模拟高原缺氧和氰化钠中毒对大鼠COX的影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国高原地区幅员辽阔,低压缺氧是高原地区的主要环境特征,大部队进驻高原容易产生缺氧反应,严重时可导致肺水肿、脑水肿等急性疾病。氢氰酸是速杀性化学战剂,能强烈抑制细胞呼吸链功能,造成组织氧利用障碍和能量产生减少。高原缺氧条件下氰类毒剂中毒时,氰化物毒性增加,死亡率大幅度提高,救治药物的药效也显著下降,其机制尚不清楚。由于缺氧和氰化物的作用靶点都是机体内氧利用和能量产生过程的关键环节,推测可能是缺氧导致动物对氰化物更为敏感,或者是氰化物代谢异常所致。
     一氧化氮是一种重要的第二信使,其参与的病理生理过程有血管舒张、血小板聚集、凋亡及神经传递。而细胞色素氧化酶(cytochrome C oxidase,COX)是细胞呼吸链上的重要递氢体,氰化物就是主要通过抑制COX的活力而导致中毒。研究发现,一氧化氮通过抑制COX活力调控细胞呼吸。而且,抑制效力取决于氧气与一氧化氮的相对浓度。近期研究发现,大鼠海拔5000m连续减压15d,COX活力持续降低。而我们先期的研究业已证实,高原4000m缺氧和氰化钠中毒较之平原单纯氰化钠中毒,COX活力降低更为明显,其机制不明。因此,我们设想一氧化氮可能在调控COX的活性中起重要作用,本研究旨在为高原缺氧条件下氰化物的中毒救治提供理论依据。
     因此,本研究采用低压舱模拟高原缺氧环境,研究缺氧和氰化钠中毒对COX的影响机制和干预措施的效果。
     结果:1.本研究通过测定家兔和大鼠的血氰浓度,对比研究了平原和模拟高原缺氧条件下氰离子的体内过程规律。主要毒代学参数如下:平原条件下,t_(1/2)为58.174,AUC(0-t)为126.388 mg/(L·min),AUC_((0-∞)):168.566 mg/(L·min),CL/F为0.013L/min/kg,V/F为0.945L/kg,MRT值为46.193。模拟高原条件下:t_(1/2)为61.116,AUC(0-t)为209.554mg/(L·min),AUC_((0-∞))值为340.074 mg/(L·min)CL/F为0.007L/(min·kg),V/F为0.58L/kg,MRT(0-t)值为51.142。同时观察了与氰离子代谢相关因素在缺氧条件下的变化特点。结果提示:(1)模拟高原缺氧条件下氰化钠中毒血红蛋白含量升高;(2)高铁血红蛋白含量变化不明显(P>0.05);(3)尿中硫氰酸盐排出受抑制;(4)COX、硫氰酸生成酶及3-巯基-丙酮酸硫转移酶活性降低。2.肝、肾病理学研究显示:模拟高原缺氧条件下氰化钠中毒导致的肝、肾损伤重于平原,平原组大鼠氰化钠中毒肝细胞以充血、淤血、颗粒样变为主要病变,在中毒6小时基本恢复。肾脏病变以肾小球充血、水肿,肾小管胞浆嗜酸性变为主要病变,高原重于平原,且病变持续加重,不易恢复;3.Western blot实验分析结果显示,与对照组比较,高原缺氧和氰化钠中毒COX亚基Ⅰ、Ⅳ蛋白表达明显升高,NRF-1蛋白表达降低。4.RT-PCR检测结果显示:(1)高原缺氧和氰化钠中毒及人参皂甙干预组COX I mRNA的转录水平明显上调(P<0.05);(2)平原氰化钠中毒组COXⅣmRNA表达增高(P<0.01);(3)氰化钠中毒大鼠NRF-1 mRNA均降低,高原氰化钠中毒牛磺酸干预组降低明显(P<0.05)。5.平原及高原氰化钠中毒大鼠肝脏总NOS活性降低;iNOS活性升高,平原iNOS活性升高更明显。平原NO含量升高并在中毒1h达到峰值,高原NO含量先升高后降低。6.与平原组比较,氯霉素、L-NAME干预氰化钠中毒大鼠肝脏COX活性均出现了降低,氯霉素干预COX活性下降更为明显。7.牛磺酸、人参皂甙单独及复方使用均可拮抗氰化钠中毒所致COX活性降低。
     结论1.模拟高原缺氧条件下氰化钠在体内的代谢动力学呈一室模型。缺氧明显影响氰化钠在体内的代谢过程,氰化物代谢异常可能是高原氰化钠毒性增加的主要原因。2.光镜及超微病理均提示高原组病理损伤持续加重,不易恢复。3.高原缺氧和氰化钠中毒可抑制肝脏COX活性,减少肝脏NO的产生。4.高原缺氧和氰化钠中毒导致COXⅠ和COXⅣ蛋白水平上调,NRF-1蛋白表达下调。表明高原缺氧和氰化钠中毒可促进COX亚基Ⅰ、Ⅳ蛋白的合成。5.L-NAME干预对COX活性有保护作用。6.牛磺酸、人参皂甙单独及联合使用均可减弱氰化钠中毒所致COX活性降低,有一定的保护作用。
China is a vast plateau region. Hypobaric hypoxia at high altitude is the main feature of the environment. Hypoxia response can lead to severe pulmonary edema, cerebral edema and other acute diseases when the troops enter high altitude area. Hydrocyanic acid is a fast-killing chemical warfare agent, which can strongly inhibit cell respiratory chain function, causing obstacles to the use of oxygen and generate energy reduction. Cyanide toxicity, mortality has been greatly improved induced by cyanide administration under the condition of plateau hypoxia. Meanwhile, treatment efficacy of the drug decreased significantly but the poisonous mechanism remains unclear. To understand the reason, we proposed that hypoxia and cyanide intoxication may lead to hypoxia animals are more sensitive to the abnormal metabolism of cyanide ion.
     Nitric Oxide(NO) participates in the pathological and physiological processes of vasodilatation, platelet aggregation, apoptosis and neural transmission as an important second messenger. Cytochrome oxidase is an essential hydrogen carrier in cell respiration chain. Cyanide is mainly through inhibiting the activity of cytochrome oxidase resulting in poisoning. It has been found that NO regulates the cell respiration by inhibiting the activity of cytochrome oxidase. Moreover, the effect of inhibition depends on the relative concentration between oxygen and NO. Researchers found that the cytochrome oxidase activity continued reducing in rats under the condition of decompression continuously 15days on 5000m above sea level. Our previous research has confirmed that the activity of cytochrome oxidase reduced more pronounced at 4000m high altitude hypoxia combined sodium cyanide poisoning compared with the plain poisoning, with the mechanism unknown. Therefore we suppose the NO may play an important role in regulating the activity of cytochrome oxidase. The purpose of this study is to provide a theoretical evidence for the treatment of cyanide poisoning under plateau hypoxia.
     In view of this, the low-pressure oxygen cabin simulated plateau environment was used to study the effects of plateau hypoxia combined NaCN intoxicatin on COX and the role of preconditioning.
     Results: 1.The aim of this study was to measure the blood cyanide ion concentration of rabbits and rats under the condition of plateau hypoxia for understanding its metabolism mechanism. The main toxicokinetics parameters for plain toxicant group were as follows: t_(1/2) (58.174min), AUC_(0~t)( 126.388 mg/(L·min)), AUC(0~∞)168.566 mg/(L·min), CL/F(0.013L/min/kg), V/F(0.945L/kg) and MRT(0~t) value (46.193). For plateau group were: t_(1/2) (61.116), AUC_(0~t)(209.554mg/L·min), AUC_(0~∞) (340.074 mg/(L·min)),CL/F(0.007L/min/kg), V/F(0.58L/kg) and MRT(0~t) value(51.142). Correlative factors of metabolism were also investigated under hypobaric hypoxia. Compared with plain NaCN intoxication group, we found that (1) hypoxia combined with NaCN intoxication induced hemoglobin concentration enhancement; (2) MHb content did not change significantly (P>0.05); (3) Urinary thiocyanate discharge was inhibited;(4) the activity of cytochrome oxidase, rhodanese and 3-MST decreased. 2. Pathologic diagnosis showed that liver and kidney injury induced by NaCN intoxication at high altitude was more serious than in plain intoxicant. 3. Compared with control group, Western blot experimental results suggested that the expression of COX I and COX IV protein markedly elevated. Meanwhile, NRF-1 protein expression decreased. 4. RT-PCR results revealed that: (1)The transcriptional level of COX I mRNA for plateau hypoxia combined NaCN intoxicant and Saponius of Panax Ginseng preconditioning group was up-regulation (P<0.05); (2) The transcriptional level of COX IV mRNA for NaCN plain intoxication group enhanced (P<0.01); (3) NRF-1 mRNA expression level decreased for all group.Furthermore,plateau hypoxia combined NaCN intoxication treated with taurine preconditioning decreased significantly(P<0.05). 5. Both plain and plateau NaCN administration produced the decrease of total NOS activity and the increase of iNOS activity of rat liver. The activity of iNOS at 308m increased more significantly than at 4000m. NO concentration of plain group reached a peak value at 1h. However, the NO concentration of plateau group increased at the time point of 30min, and then decreased. 6. Compared with plain group, chloramphenicol and L-NAME preconditioning produced the decrease of COX activity, and the former declined more significantly. 7. Taurine and Saponius of Panax Ginseng used alone or compound can be antagonistic to the decrease of COX acitivity induced by NaCN intoxication.
     Conclusion 1.Under the condition of plain and plateau environment, the pharmacokinetics of rabbits induced by NaCN injection was characterized by one-compartment model. Hypoxia could markedly disturb the metabolism process of NaCN in vivo. Cyanide metabolic abnormalities may be mainly account for the increase of cyanide toxicity at high altitude. 2.Light microscope and ultrastructural pathological study results suggested that pathology damage sustained increase, not easy to restore. 3. Plateau hypoxia combined NaCN intoxication can affect the COX activity, and inhibit NO production of the liver. 4. Plateau hypoxia combined NaCN intoxication resulted in up-regulation of COX I and COX IV protein expression level, and the down regulation of NRF-1 protein expression. It showed that plateau hypoxia combined NaCN intoxication promote the synthesis of COX I and COX IV protein. 5. L-NAME played a protective role on the COX activity.6. Taurine and Saponius of Panax Ginseng used alone or compound had a protective effect on the decrease of COX induced by NaCN intoxication.
引文
1. 董兆君,吴强,赵吉青,等.化学中毒与急性缺氧的双因素联合效应的实验研究.第三军医大学学报,2006,25(12):1029-1033
    2. 叶华虎,袁菊芳,王艳静,等.缺氧条件下氰化物的毒性变化及4-DMAP的解毒效果研究.高原医学杂志,2006,16(1):1-4
    3. Morgan RL,Way JL. Fluorometric determination of cyanide in biological fluids with pyridoxal[J]J Analy Toxicol.1980,4:78-81
    4. 张绍林,吴玉宸,余祥美,等.临床检验[M].成都:四川科学技术出版社,1992,55-57
    5. 上海市医学化验所.临床生化检验[M].上海:上海科学技术出版社,1982,131
    6. 陆新华,沈国芳.氰化物的体内代谢及其检测应用的研究[J]化工劳动卫生通讯,1995,12(2):94-95
    7. Bogusz M, Moroz J, Kanski J, et al. Blood cyanide and thiocyanate concentrations after administration of sodium nitroprusside as hypotensive agent in neurosurgery[J]. Clin Chem, 1979,25:60-63
    8. Baar S. The micro determination of cyanide:Its application to the analysis of whole blood[J].Analyst, 1966,91:268-272.
    9. Ballantyne B, Bright J, Willisms P. An experimental assessment of decreases in measurable cyanide levels in biological fluids[J].J Forensic Sci Soc,1973,13:111-117
    10. Vesey CJ, Wilson J. Red cell cyanide[J]. J Pharm Pharmacol, 1978,30:20-26
    11. Sunshine I, Finkle B. The necessity for tissue studies in fatal cyanide poisoning[J].Int Arch Gewerbepath Gewerbehyg,1964,20:558-561
    12. Ballantyne B. In vitro production of cyanide in normal human blood and the influence of thiocyanate and storage temperature[J]. Clin Toxicol 1977,11:173-193
    13. Egekeze JO, Oehme FW. Direct potentiometric method for the determination of cyanide in biological materials[J].J Anal Toxicol, 1979,3:119-124
    14. Christel D, Eyer P, Hegemann M, et al. Pharmacokinetics of cyanide in poisoning of dogs, and the effect of 4-dimethylaminophenol or thiosulfate[J]. Archives of Toxicology, 1977,38:177-189
    15. 赵杰,朱明学,王学敏,等.氰化氢和中毒对大鼠血中氰离子和COX活力的影响.毒理学杂志,2006,20(3):174-175
    16.崔建华,张西洲,何富文,等.高原肺水肿患者血液流变学及纤溶系统改变的实验研究[J].中国血液流变学杂志,1999,9(4):239-242
    17.袁菊芳,叶华虎,李奇慧.4-DMAP对缺氧红细胞生成高铁血红蛋白的效应特点[J].第三军医大学学报,2003,25(14):1227-1230
    18.彭文彬,章卫东,王琴芳.一起氰化物中毒事故调查.职业与健康,2002,18:22
    19.卢启冰.某电镀厂发生急性氰化物中毒事故的调查分析.职业卫生与应急救援,2004,12:202
    20.Cummings TF. The treatment of cyanide poisoning. Occup Med, 2004,54:82-85
    21.Lenka N, Vijayasarathy C, Mullick J, et al.Structural organization and trasription of nuclear genes encoding the mammalian cytochrome c oxidase complex[J].Prog Nucleic Res Mol Biol,1998,61:309-44
    22.Gennis R, Ferguson MS. Structure of cytochrome c oxidase, energy generator of aerobic life[comment].Science,1995,269(5227): 1063-1064
    23.谭小玲,柳君泽,曹利飞,等.缺氧对大脑皮质细胞色素氧化酶亚基Ⅰ、Ⅳ表达协同性的影响[J].生理学报,2002,54(6):519-524
    24.李云鹏,赵远鹏,赛燕,等.高原缺氧对氰离子代谢的影响及其中毒机制研究[J].解放军医学杂志,2008,33(2):132-135
    25.陈锐,刘友生.核呼吸因子研究进展[J].国外医学.生理、病理科学与临床分册,2005,25(1):59-61
    26.Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis[J]. Biochim Biophys Acta.2002,1576(1-2):1-14
    27.Savagner F, Mirebeau D, Jacques C, et al. PGC-1-related coactivator and targets are upregulated in thyroid oncocytoma[J]. Biochem Biophys Res Commun,2003, 310(3):779-784
    28.高钰琪,黄庆愿,刘福玉.促进高原习服措施的研究进展[J]解放军预防医学杂志2002,20(4):306-309
    29.李金芳,周荫庄,屠淑洁.牛磺酸对细胞的保护功能[J].首都师范大学学报(自然科学版),2006,27(1):63-66
    30.赵文莉,张立实,李宁.人参皂甙的药理及毒性作用研究进展[J].国外医学卫生学分册.2008,25(3):165-169
    31.王斌,张声华.人参总皂甙的耐缺氧效应机理研究[J].食品科学.2002,23(8):270-272
    32.董兆君.高原缺氧环境化学毒剂伤的伤情特点[J].解放军医学杂志,2008,33(2):123-125
    33.Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase[J]. FEBS Lett, 1995,369:136-139
    34.Cleeter MWJ, Cooper JM, Darley-Usmar VM, et al. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain by nitricoxide[J]. FEBS Lett. 1994,345:50- 54.
    35.Schweizer M, Richter C. NO potently and reversibly de-energizes mitochondria at low oxygen tension[J]. Biochem. Biophys. Res. Commun.1994, 204:169-175.
    36.Cooper CE.Nitric oxide and cytochrome oxidase:substrate,inhibitor or effector? Trends Biochem.Sci,2002,27:33-39
    37.Sarti P, Giuffre A,Barone MC, et al. Nitric oxide and cytochrome oxidase.from the enzyme to the cell[J].Free Radic.Biol.Med. 2003, 34:509-520
    38.唐禾,蔡颖,董兆君.缺氧和NaCN中毒对大鼠心脏病理和cyt-c活性的影响[J].重庆医学,2008,37(19):482-484
    39.宋熔,柳君泽,陈丽峰.缺氧和氯霉素处理对大鼠脑皮质线粒体氧化呼吸功能及COX活性的影响[J].第三军医大学学报,2005,27(14):1424-1427
    40.李斌,张培建,王红鲜,等.肝脏的氧代谢及与缺氧诱导因子1表达的关系[J]国际外科学杂志,2006,33(1):18-22
    41.Werger RH . Mammalian oxygen sensing , signalling and gene regulation[J]. Exp Biol,2000,203(8): 1253-1263.
    42.Gnaiger E , Kuznetsov AV. Mitochondrial respiration at low levels of oxygen and cytochrome c[J]. Biochem Soc Trans , 2002,30(2):252-258.
    43.张西洲,何富文,崔建华,等.青年人进驻不同海拔高度时血浆NO和NOS的变化中国应用生理学杂志[J],2000,16(2):113-114
    44.吕永达.高原医学与生理学.第一版.天津:天津科技翻译出版公司,1995:1-2
    45.李金芳,周荫庄,屠淑洁,牛磺酸对细胞的保护功能[J],首都师范大学学报(自然科学版),2006,27(1):63-66
    46.王丽娟,王勇.牛磺酸对心血管系统作用的研究进展[J].齐齐哈尔医学院学报,2004,25(11):1270-1272.
    47.李志斌,邹霞英.牛磺酸对大鼠慢性缺氧性肺动脉高压的预防作用[J].中国病理生理杂志,1999,15(5):453-455.
    48.Beall C M.Tibetan and Andean patterns of adaptation to high-altitudehypoxia[J]. Hum.Biol, 2000,72(1):201-228.
    49.Nieber K,Eschke D,Brand A.Brain hypoxia: effects of ATP and adenosine[J]. Prog. Brain. Res, 1999 ,83(1):21-37.
    50.King-HS, Zhang-YH, Fang-LH, Lee-MK. Effects of ginsenosides on bovine adrenaltyrosine hydroxylase[J].J.Ethnopharmacol,1999 ,66(1): 107-111.
    51.陈立波,赵洪序,宋翔翔等.人参皂甙对兔心肌缺血再灌注损伤的保护作用及其浓度-效应关系[J].白求恩医科大学学报,1994,20:442-443.
    52.王浴生主编,中药药理与应用.北京:人民卫生出版社,1983,23-39.
    53.程天民.军事预防医学[M].北京:人民军医出版社,2006,770
    54.朱晓莉,王涤新.氰化物中毒的诊疗研究新进展[J].中华内科志,2007,46(9):786-787
    55.Niknahad H, Ghelichkhani E. Antagonism of cyanide poisoning by dihydroxyacetone [J]. Toxicol Lett,2002,132:95-100
    56.Niknahad H, Khan S, Sood C, et al. Prevention of cyanide-induced cytotoxicity by nutrients in isolated rat hepatocytes[J]. Toxicol Appl Pharmacol,1994,128:271-279
    1.Lindsay AE, Greenbaum AR, Hare DO. Analytical techniques for cyanide in blood and published blood cyanide concentrations from healthy subjects and fire victims[J].Analytica chimca ACTA.2004,511:185-195
    2.Chinaka S, Takayama N, Michigami Y, et al.Simultaneous determination of cyanide and thiocyanate in blood by ion chromatography with fluorescence and ultraviolet detection[J].Journal of Chromatography B,1998(713):353-359
    3.郭景元.法医学.第二版.北京:人民卫生出版社.1993:111
    4.Yoshida M, Adachi J, Watabiki T,et al. A study on house fire victims: age, carboxyhemoglobin, hydrogen cyanide and hemolysis[J]. Forensic Sci Int. 1991,; 52: 13-20.
    5.Moriya F, Hashimoto Y. Potential for error when assessing blood cyanide concentrations in fire victims[J]. J Forensic Sci, 2001,46:1421-1425.
    6.封世珍,王芳琳,于忠山等.不同保存条件对血中氰离子浓度的影响[J].刑事技术,2002(3):14-15
    7.郭鼎,王洪波,张贯石.血和肝脏检材保存条件对氰化物浓度的影响[J].中国法医学杂志,1996,11(4):211-213
    8.Ballantyne B. In vitro production of cyanide in normal blood and the influence of thiocyanate and storage temperature[J]. Clin Toxicol 1977,11:173-193
    9.Calafat AM, Stanfill SB. Rapid quantitation of cyanide in whole blood by automated headspace gas chromatography[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2002,772(1): 131-137.
    10.Epstein J. Estimation of Microquantities of Cyanide [J], Analytical Chemistry 1947, 19: 272.
    11.Lundquist P, Rosling H, Sorbo B .Determination of cyanide in whole blood, erythrocytes, and plasma[J]. Clin Chem 1985,31: 591-595.
    12.魏相德,王家凤.氰化钠对大鼠不同脑区COX活性的影响[J].第三军医大学学报, 1992,14(3):293-295
    13.朱立,陈意生.大鼠实验性急性氰化物中毒时脑组织的病理变化及其发生机制的研究[J].第三军医大学学报,1990,12(5):376-381
    14.Sano A, Takezawa M, Takitani S . Spectrofluorimetric determination of cyanide in blodd and urine with naphthalene-2,3-dialdehyde and taurine [J] Analytica Chimica Acta, 1989,225:351-358
    15.Morgan RL, Way JL. Fluorometric determination of cyanide in biological fluids with pyridoxal[J].Journal of Analytical Toxicology, 1980,4:78-81
    16.Nagy A, Nagy G .Amperometric air gap cell for the measurement of free cyanide[J] Analytica Chimica Acta ,1993,283(2): 795-802
    17.Nguyen B.H.A,Sharp M. Determination of cyanide by cathodic stripping voltammetry at a rotating silver disk electrode Analytica Chimica Acta ,2000,405(1-2): 145-152
    18.Westley AM; Westley J. Voltammetric determination of cyanide and thiocyanate in small biological samples. Anal-Biochem. 1989 , 181(1): 190-4.
    19.LaFuente J.M.G., E.F. Martinez, J.A.V. Perez, et al. Differential-pulse voltammetric determination of low μg1-1 cyanide levels using EDTA, Cu(Ⅱ) and a hanging mercury drop electrode[J]. Analytica Chimica Acta . 2000,410(1-2): 135-142
    20.Yaqoob M, Nabi A, Paul J. Determination of nanomolar concentrations of phosphate in freshwaters using flow injection with luminol chemiluminescence detection [J].Analytica Chimica Acta , 2004, 510(2): 213-218
    21.Pletcher D ,Erika M. Valdes.Determination of cyanide based on a gold microband electrode [J].Analytica Chimica Acta ,1991,248(1): 173-176
    22.Shan D, Mousty C, Cosnier S. Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors[J]. Anal-Chem. 2004 , 76(1): 178-183.
    23.Shan D, Cosnier S, Mousty C . HRP/[Zn-Cr-ABTS] redox clay-based biosensor: design and optimization for cyanide detection[J]. Biosens-Bioelectron. 2004 ,20(2): 390-396.
    24.Smit MH, Rechnitz GA .Toxin detection using a tyrosinase-coupled oxygen electrode[J].Anal-Chem. 1993 , 65(4): 380-385.
    25.Pihlar B , Kosta L.Determination of cyanides by continuous distillation and flow analysis with cylindrical amperometric electrodes [J]. Analytica Chimica Acta 1980,114:275-281
    26.Lindsay AE, Hare DO.The development of an electrochemical sensor for the determination of cyanide in physiological solutions[J].Analytica Chimica Acta , 2006,558:158-163
    27.荣星.气相色谱法检测无机阴离子CN-[J].丹东纺专学报,2002,9(2):9-10
    28.Kage S, Nagata T ,Kudo K. Determination of cyanide and thiocyanate in blood by gas chromatography and gas chromatography-mass spectrometry[J]Journal of Chromatography B, 1996,675: 27-32
    29.Maseda C, Matsubara K, Shiono H. Improved gas chromatography with electron- capture detection using a reaction pre-column for the determination of blood cyanide: A higher content in the left ventricle of fire victims[J].Journal of Chromatography B: Biomedical Sciences and Applications. 1989,490:319-327
    30.Moriya F, Yoshiaki Hashimoto. Chemical factors affecting the interpretation of blood cyanide concentrations in fire victims[J].Legal Medicine,2003(5):S113-S117
    1.Nathan C, Beatrice and Samuel A.. Nitric oxide as a secretory product of mammalian cells[J].FASEB J. 1992,6:3051-3064
    2.Iadecola C, Peiligrmo DA, Mloskowtz MA. Nitric oxide synthase inhibition and cerebrovascular regulation[J]. J. Cereb. Blood Folw Melab. 1994,14:175-192
    3.Laskin JD, Heck DE, Laskin DL.Multifunctional role of nitric oxide in inflamation[J].Trends Endocrinol. Melab, 1994,5:377-382
    4.Vincent SR. Nitric oxide: a radical neurotransmitter in the central nervous system[J]. Prog Neurobiol,1994, 42:129-160.
    5.Knowles RG, Moncada S. Nitric oxide as a signal in blood vessels[J]. Trends Biochem Sci. 1992,17(10):399-402.
    6.刘文武,孙学军,徐伟刚.线粒体一氧化氮合酶及其生物学作用[J].第二军医大学学报,2006,27(6):656-659
    7.Lores Arnaiz S, D Amico G, Czerniczyniec A, et al. Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition by chlorpromazine[J]. Arch Biochem Biophys,2004,430(2): 170-177
    8.Ostermeier C , Iwata S , Michel H. Cytochrome C oxidase[J].Curr Opin Structural Biol,1996,6(4):460 - 466.
    9.Lenka N, vijayasararathy C, Mullick J, et al. Structural organization and transcription of nuclear genes encoding the mammalian cytochrome c oxidase complex[J] prog nucleic Res Mol Biol,1998,61:309-344
    10.Gennis R, Ferguson MS. Strucure of cytochrome c oxidase, energy generator of aerobic life [comment]. Science, 1995,269(5227): 1063-1064
    11.Brown, GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells[J].Biochem J. 1992,284: 1-13,
    12.Mason RP, Shukla H, Antich PP. In vivo oxygen tension and temperature: simultaneous determination using 19FNMR spectroscopy of peruorocarbon[J]. Magn. Reson.Med. 1993,29:296-302.
    13.Jezzard P, Heineman F, Taylor J, et al.Comparison of EPI gradient-echo contrast changes in cat brain caused by respiratory challenges with direct simultaneous evaluation of cerebral oxygenationvia a cranial window[J], NMR Biomed. 1994,7:35 —44.
    
    14. James PE, Bacic G, Grinberg OY, et al.Endotoxin-induced changes in intrarenal pO2,measured by in vivo electron paramagnetic resonance oximetry and magnetic resonance imaging[J]. Free Radic. Biol. Med. 1996,21: 25-34.
    
    15. Jobsis FF. Non-invasive infrared monitoring of cerebral and myocardial oxygen suciency and circulatory parameters[J].Science 1977,198:1264—1267.
    
    16. Buerk DG, Nair P. PtiO_2 and CMRO_2 changes in cortex and hippocampus of aging gerbil brain, J. Appl. Physiol. 74(1993) 1723-1728.
    
    17. Wittenberg BA, Wittenberg JB. Transport of oxygen in muscle[J]. Annu. Rev. Physiol, 1989,51:857-878.
    
    18. Brown GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells[J]. Biochem. J. 1992,284:1 -13.
    
    19. Brand MD, Murphy MP. Control of electron flux through the respiratory chain in mitochondria and cells[J]. Biol. Rev. 1987,62:141-193.
    
    20. Petersen LC, Nicholls P, Degn H. The effect of energizationon the apparent Michaelis-Menten constant for oxygen in mitochondrial respiration[J], Biochem. J.142(1974)247-252.
    
    21. Wilson DF, Rumsey WL, Green TJ, et al.The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration[J]. J. Biol. Chem. 1988,263:2712-2718.
    
    22. Rumsey WL, Schlosser C, Nuutinen EM, et al. Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat[J], J. Biol.Chem. 1990,265:15392-15399.
    
    23. Steinlechner-Maran R, Eberl T, Kunc M, et al. Oxygen dependence of respiration in coupled and uncoupled endothelial cells[J], Am. J. Physiol. 1996,271:C2053-C2061.
    
    24. Wilson DF, Owen CS, Erecinska M. Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: a mathematical model[J], Arch.Biochem. Biophys. 1979,195:494-504.
    
    25. Wilson DF, Mokashi A, Chugh D, et al. The primary oxygen sensor of the cat carotid body is cytochrome a3 of the mitochondrial respiratory chain[J] FEBS Lett. 351 (1994) 370-374.
    
    26. Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal cytochrome oxidase respiration by competing with oxygen at cytochrome oxidase,FEBS Lett. 1994, 356: 295-298.
    
    27. Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology[J]. Biosci. Rep. 1999. 19:51-71;
    
    28. Lane P, Gross SS. Cell signaling by nitric oxide[J]. Semin.Nephrol. 1999.19:215-229;
    
    29. Brennan PA, Moncada S. From pollutant gas to biological messenger: the diverse actions of nitric oxide in cancer[J]. Ann. R.Coll. Surg. Engl. 2002, 84:75-78;
    
    30. Moncada, S.; Erusalimsky, J. D. Does nitric oxide modulate mitochondrial energy generation and apoptosis[J]? Nat. Rev. Mol.Cell Biol. 2002 3:214-220;.
    
    31. Ignarro LJ, Napoli C, Loscalzo J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide:an overview[J]. Circ. Res. 2002.90:21-28;
    
    32. Torres J, Cooper CE, Wilson MT. A common mechanism for the interaction of nitric oxide with the oxidized binuclear centre and oxygen intermediates of cytochrome coxidase[J]. J. Biol. Chem. 1998,273:8756-8766.
    
    33. Gui(?)re A, Sarti P, D'Itri E, et al.On the mechanism of inhibition of cytochrome c oxidase by nitric oxide, J. Biol. Chem. 1996,271:33404-33408.
    
    34. Torres J, Darley-Usmar V, Wilson MT. Inhibition of cytochrome c oxidase in turnover by nitric oxide: mechanism and implications for control of respiration[J]. Biochem. J.1995,312: 169-173.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.