胶原纤维固化金属离子吸附材料的制备及其对蛋白质、酶和微生物的吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据制革原理,将金属离子Fe~(3+)、Zr~(4+)和Al~(3+)固定在胶原纤维上制备了新型吸附材料,并研究了这类吸附材料的物化性质。实验结果表明,胶原纤维对金属离子具有较高的固载容量,其中锆和铁的固载量分别可达563mg/g和319mg/g,且固化的金属离子耐水溶液萃取。胶原纤维与金属离子反应后,其热稳定性和等电点明显比胶原纤维高,此外,比表面积增加,吸附孔径减小。这说明,作为吸附材料使用,胶原纤维固化金属离子具有更好的性能。
     胶原纤维及其固化金属离子材料对蛋白质和酶的吸附实验结果表明:胶原纤维对多种蛋白质和酶具有一定的吸附作用,但其吸附容量远低于胶原纤维固化金属离子的吸附容量,说明固载的金属离子在吸附过程中起着重要作用。胶原纤维固化金属离子材料对蛋白质和酶的最佳吸附pH值随着蛋白质和酶以及金属离子的种类不同而不同。
     研究了胶原纤维固化铁对溶菌酶的吸附特性,包括温度、pH、初始浓度和离子强度对吸附容量的影响,以及吸附等温线、吸附动力学、固定床吸附动力学和吸附剂的解析性能。结果表明:当pH为8.0时,胶原纤维固化铁对溶菌酶的吸附容量最大,这是由于溶菌酶在固定化金属离子材料上的吸附作用主要是通过金属离子与溶菌酶分子上的组氨酸之间的螯合作用而进行的,而大多数蛋白质分子上组氨酸残基的pKa值在5.5~8.5范围内。当氯化钠浓度为0和0.25M时,胶原纤维固化铁对溶菌酶的吸附容量分别为最大和最小,这是由于金属离子亲和色谱对蛋白质的吸附在低盐浓度下主要通过蛋白质与金属离子间的螯合作用进行,在高盐浓度下主要通过疏水作用进行。吸附容量随温度和起始浓度的升高而增大,表明有化学吸附存在。当溶菌酶的起始浓度为2.5 mg/mL,吸附液体积为25mL,吸附剂用量为0.100 g时,30℃条件下胶原纤维固化铁对其的吸附量可达395 mg/g。Langmuir方程可以很好地拟合胶原纤维固化铁对溶菌酶的吸附等温线。当吸附时间为8h时,基本达到吸附平衡,吸附动力学可以用拟二级速度方程进行拟合,计算得到的平衡吸附量与实测值吻合得很好。0.25mol/L氯化钠、0.3mol/L咪唑和0.01mol/L磷酸缓冲液(pH6.0)的混合溶液对溶菌酶的解吸效果最好,其解吸率和酶活保存率分别可达96.7%和94.1%;胶原纤维固化铁吸附柱对溶菌酶具有良好的吸附柱动力学特性,能将溶菌酶大大地浓缩。吸附柱可以再生和重复使用。
     研究了胶原纤维固化铁对溶菌酶和白蛋白的选择性吸附。结果表明:当pH4.0时选择性吸附白蛋白,而当pH8.0时选择性吸附溶菌酶。以胶原纤维固化铁或固化锆为固定床填料,研究其从蛋清粉中分离纯化溶菌酶的效果。结果表明:这两种材料都能够一步从蛋清粉中分离纯化得到溶菌酶,HPLC检测所得溶菌酶的纯度均为100%。用于溶菌酶分离后,胶原纤维固化金属离子吸附材料易于再生。胶原纤维固化铁固定床初次和再生后用于分离纯化溶菌酶时,得率分别为70.5%和70.0%;胶原纤维固化锆固定床初次和再生后用于分离纯化溶菌酶时,得率分别为68.7%和68.4%。
     研究了胶原纤维固化铁对细菌的吸附特性,包括温度、pH、菌龄、初始浓度和离子强度对吸附容量的影响,以及吸附等温线和吸附动力学。结果表明:该吸附材料对细菌具有很强的吸附能力,且吸附迅速。当大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)菌体浓度分别为1.02×10~7cfu/mL和9.8×10~6cfu/mL时,10分钟后胶原纤维固化铁对它们的吸附量分别为2.23×10~9cfu/g和2.72×10~9cfu/g,90分钟基本达到吸附平衡,吸附容量分别达到2.94×10~9cfu/g和3.15×10~9cfu/g。由于其吸附速度非常快,吸附有可能是在材料的表面进行。细菌的培养时间对平衡吸附量具有显著的影响,对处于生长期的细菌吸附能力最强。吸附容量随着离子强度的增加而增加。在pH4.0~10范围内均有较强的吸附作用;温度对平衡吸附量的影响不明显;其吸附平衡符合Freundlich方程。进一步研究表明,胶原纤维固化铁对细菌的吸附动力学可以用拟二级速度方程来描述,由该方程计算得到的平衡吸附量与实测值非常吻合,误差在2%以内。
     研究了胶原纤维固化锆对酵母细胞(S.cerevisiae)的吸附特性和吸附规律,包括温度、pH、菌龄、初始浓度和离子强度对吸附容量的影响,以及吸附等温线和吸附动力学,并研究了固定化酵母细胞连续发酵产乙醇的效果。结果表明:当酵母的起始浓度为5.26×10~5cfu/mL时,吸附量可以达到8.2×10~7cfu/g。当pH6.0时,胶原纤维固化锆对酵母细胞的吸附量最大。酵母的培养时间对吸附量的影响很大,对处于生长期的酵母吸附能力最强。而温度对吸附量的影响不大,其吸附平衡符合Freundlich方程。当溶液中NaCl的浓度大于0.1mol/L时,酵母细胞存活率降低,吸附量减少,溶液中NaCl的浓度小于0.1mol/L时,则影响不明显。胶原纤维固化锆对酵母的吸附较为迅速,5小时基本达到吸附平衡,且吸附动力学可用二级速度方程来描述。胶原纤维固化锆吸附固定化酿酒酵母能进行连续发酵,其发酵产乙醇的能力是游离酵母发酵能力的两倍。
     通过测定微生物细胞表面的接触角和Zeta-电位确定其表面的疏水性及电荷,探讨胶原纤维固化金属离子材料对微生物的吸附机理。由接触角计算微生物细胞表面自由能的结果可知,S.aureus、E.coli和S.cerevisiae三者的表面均具有亲水性,且都具有很强的给电子特性。其表面疏水性大小为:S.aureus>E.coli>S.cerevisiae,这个顺序与胶原纤维固化金属离子对三者的吸附容量结果一致,即微生物细胞表面的疏水性越强,则胶原纤维固化金属离子材料对其的吸附容量越大。这表明,微生物与胶原纤维固化金属离子之间存在疏水作用。Zeta—电位滴定结果表明:在pH4~12范围内这三种微生物细胞表面均带负电荷。在相同条件下,三者表面所带负电荷按从多到少的顺序为:S.aureus、E.coli、S.cerevisiae,这与胶原纤维固化金属离子材料对三者吸附容量的大小顺序一致,即微生物细胞表面所带负电荷越多,胶原纤维固化金属离子材料对其的吸附容量越大。这表明,微生物和胶原纤维固化金属材料之间极可能存在静电吸附。所以,微生物在胶原纤维固化金属离子材料上的吸附是疏水和静电共同作用的结果。
     本研究不仅为这类吸附材料在生物分离工程、医药、环保、生物发酵工程及化学工程等领域获得广泛应用奠定了基础,同时对丰富螯合金属亲和层析(IMAC)理论也具有一定的科学意义。
A series of novel adsorbents were prepared by immobilizing Fe(III), Zr(IV) or Al(III) on collagen fiber matrix according to leather-making principles, and the physical and chemical properties of these adsorbents were studied. The experimental results indicated that collagen fiber exhibited high immobilization capacity to metal ions. The immobilization capacities to Zr(IV) and Fe(III) were 563 mg/g and 319mg/g respectively, and the immobilized metal ion can withstand extraction of water. Both the denaturation temperature and the isoelectric point of collagen fiber were heightened through immobilizing reaction. Furthermore, surface area of metal ions-immobilized collagen fiber was bigger than that of collagen fiber, and porosity of metal ions-immobilized collagen fiber was smallar than that of collagen fiber. These results indicated that, as an adsorbent, metal ions-immobilized collagen fiber might exhibit better performance than collagen fiber.
     The adsorption capacities of proteins and enzymes on collagen fiber or metal ions-immobilized collagen fiber were determined. It was found that collagen fiber can adsorb certain amount of protein and enzyme, but the adsorption capacities were remarkably lower than that of metal ions-immobilized collagen fiber. These results indicted that the immobilized metal ions play an important role in adsorption process. The optimum pH for adsorption depended on the type of protein, enzyme and metal ion used.
     The adsorption behaviors of Fe(III)-immobilized collagen fiber (FICF) to lysozyme were investigated. The effects of temperature, pH, initial concentration and ionic strength on adsorption capacities were studied. The adsorption isotherms, adsorption kinetics, column adsorption kinetics and adsorption-desorption behaviors of lysozyme on FICF were also investigated. The adsorption capacity reached a maximum value around pH8.0. The adsorption of lysozyme on metal-immobilized materials is mainly through chelating bonding between metal ion and histidine residue of lysozyme, and the pK_a values of histidine residue in most of proteins are in the range of 5.5 to 8.5. When the concentrations of NaCl were 0 and 0.25mol/L, the adsorption capacities of lysozyme on FICF were of maximum and minimum respectively. The reason is that proteins were bound by the adsorbent via metal chelating at lower salt concentration, while the adsorption mechanism was hydrophobic interaction at relative higher salt concentration. Adsorption capacity increases with the rise of temperature and the increase of initial concentration of lysozyme. The adsorption capacity of lysozyme on 0.100 g adsorbent was 395 mg/g at 303 K in 25 mL of 2.5 mg/mL lysozyme solution. The adsorption isotherms could be described by the Langmuir equation. The adorption capacity reached equilibrium in 8h in adsorption kinetics experiment. A further analysis indicated that the adsorption kinetics data could be well fitted by the pseudo-second-order rate model, and adsorption capacities calculated by the model were consistent with the actual measurements. The mixture solution of 0.25mol/L NaCl and 0.3mol/L imidazole in 0.01mol/L phosphate buffer (pH6.0) was a good eluant for recovery of lysozyme, and the extents of recovery of lysozyme and enzymic activity were 96.7% and 94.1 % respectively. In addition, FICF had excellent column adsorption kinetic properties and high binding capacity. The adsorptivety of the column was stable in repeated adsorption-desorption cycles.
     The adsorption selectivity of FICF to lysozyme and albumin in their binary mixture solutions was investigated. The results indicated that albumin could be selectively adsorbed at pH4.0, while lysozyme could be selectively adsorbed at pH8.0. FICF and ZICF were used to separate lysozyme from chicken egg white. The experiments showed that they both could separate and purify lysozyme by one step. The purity of separated lysozyme measured by HPLC was 100%. The metal ion-immobilized collagen fiber used for separating lysozyme. could be easily regenareted. The recoveries of lysozyme by using new FICF column and the regenareted column were 70.5% and 70.0% respectively, and were 68.7% and 68.4% by using new ZICF column and regenareted column respectively.
     The adsorption behaviors of FICF to bacteria were investigated. The effects of temperature, pH, the age of bacteria, initial concentration and ionic strength on adsorption capacity were studied. The adsorption isotherms and adsorption kinetics of bacteria on FICF were also investigated. The results indicated that FICF exhibited a high adsorption capacity to bacteria, and the adsorption rate was fast. When initial concentrations of E. coli and S. aureus were 1.02×10~7 cfu/mL and 9.8×10~6cfu/mL, their adsorption capacities were 2.23×10~9cfu/g and 2.74×10~9 cfu/g respectively in 10 min. The adsoption reached equilibrium in 90min in the adsorption kinetics experiment, where the adsorption capacities of E. coli and S. aureus were 2.94×10~9cfu/g and 3.15×10~9 cfu/g respectively. The adsorption rate of bacteria on FICF was fast, probably duo to the fact that the adsorption process took place at the surface of adsorbent. The adsorption capacity was influenced by culture age of the bacteria, which reached a maximum when the bacteria was in exponential phase. The adsorption capacity increased with the rise of ionic strength, but no considerable change was observed as varying temperature and pH(4.0~10.0). The adsorption isotherms could be described by the Freundlich equation. A further analysis indicated that the adsorption kinetics data could be well fitted by the pseudo-second-order rate model, and adsorption capacities calculated by the model were consistent with the actual measurements with error≤2%.
     The adsorption behaviors of ZICF to S.cerevisiae were investigated. The effects of temperature, pH, age of S. cerevisiae, initial concentration and ionic strength on adsorption capacity were studied. The adsorption isotherms and adsorption kinetics of S. cerevisiae on ZICF were also investigated. The adsorption capacity of S. cerevisiae on ZICF were 8.20×10~7 cfu/g when the initial concentration was 5.26×10~5 cfu/mL. The adsorption capacity was significantly influenced by pH, and the optimal pH for adsorption was 6.0. The adsorption capacity was also influenced by culture age of the S. cerevisiae, which reached a maximum when the S. cerevisiae was in stationary phase. But it was almost unchangeable as varying temperature. The adsorption isotherms could be described by the Freundlich model. It was found that the adsorption capacity and the content of living cell were almost unchanged when the concentration of NaCl was smaller than 0.1mol/L, while they were badly decreases as furhter increase of NaCl concentration. The adsoption reached equilibrium in 5h in the adsorption kinetics experiment, and the adsorption kinetics data could be well fitted by the pseudo-second-order rate model. The fermentation experiments exhibited that the yield of ethanol by using immobilized S. cerevisiae was two times higher than that of using dissociative S. cerevisiae.
     In order to investigate the adsorption mechanism between microbial and metal ion-immobilized collagen fiber, the cell surface hydrophobicty and electroatatic charge were determined by measuring contact angle and Zeta potential respectively. The results indicated that the cell surfaces of S. aureus, E. coli and S. cerevisiae was all hydrophilic and electron- offering. The hydrophobicty sequence of microbial was S. aureus>E. coli>S. cerevisiae, which is consistent with the adsorption capacity of metal ion-immobilized collagen fiber to them. That is, the stronger is the hydrophobicty of microbial surface, the higher is the adsorption capacity on metal ion-immobilized collagen fiber. The three kinds of microbial cells possessed a net negative electrostatic surface charge when pH ranged from 4.0 to 12.0. In the same condition, the sequence of net negative electrostatic surface charge of microbial was S. aureus>E. coli>S. cerevisiae, which is also consistent with the adsorption capacity of metal ion-immobilized collagen fiber to them. Namely, the more was net negative electrostatic surface charge of microbial , the higher was the adsorption capacity of metal ion-immobilized collagen fiber to them. So adsorption of microbial on metal ion-immobilized collagen fiber was an interplay of hydrophobic and electrostatic properties of the interacting surfaces.
     These studies would be significant in exploring application of metal ion-immobilized collagen fiber on bio-separation engineering, medicine, environmental protection, fermentation engineering and chemical industry. At the same time, the experimental results could be scientifically valuable to enrich the knowledge of metal-chelated affinity chromatography.
引文
[1] Jabson J C, Hedman P. Large-scale chromatography of proteins[J]. Advance Biochemical Engeering, 1982,25:43-100.
    [2] Burgess. Protein Purification[M]. New York:A.R. Liss, 1987.
    [3] Porath J. Immobilized metal ion affinity chmmatography[J]. Protein Expression and Purification, 1992, 3: 206-281.
    [4] Burgess R R. A new method for the large scale purification of E. coli DNA-dependent RNA Polymerase[J]. Journal of Biological Chemistry, 1969,244:6160-6167.
    [5] Ford C F, Suominen I, Glatz C E. Fusion tails for the recovery and purification of recombinant proteins[J]. Protein Expression and Purification, 1991, 2:95-107.
    [6] Marshak D R, Kadonaga J T, Burgess R R, et al. Strategies for Protein Purification and Characterization:A Laboratory Course Manual[M]. New York:Cold Spring Harbor Laboratory Press, 1996.
    [7] Janson J C, Lars Ryden. Protein Purification: Principles, high resolution methods, and application[M]. New York:YCH, 1989.
    [8] Kawai T, Saito K, Lee W. Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions[J]. Journal of Chromatography B, 2003,790:131-142.
    [9] Scott R W, Duffy SA, Moellering B J, et al. Purification of monoclonal antibodies from large-scale mammalian cell culture perfusion systems[J]. Biotechnology Progress, 1987, 3(1): 49-56.
    [10] 李恩江.人工智能色谱过程自动控制的现状与未来[J].生命科学,1992,4(5):30-32.
    [11] Wiblin D J, Roe S D, Myhill R G. Computer aided desk-top scale-up and optimization of chromatography processes[J]. Journal of Chromatography A, 1995,702:81-87.
    [12] Porath J, Carlsson J, Olsson I, et al. Metal chelate affinity chromatography, a new approach to protein fractionation[J]. Nature, 1975,258:598-599.
    [13] Kim Y J, Cramer S M. Metal affinity displacement chromatography of proteins[J] Journal of Chromatography A, 1991,549:89-99.
    [14] M gastner, D Neubert. High-performance metal chelate affinity chromatography of cytochromes P-450 using Chelating Superose[J]. Journal of Chromatography A, 1991,587(1):43-54.
    [15] Franke C A, Hruby D E. Expression and Single-Step Purification of Enzymatically Active Vaccinia Virus Thymidine Kinase Containing an Engineered Oligohistidine Domain by Immobilized Metal Affinity-Chromatography[J]. Protein Expression and Purification, 1993, 4(1):101-109.
    [16] Otto A, Birkenmeier G. Recognition and separation of isoenzymes by metal chelates: Immobilized metal ion affinity partitioning of lactate dehydrogenase isoenzymes[J]. Journal of Chromatography A, 1993, 644(1)-.25-33.
    [17] Kurecki T, Kress, L F, Laskowski M. Purification of human plasma α_2 macroglobulin and α_1 Proteinase inhibitor using zinc chelate chromatography[J]. Analytical Biochemistry, 1979, 99(2):415-420.
    [18] Weselake R L, Chesney S L, Petkau A, et al. Purification of human copper, zinc superoxide dismutase by copper chelate affinity chromatography [J]. Analytical Biochemistry, 1986,155:193-197.
    [19] Woker R, Champluvier B, Kula M-R. Purification of S-oxynitrilase from Sorghum bicolor by immobilized metal ion affinity chromatography on different carrier materials[J]. Journal of Chromatography B, 1992,584(1): 85-92.
    [20] Sulkowski E. Purification of protein by IMAC[J]. Trends in Biotechnology, 1985,3:1-7.
    [21] Hansen P, Lindberg G J. Importance of the alpha-amino group in the selective purification of synthetic histidine peptides by immobilized metal ion affinity chromatography[J]. Journal of Chromatography A, 1995,690:55-159.
    [22] Hansen P, Lindberg G J. Immobilzed metal ion affinity chromatography of synthetic peptides binding via the alpha-amino group[J]. Journal of Chromatography A, 1992, 627:125-135.
    [23] Wong J W, Albright R L, Wang N H L. Immobilized metal ion affinity chromatography (IMAC) chemistry and bioseparation applications [J]. Separation and Purification Methods, 1991, 20(1):49-106.
    [24]Reina H Y, Manriquez A R, Wong B R , et al. Selectivity of IMAC columns in trypsin inhibitor purification[J]. Biotechnology Progress, 2001,17(4):729-733.
    [25] Ueda E K M, Gout P W, Morganti L. Current and prospective applications of metal ion-protein binding[J], journal of Chromatography A, 2003, 988:1-23.
    [26] Anspach F B. Silica-based metal chelate affinity sorbents I. Preparation and characterization of iminodiacetic acid affinity sorbents prepared via different immobilization techniques[J]. Journal of Chromatography A, 1994, 672:35-49.
    [27] Hashimoto T, Kato K, Nakamura K. High-performance metal chelate affinity chromatography of proteins. [J] Journal of Chromatography A, 1986, 354:511-517.
    [28] Rassi Z E, Horvath C S. Metal chelate-interaction chromatography of proteins with iminodiacetate acid-bonded stationary phases on silica support[J]. Journal of Chromatography A, 1986,359:241-253.
    [29] 邸泽梅,陈国亮,雷建都,等.金属螯合亲和色谱介质的合成及其色谱特性研究[J].色谱,1998,16(4):297—300.
    [30] Zaveckas M, Baute B, Luksa V, et al. Comparative studies of recombinant human granulocyte-colony stimulating factor, its Set-17 and (His)6-tagged forms interaction with metal ions by means of immobilized metal ion affinity partitioning: Effect of chelated nickel and mercuric ions on extraction and refolding of proteins from inclusion bodies[J]. Journal of Chromatography A, 2000, 904(2):145-169.
    [31] Zachariou M, Hearn M T. Adsorption and selectivity characteristics of several human serum proteins with immobilised hard Lewis metal ion-chelate adsorbents[J]. Journal of Chromatography A, 2000, 890(1):95-116.
    [32] Hochuli E. Purificationof recombinant proteins with metal chelate adsorbent[J]. Genetic Engeering(N Y), 1990,12:87-98.
    [33] Clemmitt R H, Chase H A. Facilitated downstream processing of a Histidine-tagged protein from unclarified E. coll homogenates using immobilized metal affinity expanded-bed adsorption[J]. Biotechnology and Bioengeering, 2000,67:206-216.
    [34] Ichikawa N, Mizuno M. Functional expression of hexahistidine-tagged β-subunit of yeast F1-ATPase and isolation of the enzymeby immobilized netal affinity chromatography[J]. Protein Expression and Purification, 2004,37:97-101.
    
    [35] Porth J. Errata[J]. TrAC Trends Analytical Chemistry, 1992,11(7):254-254.
    [36] McCormick D K, Expanded bed adsorption[J] . Biotechnology (N Y), 1993,11:10-59.
    [37] Batt B C, Yabannavar V M, Singh V. Expanded bed adsorption process for protein recovery from whole mammalian cell culture broth [J]. Bioseparation, 1995, 5:41-52.
    [38] Porath J. IMAC—immobilized metal ion affinity based chromatography [J]. TrAC Trends Analytical Chemistry, 1988, 7(7):254-259.
    [39] Sawadogo M, Van Dyke M W. Indirect use of immobilized metal affinity chromatography for isolation and characterization of protein partners[J]. Genetic Engeering(N Y), 1995,17:53-65.
    [40] Dobrowolska G, Muszynska G, Porath J. Model studies on iron (III)ion afinity chromatography interaction of immobilized metal ions with nuclectides[J]. Journal of Chromatography A, 1991, 541:333-339.
    [41] Govoroun M S, Huet J C, Pernollet J C. Use of immobilized metal ion afi nity chromatography and dye ligan d chroma tography for the separation and purification of rainbow trout pituitary gonadotropins, GTH I and GTH II [J] Journal of Chromatography B, 1997, 698:35-46.
    [42] Casey J L, Keep P A, Chester K A, et al. Purification of bacterial ly expressed single chain Fv antibodies for clinical applications using metal chelate chromatography[J]. Journal of Immunological Method, 1995, 179:105-116.
    [43] Ueda E K M, Gout P W, Morganti L. Ni(II)-based immobilized metal ion afinity chromatography of recombinant human prolactin from periplasmic Escherichia coli extracts[J]. Journal of Chromatography A, 2001, 922:165-175.
    [44] Arica M Y, Denizli A, Salih B, et al. Catalase adsorption onto Cibacron Blue F3GA and Fe(III)-derivatized poly(hydroxyethyl methacrylate) membranes and application to a continuous system[J]. Journal of Membrane Science. 1997, 129:65-76.
    [45]Ho L F, Li S Y, Lin S C, et al. Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents[J]. Process Biochemistry, 2004,39:1573-1581.
    [46] Anshuman V P, MohammadM A. IMA chromatography of a cell extract: Effect of loading pH on protein purification[J]. AICHE Journal, 1997, 43(12):3232-3240.
    [47] Seeley E H, Riggs L D, Regnier F E. Reduction of non-specific bindong in Ga(Ⅲ) immobilized metal affinity chromtography for phosphopeptides by using endoproteinase glu-C as the digestive enzyme[J]. Journal of Chromatography B, 2005, 817: 81-88.
    [48] Li Y, Agrawal A, Sakon J. Beitle R R. Characterization of metal affinity of green fluorescent protein and its purification through salt promoted, immobilized metal affinity chromatography[J]. Journal of Chromatography A, 2001, 909: 183-190.
    [49] Camperi S A, huday R M, Canozo A N, et al. Study of varibles involved in fungal pectic enzyme fractionation by immobilized metal ion affinity chromatography[J]. Process Biochemistry, 1996, 31:81-87.
    [50] Liesiene J, Racaityte K, Morkeviciene M, et al. Immobilized metal affinity chromatography of human growth hormone Effect of ligand density[J]. Journal of Chromatography A, 1997,764:27-33.
    [51] Miles D, Garcia A h. Separation of biotin labeled proteins from their unlabeled counterparts using immobilized platinum affinity chromatography[J]. Journal of Chromatography A, 1995,702:173-189.
    [52] 张铭让,陈武勇.鞣制化学[M].北京:中国轻工业出版社,1999.
    [53] 魏庆元.皮革鞣制化学[M].北京:轻工业出版社,1979.
    [54] Denizli A, Yavuz H, Arica. Monosize and non-porous p(HEMA-co-MMA) microparticles designed as dye- and metal-chelate affinity sorbents[J]. Colloids and Surfaces A, 2000, 174:307-317.
    [55] Kramer M H, Herwaldt B L, Craun G F, et al. Waterborne Disease: 1993 and 1994[J]. Journal of American Water Work Association, 1996,88:66-80.
    [56] MacKenzie W R, Hoxie N J, Proctor M E, et al. A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply[J]. New England Journal of Medicine, 1994, 331:161-167.
    [57] Richardson A J, Frankenberg A C, Buck A C, et al. An outbreak of waterborne cryptosporidiosis in Swindon and Oxfordshire[J]. Epidemiology and Infection, 1991, 107: 485~495.
    [58] 毛跟年,许牡丹,黄建文.环境中有毒有害物质与分析检测[M].北京:化学工业出版社,2004.
    [59] 蒋辉.环境水化学[M].北京:化学工业出版社,2003.
    [60] Stevik T K, Aa K, Ausland G, Hanssen J F. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: A review[J]. Water Research, 2004, 38(6): 1355-1367.
    [61] Bitton G. Wastewater Microbiology[M]. New York: Wiley Liss Press, 1994.
    [62] 朱亦仁.环境污染治理技术[M].北京:中国环境科学出版社,2002.
    [63] Mills A L, Herman J S, Hornberger G M, et al. Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand[J]. Applied and Environmental Microbiology, 1994, 60:3300-3306.
    [64] Bolster C H, Mills A L, Hornberger G M, et al. Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces[J]. Journal of Contaminant Hydrology, 2001, 50:287-305.
    [65] Lukasik J, Truesdail S, Shah D O, et al. Adsorption of microorganisms to sand and diatomaceous earth particles coated with metallic hydroxides[J]. Kona, 1996, 14:87-91.
    [66] Farrah S R,Preston D R. Concentration of viruses from water by using cellulose filters modified by in situ precipitation of ferric and aluminum hydroxides[J]. Applied and Environmental Microbiology, 1985, 50:1502-1504.
    [67] Lukasik J, Cheng Y F, Lu F H, et al. Removal of microorganisms from water by columns containing sand coated with ferric and aluminum hydroxides[J]. Water Research, 1999, 33(3): 769-777.
    [68] Mozes N, Leonard A J, Rouxhet P G. On the relations between the elemental surface composition of yeasts and bacteria and their charge and hydrophobicity[J]. Biochimical and Biophysical Acta, 1988, 945:324-334.
    [69] 成庆利,滑冰.固定化细胞研究进展[J].河南教育学院学报(自然科学版),2003,12(2):53—54.
    [70] 宋向阳,余世袁.生物细胞固定化技术及研究进展[J].化工时刊,2000,11:37-39.
    [71] 张磊,张烨,侯红萍,等.固定化细胞技术的研究进展[J]..四川食品与发酵,2006,1:5—7.
    [72] 田沈,王菊,陈新芳,等.固定化运动发酵单胞菌乙醇发酵研究[J].太阳能学报,2005,26(2):222-223.
    [73] 罗贵民,酶工程[M].北京:化学工业出版社,2003.
    [74] Krajewska B. Chitin and its derivatives as supports for immobilization of enzymes[J]. Acta Biotechnology, 1991, 11: 269-277.
    [75] Hideyuki K, Aleya B, Satoshi K, et al. Preconcentration of phthalic acid esters in water samples by Saccharomyces cerevisiae immobilized on silica gel[J]. Analytica Chimica Acta, 2004, 502: 167-172.
    [76] 诸葛健.现代发酵微生物实验技术[M].北京:化学工业出版社,2005.
    [77] 林维晟,林旖宏.细胞固定化技术在城市污水的处理中的应用[J].南平师专学报,2005,24(2):219-223.
    [78] 郭勇.酶的生产与应用[M].北京:化学工业出版社,2003.
    [79] 袁勤生,赵健.酶与酶工程[M].上海:华东理工大学出版社,2005.
    [80] 刘春芳.固定化细胞技术处理化工废水研究进展[J].石化技术与应用,2003,21(1):68-70.
    [81] Cao G M, Zhao Q X, Sun X B, et al. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells[J]. Enzyme and Microbial Technology, 2002, 30: 49-55.
    [82] Wang J L, Liu P, Qian Y. Biodegradation of phthalic acid esters bu immobilized microbial cells[J]. Environment International, 1997, 23:775-782.
    [83] Chen K C, Wu J Y, Huang C C, et al. Decolorization of azo dye using PVA-immobilized microorganisms[J]. Journal of Biotechnology, 2003, 101: 241-252.
    [84] Bai R S, Abraham T E. Studies on chromium(Ⅵ) adsorption-desorption using immobilized fungal biomass[J]. Bioresource Technology, 2003, 87:17-26.
    [85] Seki H, Suzuki A, Maruyama H. Biosorption of chromium(VI) and arsenic (V) onto methylated yeast biomass[J]. Journal of Colloid and Interface Science, 2005,281: 261-266.
    [86] Brady D, Duncan J R. Bioaccumulation of metal cations by Sacharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 1994,41:149-154.
    [87] Brady D, Rose D, DuncanJR. The use of hollow fiber cross-flow micro-filtration in bioaccumulation and continuous removal of heavy metals.from solution by Sacharomyces cerevisiae[J]. Biotechnology and Bioengineering, 1976, 99: 1362-1366.
    [88] Huang C P, Huang C P, Allen L M. The removal of Cu(II) from dilute aqueous solutions by Saccharomyces cerevisiae[J]. Water Research, 1990, 24:433-439.
    [89] Norris P R, Kelly D P. Accumulation of cadmium and cobalt by Saccharomyces cerevisiae[J]. Journal of Gene Microbialogy, 1977, 99:317-324.
    [90] Abbott A, Rutter P R, Berkeley R C W. The influence of ionic strength, pH, and a protein layer on the interaction between Streptococcus mutans and glass surfaces[J]. Journal of Gene Microbialogy, 1983, 129:439-445.
    [91] Marshall K C, Stout R, Mitchell R. Mechanisms of the initial events in the sorption of marine bacteria to surfaces[J]. Journal of Gene Microbialogy, 1971, 68:337-348.
    [92] Bos R, Van der Mei H C, Busscher H J. Physico- chemistry of initial microbial adhesive interactions - its mechanisms and methods for study[J]. FEMS Microbiology Reviews, 1999, 23:179-230.
    [93] Busscher H J, Weerkamp A H. Specific and non-specific interactions in bacterial adhesion to solid substrata[J]. Microbiology Reviews, 1987, 46:165-173.
    [94] Mozes N, Marcha F, Hermesse M P, et al. Immobilization of microorganisms by adhesion: interplay of electrostatic and non-electrostatic interactions[J]. Biotechnology and Bioengeering, 1987, 30:439-450.
    [95] Griffin D M, Quail G. Movement of bacteria in moist, particulate systems[J]. Australion Journal of Biological Science, 1968, 21:579-582.
    [96] Ellwood D C, Keevil C W, Marsh P D, et al. Surface-associated growth[J]. Philosophical Transactions of the Royal Society of London, 1982, 297:517-532.
    [97] Marshall K C, Stout R, Mitchell R. Mechanism of the initial events in the sorption of marine bacteria to surfaces [J]. Journal of Gene Microbiology, 1971, 68:337-348. -
    [98] Van Oss C J, Good R J, Chaudhury M. The role of Van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces[J]. Journal of Colloid and Interface Science, 1986,111:378-390.
    [99] Absolom D R, Lamberti F V , Policova Z, et al. Surface thermodynamicsof bacterial adhesion[J]. Applied and Environmental Microbiology, 1983,46:90-97.
    [100] Bellon-Fontaine M N, Mozes N, Van der Mei H C, et al. A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata[J]. Cell Biophysiology, 1990, 17:93-106.
    [101] Pratt-Terpstra I H, Weerkamp A H, Busscher H J. Microbial factors in a thermodynamic approach of oral streptococcal adhesion to solid substrata[J]. Journal of Colloid and Interface Science, 1989, 129:568-574.
    [102] Van Loosdrecht M C M, Lyklema J, Norde W, et al. The role of bacterial cell wall hydrophobicity in adhesion[J]. Applied Environmental Microbiology, 1987, 53:1893-1897.
    [103] Van Loosdrecht M C M, Lyklema J, Norde W, et al." Ele.ctrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion[J]. Applied Environmental Microbiology, 1987, 53:1898-1901.
    [104] Van der Mei H C, Van der Belt-Gritter B, Doyle R J, et al. Cell surface analysis and adhesion of chemically modified streptococci[J]. Journal of Colloid and Interface Science, 2001, 241:327-332.
    [1] Mogilner I G, Ruderman G, Grigera J R. Collagen stability, hydration and native state[J]. Journal of Molecular Graphics and Modelling, 2002,21:209-213.
    [2] Evans, N A, Milligan B, Montgomery K C. Collagen crosslinking: New binding sites for mineral tannage[J]. Journal of the American Leather Chemists Association,1987,82(4):86-95.
    [3] Lv Xuyong(吕绪庸). A brief discussion on manufacture of hide powder for tannin analysis[J]. Chemistry and Industry of Forest Products(林产化学与工业), 2000,20(1):71-74.
    [4] 廖丽霞,胡红青,贺纪正.中南地区几种地带性土壤表面电荷特性与pH的关系[J].华中农业大学学报,2005,24(1):29-32.
    [1] Porath J , Carlsson J , Olsson I, et al. Metal Chelate affinity chromatography:A new approach to protein fractionation[J]. Nature, 1975, 258:598-599.
    
    [2] Gislason J, Iyer S, Hutchens T W, et al. Lactoferrin receptors in piglet small intestine: Lactoferrin binding properties, ontogeny, and regional distribution in the gastrointestinal tract[J]. Journal of Nutrition Biochemistry, 1993,4(9):528-533.
    
    [3] Yip T-T, Nakagawa Y, Porath J. Evaluation of the interaction of peptides with Cu(II), Ni(II), and Zn(II) by high-performance immobilized metal ion affinity chromatography[J]. Analytical Biochemistry, 1989,183:159-171.
    
    [4] Hemdan E S, Porath J. Development of immobilized metal affinity chromatography : I. Comparison of two iminodiacetate gels[J]. Journal of Chromatography A, 1985, 323(2):247-254.
    
    [5] Thaer A, Robert D B Jr. Preparation of magnetic immobilized metal affinity separation media and its use in the isolation of proteins [J]. Journal of Chromatography A, 1998, 795:211-217.
    [6] Arnold F H, Zhang J H. Metal-mediated protein stabilization[J]. Trends in Biotechnology, 1994,12(5):189-192.
    [7] Hemdan E S , Porath P. Development of immobilized metal affinity chromatography : III. Interaction of oligopeptides with immobilized nickel iminodiacetate[J]. Journal of Chromatography A, 1985,323(2):265-272.
    [8] Hemdan E S , Porath P. Development of immobilized metal affinity chromatography : II. Interaction of amino acids with immobilized nickel iminodiacetate[J]. Journal of Chromatography A, 1985,323(2):255-264.
    
    [9] Dobrowolska G, Porath G M. Model studies on iron(III) ion affinity chromatography : Interaction of immobilized metal ions with nucleotides[J]. Journal of Chromatography A, 1991,541:333-339.
    
    [10] Sulkowski E, Vastola K, Oleszek D, et al. Affinity Chromatography And Related Techniques[M]. Amsterdam:Elsevier, 1982.
    
    [11] Johnson R D, Wang Z G, Arnold F H, Surface site heterogeneity and lateral interactions in multipoint protein adsorption[J]. Journal of Physical Chemistry , 1996,100(12):5134-5147.
    [12] Hutchens T W, Yip T-T. Metal ligand-induced alterations in the surface structures, of lactoferrin and transferrin probed by interaction with immobilized copper(Ⅱ) ions[J]. Journal of Chromatography A, 1991,536:1-15.
    [13] Mallik S, Plunkett S, Dhal P K, et al. Towards materials for the specific recognition and separation of proteins[J]. New Journal of Chemistry, 1994,18:299-304.
    [14] Arnold F H, Haymore B L. Engineered metal-binding proteins. Purification to protein folding Source[J]. Science, 1991,252(5014):1796-1796.
    [15] Hutchens T W, Yip T T, Protein interactions with surface-immobilized metal ions: Structure-dependent variations in affinity and binding capacity with temperature and urea concentration[J]. Journal of Inorganic Biochemistry, 1991, 42(2): 105-118.
    [16] Finette G M S, Mao Q-M, Hearn M T W. Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilised metal ion affinity'and dye affinity matrices with different ionic strength and temperature conditions[J]. Journal of Chromatography A, 1997, 763(1-2): 71-90.
    [17] Porath J. Metal ion-hydrophobic, thiophilic and Ⅱ-electron governed interactions and their application to salt-promated protein adsorption chromatography[J]. Biotechnology Progress, 1987, 3(1): 14-21.
    [18] Rassi Z E I, Horvath C S. Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support[J]. Journal of Chromatography A, 1986,359:241-253.
    [19] 吴冠芸,潘华珍,吴翠.生物化学与分子生物学实验常用数据手册,北京:科学出版社,1999.
    [20] Lowry O H, Rosebrough N J, Farr A L, et al. Randall. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry, 1951,193(1): 265-275.
    [21] 余艺华,薛博,孙彦,等.壳聚糖亲和磁性毫微粒的制备及其对蛋白质的吸附性能研究[J].高分子学报,1999,3:340-344.
    [22] Tumturk H, Caykara T, Sen M, et al. AdsorDtion of α-amylase onto poly(acrylamide/maleic acid) hydrogels[J]. Radiation Physics and Chemidtry,1999,55:713-716.
    [23] Tumturk H, Caykara T, Kantoglu O, et al. Adorption of α-amylase onto poly(N-vinyl 2-pyrrolidone/itaconic acid) hydrogels[J]. Nuclear Instruments and Methods B, 1999,151:238-241.
    [1] Fleming A. On a remarkable bacteriolytic found in tissues and secretions[J]. Process R Society Lond B Biological Science, 1922,93:306-309.
    [2] Leheninger A L, Nelson D L, Cox M M. Principles of Biochemistry[M]. New York: Worth Publishers, 1993.
    [3] Prager E M, Jolles P. Aminal lysozymes c and g: an overview[M]. New York:Worth Publishers, 1996.
    [4] Hultmark D. Lysozymes:Model Enzymes in Biochemistry and Biology[M]. New York: Worth Publishers, 1996.
    [5] Qasba P K, gumar S. Molecular divergence of lysozymes and alactalbumin[J]. Critical Reviews in Biochemistry and Molecular Biology, 1997,32:255-306.
    [6] Jolles J, Jolles P. The losozyme from Asterias rubens[J]. European Journal of Biochemistry, 1975,54:19-23.
    [7] 方元超,梅丛笑,尹宁.溶菌酶及其应用前景[J].中国食品添加剂,1999,4:39-43.
    [8] 陈慧英,吴晓英,林影.溶菌酶分离纯化方法的研究新进展[J].广东药学院学报,2003,19(4):356-358.
    [9] 王跃军,孙谧,张云波,等.海洋低温溶菌酶的制备及酶学性质[J].海洋水产研究,2000,21(41):54-63.
    [10] Shugar D. The measurement of lysozyme activity and the ultra-violet inactivation of lysozyme[J]. Biochemistry and biophysics Acta, 1952,8: 302-309.
    [11] Fasman G D. Handbook of biochemistry and molecular biology[M]. Boca Raton FL: CRC Press, 1977.
    [12] Jurgens K D, Baumann R. Ultrasonic absorption studies of protein-buffer interactions[J]. European Biophysics Journal, 1985,12:217-222.
    [13] Serap S, Ahmed K, Yakup A, et al. Comparison of adsorption performances of metal-chelated polyamide hollow fibre membranes in lysozyme separation[J]. Colloids and Surfaces B, 2002, 24:265-275.
    
    [14] Hemdan E S, Porath J. Development of immobilized metal affinity chromatography II. Interaction of amino acids with immobilized nickel iminodiacetate[J]. Journal of Chromatography, 1985, 323:255-264.
    
    [15] Wong J W, Albright R L, Wang N-H L. Immobilized metal ion affinity chromatography(IMAC) chemistry and bioseparation applications[J]. Separation and Purification Method, 1991, 20:49-106.
    
    [16] Hemdan E S, Porath J. Development of immobilized metal affinity chromatography III. Interaction of oligopeptides with immobilized nickel iminodiacetate[J]. Journal of Chromatography, 1985, 323:265-272.
    
    [17] Rassi Z E, Horvath C. Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support [J]. Journal of Chromatography, 1986,359:241-253.
    [18] Arica M Y, Denizli A, Salih B, et al. Catalase adsorption onto Cibacron Blue F3GA and Fe(III)-derivatized poly (hydroxyethl methacrylate) membranes and appliction to a continuous system[J]. Journal of Membrane Science,1997,129: 65-76.
    [19] Kint D, Eriksson H. Condition for the adsorption of proteins on ultrastable zeolite Y and it usein protein purification[J]. Protein Expression and Purification, 1997,10:247-255.
    [20] Katiyar A, Ji L, Smirniotis P G, et al. Adsorption of bovine serum albumin and lysozyme on siliceous MCM-41[J]. Microporous and Mesoporous Materials, 2005,80:311-320.
    [21] Cheung C W, Porter J F, Mckay G. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char[J]. Water Research, 2001, 35: 605-612.
    [22] Ritchie A G, Chem J. Alternative to the Elovich equation for kinrtics of adsorption of gases on solids [J]. Journal of Chemical Society Faraday Trans, 1977,73:1650-1653.
    [23] McKay G, Ho Y S. Pseudo-second order model for sorption processes [J]. Process Biochemistry,1999,34:451-465.
    [24] Chen W Y, Wu C F, Liu C C. Interactions of imidazole and proteins with immobilized Cu(II) ions: effects of structure, salt concentration, and pH in affinity and binding capacity. Journal of Colloid and Interface Science, 1996,180:135-143.
    [25] Sulkowski E. Purification of protein by IMAC[J]. Trends in Biotechnology, 1985, 3:1-7.
    [26] Todd R J, Van Dam ME, Casimiro D, Haymore B L, et al. Cu (II)-binding properties of a cytochrome c with a syn-. thetic metal-binding site: His-X3-His in an α-Helix[J]. Protein Structure Function and Genetics, 1991,10:156-161.
    [27] Chen W C, Lee J-F, Wu C-F, et al. Microcalorimetric Studies of the Interactions of Lysozyme with Immobilized Cu(II): Effects of pH Value and Salt Concentration [J]. Journal of Colloid and Interface Science, 1997,190:49-54.
    [28] Zachariou M, Hearn M T W, Protein selectivity in immobilised metal affinity chromatography based on the surface, accessibility of aspartic and glutamic acid residues[J]. Journal of Protein Chemistry, 1995,14:419-431.
    
    [29] Chu K H. Improved fixed bed models for metal biosorption[J]. Chemical Engineering Journal; 2004, 97:233-239.
    [30] Belter P A, Cussler E L, Hu W S. Bioseparations: Downstream Processing for Biotechnonogy[M]. New York: Wiley, 1988.
    [1] 吴晓英,林影,陈慧英.溶菌酶的研究进展[J].工业微生物,2002,32(4):55-58.
    [2] Prockop D J, Davidson W D. A study of urinary and serum lysozyme in patienta with renal disease[J]. New England Journal of Medicine, 1964,270:269-274.
    [3] Severini G, Aliberti L H. Variation of urinary enzymes N-acetyl-beta-glucosaminidase, alanane-aminopeptidase, and lysozyme in patients receiving radicontrast agents[J]. Clinica Chimica Acta, 1987,163:97-103.
    [4] 朱奇,陈彦.溶菌酶及其应用[J].生物学通报,1998,33(10):9-10.
    [5] 章银良.溶菌酶对草莓的保鲜效果[J].食品工业科技1999,20(1)32-33.
    [6] 高焕春吕晓玲,李文英.鸡蛋清溶菌酶提取工艺及其应用初探[J].天津轻工业学院学报,1996,1:37—40.
    [7] Ruckenstein E, Zeng X. Macroporous chitin affinity membranes for lysozyme separation[J]. Biotechnology and Bioengineering, 1997,56:610-617.
    [8] Takai I, Oda O, Shinzato T, et al. Effcetive method for purification of lysozyme from human urine[J]. Journal of Chromatography B, 1996,685:21-25.
    [9] P Jolles, J Jolles. What's new in lysozyme research[J]. Molecular Cell Biochemistry, 1984,63:165-189.
    [10] J Jolles, P. Jolles. Human milk lysozyme: unpublished data concerning the establishment of the complete primary structure, comparison with lysozymes of various origins[J]. Helvetica Chimica Acta 1971,54:2668-2675.
    [11] Kuramitsu S, Ikeda K, Hamaguchi K, et al. Ionization constants of Glu 35 and Asp 52 in. hen, turkey, and human lysozymes[J]. Journal of Biochemistry, 1974,76:671-683.
    [12] Ito Y, Yamada H, Nakamura S, et al. Purification amino acid sequence and some properties of rabbit kidney lysozyme[J]. Journal of Biochemistry, 1990, 107:236-241.
    [13] Gachon A M, Kpamegan G, Dastugue B. Study of the cold acetone precipitation effect[J]. Clinica Chimica Acta, 1989, 180: 141-146.
    [14] Perin J, Jolles P. The lysozyme from Nephthys hombergy[J]. Biochimical and. Biophysical Acta, 1972,263:683-689.
    [15] J P Perin, P Jolles, The lysozyme of Nephthys hombergii (Annelid). Ⅱ. Study of some enzymatic properties[J]. Molecular Cell Biochemistry, 1973,2(2): 189-195.
    [16] 方元超,梅丛笑,尹宁.溶菌酶及其应用前景[J].中国食品添加剂,1999,4:42-42.
    [17] 林亲录,马美湖,金阳海,等.蛋清中溶菌酶的提取研究[J].食品科学,2002,23(2):43-46.
    [18] Arnold FH. Metal affinity separations: a new dimension in protein processing[J]. Biotechnology, 1991, 9: 151-156.
    [19] Liesiene J, Eacaityte K, Mo rkevicieneM, et al. Immobilized metal affinity chromatography of human growth hormone. Effect of ligand density[J]. Journal of Chromatography A, 1997,764(1):27-33.
    [20] Porath J, Carlsson J, Olsson I, et al. Metal chelate affinity chromatography, a new approach to protein fractionation[J]. Nature, 1975,258:598-599.
    [21] Andersson L. Metal Chelate affinity chromatography as a separation tool[J]. Journal of Chromatography, 1984,315:167-174.
    [22] Al-Mashikhi S A, Nakai S. Separation of immunoglobulin and transferrin from blood serum and plasma by metal chelate interaction chromatography[J]. Journal of Dairy Science, 1988, 71: 1756-1763.
    [23] Margolis S A, Faraidi A J, Alexander L, et al. Chromatographic separations of serum proteins on immobilized metal ion stationary phases[J]. Analytical Biochemistry, 1989,183:108121.
    [24] 徐榕榕,周培江,杨严俊.金属螯合色谱分离提取初乳免疫球蛋白和乳铁蛋白[J].食品工业科技,2002,23:35—37.
    [25] J W Wong, R L Albright, N-H Wang. Immobilized metal ion affinity chromatography(IMAC) chemistry and bioseparation application[J]. Separation and Purification Methods, 1991, 20: 49-106.
    [26] Porath J. Immobilized metal ion affinity based chromatography[J]. Trends in Analytical Chemistry,1988,7:254-259.
    [27] Chaga G S. Twenty - five years of immobilized metal ion affinity chromatography : past, present and future[J]. Journal of Biochemical and Biophysical Methods, 2001 , 49 :313 - 334
    [28] Arica M Y, Yilmaz M, Yalcin E, et al. Affinity membrane chromatography: relationship of dye-ligand type to surface polarity and their effect on lysozyrae separation and purification[J]. Journal of Chromatography B, 2004, 805:315-323.
    [1] Payment P, Franco E, Richardson L, et al. Gastrointestinal health effects associated with the consumption of drinking water produced by point-of-use domestic reverse osmosis filtration units[J]. Applied and Environmental Microbiology, 1991,57:945-948.
    [2] Payment P, Franco E, Richardson L, et al. A randomized trial to evaluate the risk of gadtrointestinal disease due to the consumption of drinking water meeting currently accepted microbiological standards[J]. American Journal of Public Health, 1991,81:703-708.
    [3] Andersson Y. Waterborne disease outbreak[J]. Water Science and Technology, 1991, 24(2): 13-15.
    [4] Herwaldt B L, Craun G F, Stokes S L, et al. Outbreak of waterborne disease in the United State: 1989-1990[J]. Journal of the American Water Works Association, 1992,84(4):129-135.
    [5] Moore AC, Herwaldt BL, CaldereonRL, et al. Surveillance for waterborne diseas outbreaks, United States, 1991-1992 [J]. Morbidity and Mortality Weekly Report, 1993,42:1-22.
    [6] Adrian U, Michael J G. Transport of bacteria from manure and protection of water resources[J]. Applied Soil Ecology, 2004, 25:1-18.
    [7] Sherris J C, Champoux J J, Fredrick L C, et al.Medical Microbiology: An Introduction to Infectious Diseases[M]. New York:Elsevier, 1990.
    [8]Levine W C, Stephenson W T, Craun GF. Waterborne disease outbreak, 1986-1988 [J]. Journal of Food Protection, 1991, 54:71-78.
    [9] Payment P, Franco E, Fout G S. Incidence of Norwalk virus infections during a prospective epidemiological study of drinking water related gastrointestinal illness[J]. Canadian Journal of Microbiology, 1994, 40:805-809.
    
    [10] Colwell R R. A global decline in microbiological safety of water: A call for action. 1996, Internet www page at URL:
    [11] Stevik T K, Aa K, Ausland G, Hanssen J F. Retention and removal of pathogenic bacteria in wastewater percolating through porous media: A review[J]. Water Research, 2004, 38(6):1355-1367.
    
    [12] Bitton G. Wastewater Microbiology[M]. New York: Wiley Liss Press, 1994.
    [13] Loder T C, Liss P S. Control by organic coatings of the surface charge of estuarine suspended particles[J]. Limnology and Oceanography, 1985, 30:418-421.
    [14] Marshall K C. Interfaces in Microbial Ecology[M]. Cambridge: Harvard University Press, 1976.
    [15] Mills A L, Herman J S, Hornberger G M, et al. Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand[J]. Applied and Environmental Microbiology, 1994,60:3300-3306.
    [16] Bolster C H, Mills A L, Hornberger G M, et al. Effect of surface coatings, grain size, and ionic strength on the maximum attainable coverage of bacteria on sand surfaces[J]. Journal of Contaminant Hydrology, 2001,50: 287-305.
    [17] Brown T S, Malina J F, Moore B D, et al. Virus removal by diatomaceous earth filtration. In Virus Survival in Water and Wastewater Systems[M], Austin:The University of Texas, 1974.
    [18] Preston D R, Yasudevan T V, Bitton G, et al. Novel approach for modifying microporous fiters for virus concentration from water[J]. Applied and Environmental Microbiology, 1988,54:1325-1329.
    [19] Zerda K S, Gerba C P, Hou K C, et al. Adsorption of viruses to charge-modified silica[J]. Applied and Environmental Microbiology, 1985,49:91-95.
    [20] Gerba C P, Hou K, Sobsey M D. Microbial removal and inactivation from water by filters containing magnesium peroxide[J]. Journal of Environmental Science and Health, 1988,23:41-58.
    [21] Farrah S R, Preston D R. Concentration of viruses from water by using cellulose filters modified by in situ precipitation of ferric and aluminum hydroxides[J]. Applied and Environmental Microbiology, 1985, 50: 1502-1504.
    [22] Lukasik J, Truesdail S, Shah D O, et al. Adsorption of microorganisms to sand and diatomaceous earth particles coated with metallic hydroxides[J]. Kona, 1996,14:87-91.
    [23] Chen J N, Truesdail S, Lu F H, et al. Long-term evaluation of aluminum hydroxide-coated sand for removal of bacteria from wastewater[J]. Water Research, 1998,32(7):2171-2179.
    [24] Lukasik J, Cheng Y F, Lu F H, et al. Removal of microorganisms from water by columns containing sand coated with ferric and aluminum hydroxides[J]. Water Research, 1999,33(3):769-777.
    [25] 蒋辉.环境水化学[M].北京:化学工业出版社,2003.
    [26] GB5749—85,生活饮用水卫生标准[S].
    [27] 马绪荣,苏德模.药品微生物学检验手册[M].北京:科学出版社,2000.
    [28] GB/T 14926.43-2001,实验动物 细菌学检验染色法、培养基和试剂[S].
    [29] GB 4789.28-94,食品卫生微生物学检验染色法、培养基和试剂[S].
    [30] 罗祎.微生物检测国标法和滤膜法的比较[J].食品工业科技,1999,20(6):54-56.
    [31] Prescott L M, Harley J P, Klein D A. Microbiology[M], Fifth Edition, Beijing: Higher Education Press, 2002.
    [32] Escher A, Characklis W G. Modelingthe initial events in biofilm accumulation [M]. NewYork:Wiley, 1990.
    [33] Bengtsson G, Lindquist R. Transport of soil bacteria controlled by density-dependent sorption kinetics[J]. Water Resources Research, 1995,31:1247-1256.
    [34] Wollum A G, Cassel D K. Transport of microorganisms in sand columns[J]. Soil Science Society of America Journal, 1978,42:72-76.
    [35] Fletcher M. Effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene[J]. Canadian Journal of Microbiology, 1977,23:1-6.
    [36] van Loosdrecht M C M, Lyklema J, Norde W, et al. Electrophoretic mobility and hydrophobicityas a measure to predict the initial steps of bacterial adhesion[J]. Applied and Environmental Microbiology, 1987,53:1898-1901.
    [37] Fattom A, Shilo M. nydrophobicity as an adhesion mechanism of benthic cyanobacteria[J]. Applied and Environmental Microbiology, 1984, 47: 135-143.
    [38] Marshall K C, Stout R, Mitchell R. Mechanisms of the initial events in the sorption of marine bacteria to surfaces[J]. Journal of Gene Microbiology, 1971, 68: 337-348.
    [39] Harris R H, Mitchell R. The role of polymers in microbial aggregation[J]. Annual Review in Microbiol, 1973,27:27-50.
    [40] McEldowney S, Fletcher M. Effect of growth conditions and surface characteristics of aquatic bacteria on their attachment to solid surface[J]. Journal of Gene Microbiology, 1986,132:513-523.
    [41] Abbot A, Rutter P R, Berkeley R C W. The influence of ionic strength, pH, and a protein layer on the interaction between Streptococcus mutans and glass surface[J]. Journal of Gene Microbiology, 1983, 129: 439-445.
    [42] Stenstrom T A. Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles[J]. Applied and Environmental Microbiology, 1989,55:142-147.
    [43] Marshall K C. Cly mineralogy in relation to survival of soil bacteria[J]. Annual Review in Phytopathology, 1975,13:357-373.
    [44] Yates M V, S R Yates. Modeling microbial fate in the subsurface environment [J]. Critical Reviewa in Environmental Control, 1988,17:307-344.
    [45] Scholl M M, Chang Y I, Yen T F, et al. Immobilization of microorganisms by adhesion: interplay of electrostatic and nonelectroatatic interactions[J]. Biotechnology and Bioengineering,1987, 30:439-450.
    [46] Fontes D E, Mills A L, Hornberger G M, et al. Physical and chemical factors influencing transport of microorganisms through porous media [J]. Applied and Environmental Microbiology, 1991,57:2473-2481.
    [47] Shashikala A R, Raichur A M. Role of interfacial phenomena in determining adsorption of Bacillus Polymyxa Onto hematite and quartz[J]. Colloids and Surfaces B, 2002, 24:11-20.
    [48] Chiou M S, Li H Y. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads[J]. Chemosphere, 2003,50:1095-1105.
    [49] McKay G, Ho Y S. Pseudo-second order model for sorption processes [J]. Process Biochemistry, 1999,34:451-465.
    [1] Isono Y, Araya G, Hoshind A. Immobilization of Saccharomyces cerevisiae on g-alumina particles using spray-dryer[J]. Process Biochemistry, 1995,30: 743-746.
    [2] Srere N K, Sridhar M, Suresh K, et al. High alcohol production by repeated batch fermentation using an immobilized osmotolerent Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology and Biotechnology, 2000,24:222-226.
    [3] Krajewska B. Chitin and its derivatives as supports for immobilization of enzymes[J]. Acta Biotechnology, 1991,11:269-277.
    [4] Navratil M, Sturdik E. Bioactive components in productions using immobilized biosystems[J]. Biologia, 1999,54:635-648.
    [5] Saraydin D, Oztop H N, Karadag E, et al. The use of immobilized Saccharomyces cerevisiae on radiation crosslinked acrylamide-maleic acid hydrogel carriers for production of ethyl alcohol[J]. Process Biochemistry, 2002,37:1351-1357.
    [6] Kaetsu I, Kumakura M, Fujimura T, et al. Immobilization of microbial cell and yeast cell and its application to biomass conversion using radiation techniques[J]. International Journal of Radiation Applications and Instrumentation C, 1987,29(3):191-193.
    [7] Galazzo J L, Bailey J E. Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion[J]. Biotechnology and Bioengineering, 1990,36:417-426.
    [8] Wada M, gato J, Chibata I. Continuous production of ethanol using immobilized growing yeast cells[J]. European Journal of Applied Microbiology and Biotechnology, 1980, 10: 275-287.
    [9] Furusaki S, Seki M, Fukumura K. Reaction characteristics of an immobilized yeast producing ethanol[J]. Biotechnology and Bioengineering, 1983, 25:2921-2928.
    [10] Aykut G, Hasirci V N, Alaeddinoglu G. Immobilization of yeast cells in acrylamide gel matrix[J]. Biomaterials, 1988,9:168-172.
    [11] 刘锋,钟瑞敏.固定化细胞酿造杨梅果酒的研究[J].科研开发,2005,21(1):7-9.
    [12] Tisnadjaja D, Gutierrez N A, Maddox I S. Citric acid production in a bubble-column reactor using cells of the yeast Candida guilliermondii immobilized by adsorption onto sawdust[J]. Enzyme and Microbial Technology, 1996,19:343-347.
    [13] Tkacz J S, Cybulska E B, Lampen J O. Specific Staining of Wall Mannan in Yeast Cells with Fluorescein-Conjugated Concanavalin A[J]. Journal of Bacteriology, 1971,105(1):1-5.
    [14] Thonart P, Custinne M, Paquot M. Zeta potential of yeast cells: application in cell immobilization[J]. Enzyme and Microbial Technology, 1982,4(3):191-194.
    [15] Das D, Gaidhani N R, Murari K, et al. Ethanol production by whole cell immobilization using lignocellulosic material as solid matrix[J]. Journal of Ferment Bioengineering, 1993,75:132-137.
    [16] Cheung IH-S, Gishen M, Ghosh P, et al. Continuous ethanol production in an immobilized whole cell fermentor using untreated sugar cane bagasse as carrier[J]. Applied Microbiology and Biotechnology, 1986,23:413-416.
    [17] Ryu Y W, Navarro J M, Durand G. Comparative study of ethanol production in an immobilized yeast in a tubular reactor and in a multistage reactor[J]. European Journal of Applied Microbiology and Biotechnology, 1982,15: 1-8.
    [18] Godia F, Casas C, Sola C. A survey of continuous ethanol fermentation using immobilized cells[J]. Process Biochemistry, 1987,22:43-48.
    [19] 牟建楼,王颉,陈志周,等.木糖发酵液中乙醇的气象色谱法测定[J].酿酒,2005,32(1):77-78.
    [20] Han R P, Zhang J H, Shi J, et al. Contribution of CarboxylateGroups to Lead Biosorption by Yeast[J]. Journal of Zhengzhou University, 2004,36(1): 86-91.
    [21] 汤岳琴,牛慧,林军,等.产黄青霉废菌体对铅的吸附机理研究—参与铅生物吸附的 化学物质及功能团的确定[J].四川大学学报(工程科学版),2001,33(3):50-54.
    [22] Bowen W R, Lovitt R W, Wright C J. Atomic force microscopy study of the adhesion. of Saccharomyces ceravisiae[J]. Journal of Colloid and Interface Science, 2001, 237: 54-61.
    [23] Bowen W R, Sabuni H A M, Ventham T J, Studies of the cell-wall properties of Saccharomyces cerevisiae during fermentation[J]. Biotechnology and Bioengineering, 1992,40:1309-1318.
    [24] Hazen K C. In Microbial Cell Surface Hydrophobicity[M]. Washington: American Society for Microbiology, 1990.
    [25] Abbott A, Rutter P R, Berkeley R C W. The influence of ionic strength, pH, and a protein layer on the interaction between Streptococcus mutans and glass surfaces[J]. Journal of Gene Microbial, 1983,129:439-445.
    [26] Gardon A S, Millero F J. Electrolyte effects on attachment of an estuarine bacterium[J]. Applied and Environmental Microbiology, 1984,47:495-499.
    [27] Orstavik D. Sorption of Streptococcus faecium to glass[J]. Acta Pathologic Microbiology Scand Sect B, 1977, 85:38-46.
    [28] Stanley P M. Factors affectingthe irreversible attachmentof Pseudomonas aeruginosa to stainless steel[J]. Canadian Journal of Microbiology, 1983, 29:1493-1499.
    [1] Lappin-Scott H M, Costerton J W. Bacterial biofilms and surface fouling[J]. Biofouling, 1989,1:323-342.
    [2] Mittelman M W: Bacterial Adhesion: Molecular and Ecological Diversity[M]. New York: Wiley/Liss, 1996.
    [3] Gibbons R J, van Houte. Bacterial adherence in oral miacrobial ecology[J]. Annual Review of Microbiology, 1975,29:19-44.
    [4] Kolenbrander P E, Egland P G, Diaz P I, et al. Genome-genome interactions: bacterial communities in initial dental plaque[J]. Trends in Microbiology, 2005,13:11-15.
    [5] Bouwer E J, Zehnder A J B. Bioremediation of organic compounds-putting microbial metabolism to work[J]. Trends in Biotechnology, 1993,11:360-367.
    [6] MacDonald JA, Rittmann B E. Performance standards for in situ bioremediation[J]. Environmental Science and Technology, 1993,27:1975-1979.
    [7] Raichur A M, Misra M, Bukka K, et al. Flocculation and flotation of coal by adhesion of hydrophobic Mycobacterium phlei [J]. Colloids and Surfaces B , 1996, 8:13-24.
    [8] Handley P S. Structure, composition and function of surface structures on oral bacteria[J]. Biofouling,1990,2:239-264.
    [9] Absolom D R, Lamberti F V, PolicovaZ, et al. Surface thermodynamicsof bacterial adhesion[J]. Applied and Environmental Microbiology, 1983, 46:90-97.
    [10] Bellon-Fontaine M N, Mozes N, Van der Mei H C, et al. A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata[J]. Cell Biophysics, 1990,17:93-106.
    [11] Pratt-Terpstra I H, Weerkamp A H, Busscher H J. Microbial factors in a thermodynamic approach of oral streptococcal adhesion to solid substrata[J]. Journal of Colloid and Interface Science, 1989,129:568-574.
    [12] Van Loosdrecht M C M, Lyklema J, Norde W, et al. The role of bacterial cell wall hydrophobicity in adhesion[J]. Applied and Environmental Microbiology, 1987,53:1893-1897.
    [13] Van Loosdrecht M C M, Lyklema J, Norde W, et al. Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion [J]. Applied and Environmental Microbiology, 1987, 53:1898-1901.
    [14] Van der Mei H C, Van der Belt-Gritter B, Doyle R J, et al. Cell surface analysis and adhesion of chemically modified streptococci[J]. Journal of Colloid and Interface Science, 2001, 241:327-332.
    [15] Stenstrom A T. Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles[J]. Applied and Environmental Microbiology,1989, 55:142-147.
    [16] Rosenberg E, Brown D R, Demain A L. The influence of gramicidin S on hydrophobicity of germinating Bacillus brevis spores[J]. Archives of Microbiology, 1985,142:51-54.
    [17] Busscher H J, Weerkamp A H, van der Mei H C, et al. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion[J]. Applied and Environmental Microbiology, 1984, 48:980-983.
    [18] Hermansson M. The DLVO theory in microbial adhesion[J]. Colloids and Surfaces B,1999,14:105-119.
    
    [19] James A M. Microbial cell surface analysis[M]. New York:VCH, 1991.
    [20] van der Wal A, Norde W, Zehnder A J B, et al. Determination of the total charge in the cell walls of Gram-positive bacteria [J]. Colloids and Surfaces B, 1997, 9(1-2): 81-100.
    [21] Kijlstra J, Wegh R A J, van Leeuwen H P. Impedance spectroscopy of colloids [J] Journal of Electroanalytical Chemistry, 1994, 366(1-2):37-42.
    [22] van der Mei H C, Bos R, Busscher H J. A reference guide to microbial cell surface hydrophobicity based on contact angles[J]. Colloids and Surfaces B, 1998, 11:213-221.
    [23] Van Oss C J. Acid-base interfacial interactions in aqueous media [J]. Colloids and Surfaces A, 1993, 78:1-13.
    [24] Brant J A, Childress A E. Assessing short-range membrane-colloid interactions using surface energetics[J]. Journal of Membrane Science, 2002, 203:257-273
    [25] Van Oss C J, Good R J, Chaudhury M K. The role of van der Waals forces and hydrogen bonds in hydrophobic interactions' between biopolymers and low energy surfaces[J]. Journal of Colloid and Interface Science, 1986, 111:378-390.
    [26] Dann J R. Forces involved in the adhesive process. I. Critical surface tensions of polymeric solids as determined with polar liquids[J]. Journal of Colloid and Interface Science, 1970, 32:302-320.
    [27] Dann J R. Forces involved in the adhesive process. II. Nondispersion forces at solid-liquid interfaces [J]. Journal of Colloid and Interface Science, 1970, 32:321-331.
    [28] Owens D K, Wendt R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science, 1969,13:1741-1747.
    [29] van Oss C J, Ju L, Chaudhury M K, et al. Estimation of the polar parameters of the surface tension ofliquids by contact angle measurements on gels[J]. Journal of Colloid and Interface Science, 1989,128:313-319.
    [30] van Oss C J, Chaudhury M K, Good C J. Additive and nonadditive surface tension components and the interpretation of contact angles[J]. Langmuir, 1988, 4:884-891.
    [31] van Oss C J. Interfacial Forces in Aqueous Media[M]. New York:Marcel Dekker, 1994.
    [32] Bellon-Fontaine M N, Rault J, van Oss C J. Microbial adhesion to solvents: a novel method to determine the electron-donor/ electron-acceotor or Lewis acid-base properties of microbial cells[J]. Colloids and surfaces B, 1996, 7:47-53.
    [33] Marshall K C, Stout R, Mitchell R. Mechanisms of the initial events in the sorption of marine bacteria to surfaces [J]. Journal of Gene Microbiology, 1971, 68:337-348.
    [34] Mozes N, Marcha F, Hermesse MP, et al. Immobilization of microorganisms by adhesion: interplay of electrostatic and non-electrostatic interactions[J]. Biotechnology and Bioengineering, 1987,30:439-450.
    [35] Daniels S L. Mechanisms involved in sorption of microorganisms to solid surfaces. New York: Wiley, 1980.
    [36] Martinez-Martinez L, Pascual A, Perea E J. Kinetics of adherence of mucoid and non-mucoid Pseudomonasaeruginosa to plastic catheters[J]. Journal of Medical Microbiology,1991,34:7-12.
    [37] Dikusar M M. Adsorption of bacteria and its effect on microbial processes [J]. Mikrobiologiya, 1940,9:895-908.
    [38]Santoro T, Stotzky G. Sorption between microorganisms and clay minerals as determined by the electrical sensing zone particle analyzer[J]. Canadian Journal of Microbiology, 1968,14:299-307.
    [39] Harden V, Harris J. The isoelectric point of bacterial cells[J]. Journal of Bacterial, 1953, 65:198-202.
    [40] Marshall K C. Electrophoretic properties of fast and slow growing species of Rhizobium[J]. Australian Journal of Biological Science, 1967,20:429-38.
    [41] McEldowney S, Fletcher M. The effect of growth conditions and surface characteristics of aquatic bacteria on their attachment to solid surfaces[J]. Journal of Gene Microbiology, 1986,132:513-523.
    [42] Sleytr U B. Regular arrays of macromolecules on bacterial cell walls: Structure, chemistry, assembly and function[J]. International Review of Cytology, 1978, 53:1-62.
    [43] Gittens G J, James A M. Some physical investigations of the behaviour of bacterial surfaces, vii. The relationship between zeta potential and surface charge as indicated by microelectrophoresis and surface-conductance measurements[J]. Biochimica et Biophysica Acta, 1963, 66:250-263.
    [44] Sherbet G V, Lakshmi M S. Characterisation of Escherichia coli cell surface by isoelectric equilibrium analysis[J]. Biochimica et Biophysica Acta, 1973, 298:50-58.
    [45] Sutherland I W. Enzymes acting on bacterial surface carbohydrates[M]. London: Academic Press,1977.
    [46] Prescott L M, HarleyJP, KleinDA. Microbiology [M]. Beijing: Higher Education Press, 2002.
    [47] Sharma M M, Chang Y I, Yen T F. Reversible and irreversible surface charge modification of bacterial for facilitating transport through porous media[J]. Colloids and Surfaces, 1985,16:193-206.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.