5-6):585-593.
    [198] Lee I, Aukerman MJ, Gore SL, et al. Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis[J]. Plant Cell, 1994, 6(1):75-83.
    [199] Aukerman MJ, Lee I, Weigel D, et al. The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression[J]. Plant J, 1999, 18(2):195-203.
    [200] Lim MH, Kim J, Kim YS, et al. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C[J]. Plant Cell, 2004, 16(3):731-740.
    [201] Macknight R, Bancroft I, Page T, et al. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains[J]. Cell, 1997, 89(5):737-745.
    [202] Schomburg FM, Patton DA, Meinke DW, et al. FPA, a gene involved in floral induction inArabidopsis, encodes a protein containing RNA-recognition motifs[J]. Plant Cell, 2001, 13(6):1427-1436.
    [203] Eckardt NA. Alternative splicing and the control of flowering time[J]. Plant Cell, 2002, 14(4):743-747.
    [204] Macknight R, Duroux M, Laurie R, et al. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA[J]. Plant Cell, 2002, 14(4):877-888.
    [205] Quesada V, Macknight R, Dean C, et al. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time[J]. EMBO J, 2003, 22(12):3142-3152.
    [206] Simpson GG, Dijkwel PP, Quesada V, et al. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition[J]. Cell, 2003, 113(6):777-787.
    [207] Sarnowski TJ, Swiezewski S, Pawlikowska K, et al. AtSWI3B, an Arabidopsis homolog of SWI3, a core subunit of yeast Swi/Snf chromatin remodeling complex, interacts with FCA, a regulator of flowering time[J]. Nucleic Acids Res, 2002, 30(15):3412-3421.
    [208] Ausin I, Alonso-Blanco C, Jarillo JA, et al. Regulation of flowering time by FVE, a retinoblastoma-associated protein[J]. Nat Genet, 2004, 36(2):162-166.
    [209] Kim HJ, Hyun Y, Park JY, et al. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana[J]. Nat Genet, 2004, 36(2):167-171.
    [210] He Y, Michaels SD, Amasino RM. Regulation of flowering time by histone acetylation in Arabidopsis[J]. Science, 2003, 302(5651):1751-1754.
    [211] Yang CH, Chou ML. FLD interacts with CO to affect both flowering time and floral initiation in Arabidopsis thaliana[J]. Plant Cell Physiol, 1999, 40(6):647-650.
    [212] Blazquez MA, Ahn JH, Weigel D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J]. Nat Genet, 2003, 33(2):168-171.
    [213] Simpson GG, Gendall AR, Dean C. When to switch to flowering[J]. Annu Rev Cell Dev Biol, 1999, 15:519-550.
    [214] Yu Q, Ma H. The flowering transition and florigen[J]. Curr Biol, 2001, 11(20):R815.
    [215] Hepworth SR, Valverde F, Ravenscroft D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. EMBO J, 2002, 21(16):4327-4337.
    [216] Moon J, Suh SS, Lee H, et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. Plant J, 2003, 35(5):613-623.
    [217] Huang T, Bohlenius H, Eriksson S, et al. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering[J]. Science, 2005, 309(5741):1694-1696.
    [218] Carmona MJ, Calonje M, Martinez-Zapater JM. The FT/TFL1 gene family in grapevine[J]. Plant Mol Biol, 2007, 63(5):637-650.
    [219] Bohlenius H, Huang T, Charbonnel-Campaa L, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science, 2006, 312(5776):1040-1043.
    [220] Blazquez MA. Illuminating flowers: CONSTANS induces LEAFY expression[J]. Bioessays, 1997, 19(4):277-279.
    [221] Nilsson O, Lee I, Blazquez MA, Weigel D. Flowering-time genes modulate the response to LEAFY activity[J]. Genetics, 1998, 150(1):403-410.Arabidopsis, encodes a protein containing RNA-recognition motifs[J]. Plant Cell, 2001, 13(6):1427-1436.
    [203] Eckardt NA. Alternative splicing and the control of flowering time[J]. Plant Cell, 2002, 14(4):743-747.
    [204] Macknight R, Duroux M, Laurie R, et al. Functional significance of the alternative transcript processing of the Arabidopsis floral promoter FCA[J]. Plant Cell, 2002, 14(4):877-888.
    [205] Quesada V, Macknight R, Dean C, et al. Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time[J]. EMBO J, 2003, 22(12):3142-3152.
    [206] Simpson GG, Dijkwel PP, Quesada V, et al. FY is an RNA 3' end-processing factor that interacts with FCA to control the Arabidopsis floral transition[J]. Cell, 2003, 113(6):777-787.
    [207] Sarnowski TJ, Swiezewski S, Pawlikowska K, et al. AtSWI3B, an Arabidopsis homolog of SWI3, a core subunit of yeast Swi/Snf chromatin remodeling complex, interacts with FCA, a regulator of flowering time[J]. Nucleic Acids Res, 2002, 30(15):3412-3421.
    [208] Ausin I, Alonso-Blanco C, Jarillo JA, et al. Regulation of flowering time by FVE, a retinoblastoma-associated protein[J]. Nat Genet, 2004, 36(2):162-166.
    [209] Kim HJ, Hyun Y, Park JY, et al. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana[J]. Nat Genet, 2004, 36(2):167-171.
    [210] He Y, Michaels SD, Amasino RM. Regulation of flowering time by histone acetylation in Arabidopsis[J]. Science, 2003, 302(5651):1751-1754.
    [211] Yang CH, Chou ML. FLD interacts with CO to affect both flowering time and floral initiation in Arabidopsis thaliana[J]. Plant Cell Physiol, 1999, 40(6):647-650.
    [212] Blazquez MA, Ahn JH, Weigel D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana[J]. Nat Genet, 2003, 33(2):168-171.
    [213] Simpson GG, Gendall AR, Dean C. When to switch to flowering[J]. Annu Rev Cell Dev Biol, 1999, 15:519-550.
    [214] Yu Q, Ma H. The flowering transition and florigen[J]. Curr Biol, 2001, 11(20):R815.
    [215] Hepworth SR, Valverde F, Ravenscroft D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. EMBO J, 2002, 21(16):4327-4337.
    [216] Moon J, Suh SS, Lee H, et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J]. Plant J, 2003, 35(5):613-623.
    [217] Huang T, Bohlenius H, Eriksson S, et al. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering[J]. Science, 2005, 309(5741):1694-1696.
    [218] Carmona MJ, Calonje M, Martinez-Zapater JM. The FT/TFL1 gene family in grapevine[J]. Plant Mol Biol, 2007, 63(5):637-650.
    [219] Bohlenius H, Huang T, Charbonnel-Campaa L, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees[J]. Science, 2006, 312(5776):1040-1043.
    [220] Blazquez MA. Illuminating flowers: CONSTANS induces LEAFY expression[J]. Bioessays, 1997, 19(4):277-279.
    [221] Nilsson O, Lee I, Blazquez MA, Weigel D. Flowering-time genes modulate the response to LEAFY activity[J]. Genetics, 1998, 150(1):403-410.
    [238] Zemach A, Li Y, Ben-Meir H, et al. Different domains control the localization and mobility of LIKE HETEROCHROMATIN PROTEIN1 in Arabidopsis nuclei[J]. Plant Cell, 2006, 18(1):133-145.
    [239] Kinoshita T, Harada JJ, Goldberg RB, et al. Polycomb repression of flowering during early plant development[J]. Proc Natl Acad Sci U S A, 2001, 98(24):14156-14161.
    [240] Haung MD, Yang CH. EMF genes interact with late-flowering genes to regulate Arabidopsis shoot development[J]. Plant Cell Physiol, 1998, 39(4):382-393.
    [241] Noh YS, Amasino RM. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis[J]. Plant Cell, 2003, 15(7):1671-1682.
    [242] Hartmann U, Hohmann S, Nettesheim K, et al. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis[J]. Plant J, 2000, 21(4):351-360.
    [243] Lee JH, Yoo SJ, Park SH, et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Genes Dev, 2007, 21(4):397-402.
    [244] Murtas G, Reeves PH, Fu YF, et al. A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates[J]. Plant Cell, 2003, 15(10):2308-2319.
    [245] Reeves PH, Murtas G, Dash S, et al. early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC[J]. Development, 2002, 129(23):5349-5361.
    [246] Zhang H, van Nocker S. The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C[J]. Plant J, 2002, 31(5):663-673.
    [247] Aubert D, Chen L, Moon YH, et al. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis[J]. Plant Cell, 2001, 13(8):1865-1875.
    [248] Chou ML, Haung MD, Yang CH. EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana[J]. Plant Cell Physiol, 2001, 42(5):499-507.
    [249] Henderson CD. Control of Arabidopsis flowering: the chill before the bloom[J]. Development, 2004, 131 (16):3829-3838.
    [250] Goodrich J, Tweedie S. Remembrance of things past: chromatin remodeling in plant development[J]. Annu Rev Cell Dev Biol, 2002, 18:707-746.
    [251] Brzeski J, Jerzmanowski A. Plant chromatin -- epigenetics linked to ATP-dependent remodeling and architectural proteins[J]. FEBS Lett, 2004, 567(1):15-19.
    [252] Bantignies F, Cavalli G. Cellular memory and dynamic regulation of polycomb group proteins[J]. Curr Opin Cell Biol, 2006, 18(3):275-283.
    [253] Andreu-Vieyra C, Matzuk MM. Epigenetic modifications by Trithorax group proteins during early embryogenesis: do members of Trx-G function as maternal effect genes? [J] Reprod Biomed Online, 2007, 14(2):201-207.
    [254] Bastow R, Mylne JS, Lister C, et al. Vernalization requires epigenetic silencing of FLC by histone methylation[J]. Nature, 2004, 427(6970):164-167.
    [255] He Y, Doyle MR, Amasino RM. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit inArabidopsis[J]. Genes Dev, 2004, 18(22):2774-2784.
    [256] Sung S, Schmitz RJ, Amasino RM. A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis[J]. Genes Dev, 2006, 20(23):3244-3248.
    [257] Deng W, Liu C, Pei Y, et al. Involvement of the Histone Acetyltransferase AtHAC1 in the Regulation of Flowering Time via Repression of FLC in Arabidopsis[J]. Plant Physiol, 2007, 10.1104/pp.107.095521:1-24.
    [258] Greb T, Mylne JS, Crevillen P, et al. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC[J]. Curr Biol, 2007, 17(1):73-78.
    [259] Han SK, Song JD, Noh YS, et al.Role of plant CBP/p300-like genes in the regulation of flowering time[J]. Plant J, 2007, 49(1):103-114.
    [260] Kim SY, Michaels SD. SUPPRESSOR OF FRI 4 encodes a nuclear-localized protein that is required for delayed flowering in winter-annual Arabidopsis[J]. Development, 2006, 133(23):4699-4707.
    [261] Sung S, Amasino RM. Remembering winter: toward a molecular understanding of vernalization[J]. Annu Rev Plant Biol, 2005, 56:491-508.
    [262] Krichevsky A, Gutgarts H, Kozlovsky SV, et al. C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier[J]. Dev Biol, 2007, 303(1):259-269.
    [263] Noh B, Lee SH, Kim HJ, et al. Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time[J]. Plant Cell, 2004, 16(10):2601-2613.
    [264] Amasino RM. Vernalization and flowering time[J]. Curr Opin Biotechnol, 2005, 16(2):154-158.
    [265] Sung S, Amasino RM. Vernalization and epigenetics: how plants remember winter[J]. Curr Opin Plant Biol, 2004, 7(1):4-10.
    [266] Schmitz RJ, Amasino RM. Vernalization: A model for investigating epigenetics and eukaryotic gene regulation in plants[J]. Biochim Biophys Acta, 2007,2:1-10.
    [267] Sung S, He Y, Eshoo TW, et al. Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1[J]. Nat Genet, 2006, 38(6):706-710.
    [268] Peng M, Cui Y, Bi YM, et al. AtMBD9: a protein with a methyl-CpG-binding domain regulates flowering time and shoot branching in Arabidopsis[J]. Plant J, 2006, 46(2):282-296.
    [269] Zemach A, Li Y, Wayburn B, et al. DDM1 binds Arabidopsis methyl-CpG binding domain proteins and affects their subnuclear localization[J]. Plant Cell, 2005, 17(5):1549-1558.
    [270] Sarnowski TJ, Rios G, Jasik J, et al. SWI3 subunits of putative SWI/SNF chromatin-remodeling complexes play distinct roles during Arabidopsis development[J]. Plant Cell, 2005, 17(9):2454-2472.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.