SERS敏感基底制备及其在TNT痕量检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于纳米金属粒子具有独特的光学、电学性质,在合适的尺度可产生超强的表面增强拉曼光谱(SERS)效应,特别是产生的“热点”(hot spot)效应时,其增强因子可高达1014,故受到了广大科研工作者的广泛关注。DNA是天然的生物大分子。DNA分子具有良好的纳米尺度以及分子识别和自组装能力。以DNA为模板合成纳米材料是当前合成纳米材料的热点之一。具有Keggin结构的无机簇合物12-硅钨酸具有多种功能。利用上述两种物质为模板剂,结合光辐照法等方法合成出Au-Ag-DNA和Ag-SMNs等新奇结构的SERS敏感基底,并实现了对材料的大小和形貌的控制合成;同时研究了利用这些材料对TNT的痕量检测。详细内容归纳如下:
     1在光照射条件下,以DNA为模板,太阳光提供反应动力,通过两步光化学反应,成功在DNA纳米网上构建出Au-Ag合金以及Au@Ag核壳材料。DNA在合成过程中担当着模板剂和还原剂的双重功能。金壳银核或金-银合金纳米DNA网络结构的合成是源于纳米颗粒的种子理论。实验发现,这种金壳银核或金-银合金纳米DNA网络结构是良好的表面增强拉曼散射(SERS)活性基底,对TNT检测效果突出。最低检测限可达10-12M,增强因子可达1011-1012数量级。
     2利用硅钨酸合成钼酸银纳米线,如果在合成中加紫外光照射条件,在多聚钼酸银表面将原位生成银纳米颗粒。为了实现对目标分子TNT的主动抓捕富集,我们又将含有氨基的对巯基苯胺修饰到上述银-钼酸银复合基地上。同样在紫外光激发下,对巯基苯胺在银表面发生自催化的二聚反应,生成4,4-偶氮苯(DMAB), DMAB作为交联剂,将大量的纳米线连接到一起,生成许多“热点”。同时,我们采用类分子印迹的方法,在上述交联的DMAB分子中构建TNT分子识别位点,为TNT提供富集抓手。实验证明经对巯基苯胺修饰的银-钼酸银复合基底有很好的SERS增强能力,并且对TNT具有很强的选择识别能力,对TNT检测限为10-12 M。有趣的
Because of nanoparticle having unique optic and electric property, ideal enhanced effect was observed on definite-size Au or Ag nanoparticles, and its enhancement factor can reach to 1014 on some“hot spot”between nanoparticles, which attracted extensive attention of scientists. DNA as biomacromolecules can be utilized as templates to build novel hybrid nanostructures. DNA has been exploited as a template for the fabrication of metallic nano-materials. It was found that the DNA acted as templates and reducing agent in formation of the novel nanostructure,so DNA was used in this article as an soft template for fabricating SERS substrate. Utilizing Tungstosilicate acid ion to synthesize nanoparticles was another an important method. Tungstosilicate acid could be as photocatalyst, stabilizer, oxidation agent, reducing agent and template. Basing on Tungstosilicate acid hard template, shape and size controlled synthesis of SERS sensitive substrate. Using these substrates, Ultrasensitive SERS Detection of TNT can be realized. The main results are summarized as follows
     1 We reported a very simple and novel one-step in-situ method to synthesize silver-core-gold-shell or silver-gold alloy nanoparticles by sunlight-reducing in AgNO3 solution and NaAuCl4 solution in the presence of DNA. It was found that the DNA acted as template and reducing agent in formation of the novel nanostructure. The Ag-DNA could be formed from reduction of cationic silver absorbed on DNA template by sunlight. The silver-core-gold-shell or silver-gold alloy nanostructures were prepared by seeding with Ag-DNA in the absence of any surfactants, which could be used as active surface enhanced Raman scattering (SERS) substrates. 2,4,6-trinitrotoluene (TNT) was studied on these substrates with very low concentration (10-12 M), and great enhancement factors (3.1×1011-1.5×1012). It was found that the enhancement ability was affected by the structures of the gold and silver nanoparticles on the DNA strands. The results showed that these SERS substrates could achieve current the lowest detection limits of TNT.
     2 Trace-detection of TNT is reported in this work basing on p-aminothiophenol functionalized Ag nanoparticles covered on Silver molybdate nanowires by using surface-enhanced Raman scattering (SERS).π-donor-acceptor interactions betweenπ- acceptor TNT andπ-donor p,p′-dimercaptoazobenzene (DMAB)-cross-linked Ag nanoparticles linked to the Silver molybdate nanowires, the optimal imprint molecule contours, and DMAB forming imprint molecule sites at SERS hot spots where the analyte can be allocated, these lead to a giant intensification of the Raman emission of the TNT molecule. This article demonstrates that TNT concentrations as low as 10-12 M can be accurately detected using the described SERS assay. Most impressively, acting as new-style SERS substrate, Ag-Silver molybdate nanowires complex can yield new Ag nanoparticles during detection process which made the Raman signals very stabilization. A detailed mechanism for SERS intensity change has been discussed. Our experiments show that TNT can be detected quickly and accurately with high trace-concentration. These results reported here not only can find many applications in SERS techniques but also can form the new concept of a molecularly imprinting strategy.
引文
[1]吴代鸣,固体物理基础,北京:高等教育出版社,2007.
    [2]程光煦,拉曼布里渊散射,北京:科学出版社,2001.
    [3] Smekal A. Zur Quantentheorie der Dispersion. Naturwissenschaften, 1923, 11(43): 873-875.
    [4] Raman C V, Krishman K S. A new type of secondary radiation. Nature,1928,121: 501-502.
    [5] LandsbergG, MandelstamL, Naturwiss, 1928, 16: 557.
    [6] Cabanues J Compt. Rend. Acad. Sci., Paris, 1928, 186: 1107.
    [7] Roeard Y. Compt. Rend. Acad. Sci., Paris, 1928, 186: 1107.
    [8]张寒琦仪器分析,北京:高等教育出版社,2009.
    [9]吴国祯,分子振动光谱学:原理与研究,北京:清华大学出版社,2001.
    [10] Ingle J J D, Crouch S R, Spectrochemical Analysis. Prentice Hall: Upper Saddle River, NJ, 1988
    [11] Porto S. P. S.,Wood K. L., RUBY OPTICAL MASER AS A RAMAN SOURCE, JOURNAL OF THE OPTICAL SOCIETY OF AMERICA [J], 1962, 52 : 251.
    [12] Jeanmaire, D., R. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J], Journal of Electroanalytical Chemistry 1977, 84: 1-20.
    [13] Liu, Y. C., Yu, C. C., Sheu, S. F., et al., Low concentration rhodamine 6G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates [J], Journal of Materials Chemistry 2006, 16: 3546-3551.
    [14] Fleischmann M, Hendra P J, McQuillan A., Raman spectra of pyridine adsorbed at a silver electrode [J], Chemical Physics Letters, 1974, 26:163-166.
    [15] Albrecht M G, Creighton J A, Anomalously intense Raman spectra of pyridine at a silver electrode [J], Journal of the American Chemical Society, 1977, 99: 5215-5217.
    [16] Tuan Vo-Dinh, Surface-enhanced Raman spectroscopy using metallic nanostructures [J], Trends in analytical chemistry, 1998, 17(8): 557-582.
    [17] Morgan S. Sibbald, George Chumanov, Therese M. Cotton Reduction of Cytochrome c by Halide-Modified, Laser-Ablated Silver Colloids [J], J. Phys. Chem., 1996, 100: 4672-4678.
    [18] King F.W., Van Duyne R. P., Schatz G. C., et al., THEORY OF RAMAN-SCATTERING BY MOLECULES ADSORBED ON ELECTRODE SURFACES [J], J. Phys. Chem., 1978, 69: 4472-4481.
    [19] M. Moskovits, SURFACE-ENHANCED SPECTROSCOPY [J], Reviews of Modern Physics, 1985, 57: 783-826.
    [20] Milton Kerker, Dau-Sing Wang, H. Chew, Surface enhanced Raman scattering (SERS) bymolecules adsorbed at spherical particles: errata [J], Applied Optics, 1980, 19: 4159-4174.
    [21] S.L. McCalla, P.M. Platzmana, P.A. Wolffb, Surface enhanced Raman scattering [J], A. Phys. Lett. 1980, 77: 381-383.
    [22]胡冰,徐蔚青,王魁香等,吉林大学自然科学学报2001, 2, 57.
    [23] R Srinivasan, Ablation of polymers and biological tissue by ultraviolet lasers [J], Science, 1986, 234: 559-565.
    [24] Yu JJ., Zhang JY., I. W. Boyd, Formation of stable zirconium oxide on silicon by photo-assisted sol–gel processing [J], Applied Surface Science, 2002, 186: 190-194.
    [25] Sarah J. Greaves, William P. Griffith, Vibrational spectra of catechol, catechol-d2 and -d6 and the catecholate monoanion [J], Spectrochimica Acta Part A: Molecular Spectroscopy, 1991,47: 133-140.
    [26] YEH JTC, LASER ABLATION OF POLYMERS [J], JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1986, 4: 653.
    [27] Kerker M, Wang DS, Chew H., Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata [J], Applied Optics, 1980, 19(24):4159-4174.
    [28] D.-S. Wang, H. Chew, M. Kerker, Enhanced Raman scattering at the surface (SERS) of a spherical particle [J], Applied Optics, 1980, 19(14): 2256-2257
    [29] S. P. Apell, J. Giraldo b, S. Lundqvist, Small metal particles: Non-local optical properties and quantum-size effects [J], Phase Transitions, 1990, 24: 577-604.
    [30] L. N. Lewis, Chemical catalysis by colloids and clusters [J], Chem. Rev., 1993, 93: 2693–2730.
    [31] Arnim Henglein, Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition [J], J. Phys. Chem., 1993, 97:5457-5471.
    [32] A.J. Haes, C.L. Haynes, R.P. Van Duyne, Nanosphere Lithography: Self?Assembled Photonic and Magnetic Materials [J], Materials Research Society Symposium Proceedings, 2001, 636.
    [33] Amanda J. Haes, Richard P. Van Duyne, A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles [J], J. Am. Chem. Soc., 2002, 124: 10596-10604.
    [34] Christy L. Haynes, Adam D. McFarland, Matthew T. Smith, et al., ArticleAngle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing [J], J. Phys. Chem. B., 2002, 106: 1898-1902.
    [35] Adam D. McFarland, Matthew A. Young, Jon A. Dieringer, et al., Wavelength-Scanned [J], J.Phys. Chem. B., 2005, 109: 11279-11285.
    [36] H. Ditlbacher, N. Felidj, J.R. Krenn, et al., Electromagnetic interaction of fluorophores with designed two-dimensional silver nanoparticle arrays [J], Applied Physics B: Lasers and Optics, 2001, 73:373-377.
    [37] H. Ditlbacher, J. R. Krenn, N. Felidj, et al., Fluorescence imaging of surface plasmon fields [J], Appl. Phys. Lett., 2002, 80:404-406.
    [38] N. Félidj, J. Aubard, G. Lévi, et al., Optimized surface-enhanced Raman scattering on gold nanoparticle arrays [J], Appl. Phys. Lett., 2003, 82: 3095-3097.
    [39] Yu Qiuming, Guan Phillip, Qin Dong, et al., Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays [J], Nano Lett., 2008, 8: 1923-1928.
    [40] Mehmet Kahraman, M. Mge Yazc, Fikrettin ahin, et al., Convective Assembly of Bacteria for Surface-Enhanced Raman Scattering [J], Langmuir, 2008, 24: 894-901.
    [41] Dana Cialla, A Tanja Deckert-Gaudig, Jurgen Popp, Raman to the limit: tip-enhanced spectroscopic investigations of a single tobacco mosaic virus [J], J. Raman Spectrosc. 2009, 40: 240-243.
    [42] Lu Yu, Liu GL, Luke P. Lee, High-Density Silver Nanoparticle Film with Temperature-Controllable Interparticle Spacing for a Tunable Surface Enhanced Raman Scattering Substrate [J], Nano Lett., 2005, 5: 5-9.
    [43] Yang, Zhang Q, J. Lee, et al., Dissolution–recrystallization mechanism for the conversion of silver nanospheres to triangular nanoplates [J], Journal of Colloid and Interface Science 2007, 308:156-161.
    [44] A. Siekkinen, J. McLellan, J. Chen, et al., Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide [J], Chemical Physics Letters, 2006,432: 491-496.
    [45] M. W. Shao, L. Lu, H. Wang, S. Wang, et al., An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper. [J], Chem. Commun., 2008, 20: 2310-2312.
    [46] S. Yun, Y. K. Park, S. K. Kim, et al., Linker-molecule-free gold nanorod layer-by-layer films for surface-enhanced Raman scattering [J], J. Anal. Chem., 2007, 79: 8584–8589.
    [47] X. G. Hu, T. Wang, L. Wang, et al., Surface-enhanced Raman scattering of 4-aminothiophenol self-assembled monolayers in sandwich structure with nanoparticle shape dependence: Off-surface plasmon resonance condition [J], J. Phys. Chem. C., 2007, 1119:6962-6969.
    [48] K. Kim, Y. Lee, H. Lee, et al., The utilization of silver salts of aromatic thiols as corematerials of SERS-based molecular sensors [J], J. Raman Spectrosc., 2008, 39: 1840-1847.
    [49] G. Braun, I. Pavel, A. Morrill, et al., Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots [J], J. Am. Chem.Soc., 2007, 129: 7760-7760.
    [50] Y. Yang, G. Meng, Ag dendritic nanostructures for rapid detection of polychlorinated biphenyls based on surface-enhanced Raman scattering effect [J], Journal of Applied Physics, 2010, 107: 044315.
    [51]张彦,梅涛,孔德义等,爆炸物探测技术的研究概况及趋势,中国电子学会第八届青年学术年会[C], 2002.
    [52] SMITH P H, LIU S M, W-band efficiency InP-based power HEMT with 600 GHz fmax [J], IEEE Microwave and Guided Wave Letter, 1995, 5:230.
    [53] E.Holmgren, Determination and characterization of organic explosives using porous graphitic carbon and liquid chromatography–atmospheric pressure chemical ionization mass spectrometry [J], Chromatogr A., 2005,1099:127-135.
    [54] Sylvia, J. M., J. A. Janni, et al., Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines [J], J. Anal. Chem., 2000,72: 5834-5840.
    [55]赵颖,周建光,用于爆炸物检测放大荧光聚合物的合成及小型TNT传感器的初步研究,吉林大学硕士学位论文, 2006年.
    [56]孟祥承,爆炸物及毒品的探测技术[J],核电子学与探测技术, 2003, 04: 371-379.
    [57] Wang Feng, Wang Wenbo, Liua Bianhua, et al., Copolypeptide-doped polyaniline nanofibers for electrochemical detection of ultratrace trinitrotoluene [J], Talanta, 2009, 79(2): 376-382.
    [58] Shiraishi Y, Miyarnoto R., A hemicyanine-conjugated copolymer as a highly sensitive fluorescent thermometer [J], Langmuir , 2008, 24 (8): 4273-4279.
    [59] Gao Daming, Zhang Zhongping, Wu Minghong, et al., A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles [J], J. Am. Chem. Soc., 2007, 129: 7859-7866.
    [60] Guan GJ, Zhang ZP, Wang ZY, et al., Single-hole hollow polymer microspheres toward specific high-capacity uptake of target species [J],ADVANCED MATERIALS. 2007, 19(17): 2370-2374.
    [61] Xie CG, Zhang ZP, Wang DP, et al. Surface molecular self-assembly strateg y for TNT imprinting of polymer nanowire/nanotube arrays [J] , J. Anal. Chem., 2006, 78(24): 8339-8346.
    [62] Xie CG, Liu BH, Wang ZY, et al. Molecular imprinting at walls of silica nanotubes for TNT recognition [J] , J. Anal. Chem., 2008, 80: 437-443.
    [63] Fang QL, Geng JL, Liu BH, et al. Inverted Opal Fluorescent Film Chemosensor for theDetection of Explosive Nitroaromatic Vapors through Fluorescence Resonance Energy Transfer [J], Chemistry-A European Journal, 2009, 15(43): 11507-11514.
    [64] Geng JL, Liu P, Liu BH, et al. A Reversible Dual-Response Fluorescence Switch for the Detection of Multiple Analytes [J], Chemistry-A European Journal, 2010, 16(12): 3720-3727.
    [65] Gupta N., Dahmani R, AOTF Raman spectrometer for remote detection of explosives [J], Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 8: 1453-1456.
    [66] Ko, Hyunhyub, Chang, Sehoon, Tsukruk, Vladimir V, Porous Substrates for Label-Free Molecular Level Detection of Nonresonant Organic Molecules [J], Acs Nano, 2009, 3(1):181-188.
    [67] S. S. R. Dasary, A. K. Singh, D. Senapati, et al., Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene[J], J. Am. Chem. Soc., 2009, 131: 13806-13812.
    [68] J. M. Sylvia, J. A. Janni, J. D. Klein and K. M. Spencer. Surface-enhanced Raman detection of 1,4-dinitrotoluene impurity vapor as a marker to locate landmines [J], J. Anal. Chem., 2000, 72: 5834-5840.
    [69] F. A. Calzzani, R. Sileshi, A. Kassu, et al., Detection of residual traces of explosives by surface enhanced Raman scattering using gold coated substrates produced by nanospheres imprint technique [J], Optics and Photonics in Global Homeland Security, 2008, 6945:9451.
    [70] E. De La Cruz-Montoya, G. Perez-Acosta, T. L. Pineda and S. P. Hernandez-Rivera. Surface enhanced Raman scattering of TNT and DNT on colloidal nanoparticles of Ag/TiO2 [J], P Soc Photo-Opt Ins., 2007, 6538:53826-53826.
    [71] E. De La Cruz-Montoya, A. Blanco, M. Balaguera-Gelves, et al., Surface Enhanced Raman Scattering of nitroexplosives on non traditional substrates [J], P Soc Photo-Opt Ins., 2005, 5778: 359-367.
    [72] J. A. Seelenbinder, C. W. Brown, Comparison of organic self-assembled monolayers as modified substrates for surface-enhanced infrared absorption spectroscopy [J], Appl Spectrosc 2002, 56: 295-299.
    [73] K. M. Spencer, J. M. Sylvia, J. A. Janni, et al., Advances in landmine detection using surface-enhanced Raman spectroscopy [J], P Soc Photo-Opt Ins., 1999, 3710: 373-379.
    [74] K. Kneipp, Y. Wang, R. R. Dasari, et al., Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver [J], Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1995, 51: 2171-2175.
    [75] Woltman S J, Even W R, Weber S G, et al., Chromatographic detection of nitroaromatic and nitramine compounds by electrochemical reduction combined with photoluminescencefollowing electron transfer [J], J. Anal. Chem., 2000, 72: 4928-4933.
    [76] E. Holmgren, H. Carlsson, P. Goede, et al., Determination and characterization of organic explosives using porous graphitic carbon and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry [J], Journal of Chromatography A, 2005, 1099: 127-135.
    [77] I. Popov, H. Chen, O. Kharybin, et al., Detection of explosives on solid surfaces by thermal desorption and ambient ion/molecule reactions [J], Chem. Commun., 2005, 15: 1953-1955.
    [78] Maggie Tam, Herbert H. Hill, Secondary Electrospray Ionization-Ion Mobility Spectrometry for Explosive Vapor Detection [J], J. Anal. Chem., 2004, 76: 2741-2747.
    [79]刘金河,胡荣祖,高仁孝等.理化检验化学分册( PTCA ( Part B : Chem. Anal . ) ) , 2006, 42(2): 120—124
    [80] K. Albert, D. Walt, High-speed fluorescence detection of explosives-like vapors [J], J. Anal. Chem., 2000, 72: 1947-1955.
    [81] L. Pinnaduwage, A. Gehl, D. Hedden, et al., A microsensor for trinitrotoluene vapour [J], Nature, 2003, 425: 474.
    [1]沈同,王镜岩,赵邦悌等,生物化学(上册),[M]第二版.北京:高等教育出版社,1990,329
    [2] Piunno P A E, Krull U J, Trends in the development of nucleic acid biosensors for medical diagnostics [J], Analytical and Bioanalytical Chemistry, 2005, 381(5):1004-1011.
    [3] Zhu JC., Zhang YH., et al., Dependence of surface-enhanced Raman scattering from Calf thymus DNA on anions [J], Chinese Optics Letters, 2008, 6(7): 526-529.
    [4] Wallace, D., E. J. Quinn, et al., Surface Science of Soft Scorpionates [J], Inorganic Chemistry 2010, 49(4): 1420-1427.
    [5] Pividori M I, Merkoci A, Alegret S., Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods [J], Biosensors and Bioelectronics, 2000,15(5-6): 291-303.
    [6] Henke L, Krull U J. Immobilization technologies used for nucleic acid biosensors: A review [J], Canadian Journal of Analytical Sciences and Spectroscopy,1999, 44(2): 61-70.
    [7] Piunno P A E, Krull U J. Trends in the development of nucleic acid biosensors for medical diagnostics [J], Analytical and Bioanalytical Chemistry, 2005, 381(5): 1004-1011.
    [8] Wang J, Rivas G, Cai X, et al., DNA electrochemical biosensors for environmental monitoring [J], Analytical Chimica Acta, 1997, 347(1-2):1-8.
    [9] Palecek E. From polarography of DNA to microanalysis with nucleic acid-modified electrodes [J], Electroanalysis,1996, 8(1): 7-14.
    [10] Palecek E, Fojta M, Tomschik M, et al., Electrochemical biosensors for DNA hybridization and DNA damage [J], Biosensors and Bioelectronics, 1998, 13(6): 621-628.
    [11] Fojta M, KubiárováT, Paleek E, Electrode potential-modulated cleavage of surface-confined DNA by hydroxyl radicals detected by an electrochemical biosensor [J], Biosensors and Bioelectronics, 2000, 15(3-4): 107-115.
    [12] Cahová-Kucha,íkováK, Fojta M, et al., Use of DNA repair enzymes in electrochemical detection of damage to DNA bases in vitro and in cells [J], J. Anal. Chem., 2005, 77: 2920-2927.
    [13] Wang J, Cai X, Rivas G, et al., DNA Electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus [J], J. Anal. Chem., 996, 68: 2629-2634.
    [14] Wang J, Rivas G, Cai X, et al., Screen-printed electrochemical hybridization biosensor for the detection of DNA sequences from the Escherichia coli pathogen [J], Electroanalysis, 1997, 9(5): 395-398.
    [15] Wang J, Rivas G, Cai X, et al., Sequence-specific electrochemical biosensing of M.tuberculosis DNA [J], Analytical Chimica Acta, 1997, 337(1): 41-48.
    [16] Tansil N C, Xie F, Xie H, et al., An ultrasensitive nucleic acid biosensor based on the catalytic oxidation of guanine by a novel redox threading intercalator [J], Chem. Commun., 2005, 8: 1064-1066.
    [17] Bardea A, Patolsky F, Dagan A, et al., Sensing and amplification of oligonucleotide-DNA interactions by means of impedance spectroscopy:a route to a Tay–Sachs sensor [J], Chem. Commun., 1999, 1: 21-22.
    [18] Azek F, Grossiord C, Joannes M, et al., Hybridization assay at a disposable electrochemical biosensor for the attomole detection of amplified human cytomegalovirus DNA [J], Analytical Biochemistry, 2000, 284(1): 107-113.
    [19] Ivnitski D, Abdel-Hamid I, Atanasov P, et al., Application of electrochemical biosensors for detection of food pathogenic bacteria [J], Electroanalysis, 2000, 12(5): 317-325.
    [20] Ariksoysal D O, Karadeniz H, Erdem A, et al., Label-free electrochemical hybridization genosensor for the detection of hepatitis B virus genotype on the development of lamivudine resistance [J], J. Anal. Chem., 2005,77(15): 4908-4917
    [21] Del Pozo M V, Alonso C, Pariente F, et al., DNA biosensor for detection of Helicobacter pylori using phen-dione as the electrochemically active ligand in osmium complexes [J], J. Anal. Chem., 2005, 77:2550-2557.
    [22] Braun, E., Eichen Y, Sivan U, et al., DNA-templated assembly and electrode attachment of a conducting silver wire [J], Nature, 1998, 391: 775-778.
    [23] Nishinaka T, Takano A, Doi Y, et al. Conductive metal nanowires templated by the nucleoprotein filaments, complex of DNA and RecA protein [J], J. Am. Chem. Soc., 2005, 127: 8120-8125.
    [24] Ongaro A, Griffin F, Beeeher P, et al., DNA-templated assembly of conducting gold nanowires between gold electrodes on a silicon oxide substrate [J]. Chemistry of Materials, 2005, 17(8):1959-1964.
    [25] Mertig M, Ciacchi LC, Seidel R, et al., DNA as a selective metallization template [J]. Nano Letters, 2002, 2(8): 841-844.
    [26] Richter J, Mertig M, Pompe W, et al., Construction of highly conductive nanowires on a DNA template [J], Applied Physics Letters, 2001, 78(4): 536-538.
    [27] Deng ZX, Mao CD. DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays [J], Nano Letters, 2003, 3(11): 1545-1548.
    [28] Monson CF, Woolley AT. DNA-templated construction of copper nanowires [J], Nano Letters,2003, 3(3): 359-363.
    [29] Berti L, Alessandrini A, Facci P, DNA-templated photoinduced silver deposition [J], J. Am. Chem. Soc., 2005, 127: 11216-11217.
    [30] Wu AG, Cheng WL, Li ZA, et al., Electrostatic-assembly metallized nanoparticles network by DNA template [J], Talanta, 2006, 68(3): 693-699.
    [31] Richter J, Seidel R, Kirsch R, et al., Nanoscale palladium metallization of DNA [J], Advanced Materials, 2000, 12(7): 507-510.
    [32] Kinsella JM, Ivanisevic A, DNA-templated magnetic nanowires with different compositions: Fabrication and analysis [J], Langmuir, 2007, 23: 3886-3890.
    [33] Stsiapura V, Sukhanova A, Baranov A, et al., DNA-assisted formation of quasi-nanowires from fluorescent CdSe/ZnS nanocrystals [J], Nanotechnology, 2006, 17: 581-587.
    [34] Dong LQ, Hollis T, Connolly BA, et al., DNA-templated semiconductor nanoparticle chains and wires [J], Advanced Materials, 2007, 19(13): 1748-1751.
    [35] Bukauskas, V., J. Babonas, et al., Scanning Probe Microscopic and Optical Detection of DNA Integration within Multicomponent Structures on Si Surfaces [J], Lithuanian Journal of Physics 2008, 48(3): 287-297.
    [36] Chen, J. W., X. P. Liu, et al., Detection of adenosine using surface-enhanced Raman scattering based on structure-switching signaling aptamer [J], Biosensors & Bioelectronics, 2008, 24(1): 66-71.
    [37] Chen, J. W., Y. Luo, et al., Surface-enhanced Raman Scattering for Immunoassay Based on the Biocatalytic Production of Silver Nanoparticles [J], Analytical Sciences, 2009, 25(3): 347-352.
    [38] Cho, K. H., S. W. Joo., Tautomerism of cytosine on silver, gold, and copper: Raman spectroscopy and density functional theory calculation study [J], Bulletin of the Korean Chemical Society, 2008, 29(1): 69-75.
    [39] Cui, L., B. Ren, et al., Surface-Enhanced Raman Spectroscopic Study on the Co-adsorption of DNA Bases with Perchlorate [J],Acta Physico-Chimica Sinica, 2010, 26(2): 397-402.
    [40] Driskell, J. D., O. M. Primera-Pedrozo, et al., Quantitative Surface-Enhanced Raman Spectroscopy Based Analysis of MicroRNA Mixtures [J], Applied Spectroscopy, 2009, 63(10): 1107-1114.
    [41] Huh Y. S., D. Erickson, Aptamer based surface enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays [J], Biosensors & Bioelectronics, 2010, 25(5): 1240-1243.
    [42] Lim D. K., K. S. Jeon, et al., Nanogap-engineerable Raman-active nanodumbbells forsingle-molecule detection [J], Nature Materials, 2010, 9(1): 60-67.
    [43] Zinchenko A. A., N. Chen, et al., Photochemical Metallization of DNA [J], Chemistry Letters . 2008, 37(10): 1096-1097.
    [44] Zinchenko, A. A., D. M. Baigl, et al., Conformational behavior of giant DNA through binding with Ag+ and metallization [J], Biomacromolecules, 2008, 9(7): 1981-1987.
    [45] Zhu, J. C., Y. H. Zhang, et al., Dependence of surface-enhanced Raman scattering from Calf thymus DNA on anions [J], Chinese Optics Letters, 2008, 6(7): 526-529.
    [46] Zhou, Q. H., Y. Wang, et al., DNA-templated construction of Ag nanowires via a novel metallization process [J], Acta Chimica Sinica, 2008, 66(16): 1924-1928.
    [47] Yu, J. H., S. M. Choi, et al., Live Cell Surface Labeling with Fluorescent Ag Nanocluster Conjugates [J], Photochemistry and Photobiology, 2008, 84(6): 1435-1439.
    [48] Sun, C. X., X. Wu, et al., Ag island film-enhanced rare earth co-luminescence effect of Tb-Gd-protein-sodium dodecyl benzene sulfonate system and sensitive detection of protein [J],Talanta, 2008, 76(5): 1047-1052.
    [49] Sujith, A., T. Itoh, et al., Surface enhanced Raman scattering analyses of individual silver nanoaggregates on living single yeast cell wall [J], Applied Physics Letters, 2008, 92(10): 103901-103904.
    [50] J. M. Sylvia, J. A. Janni, J. D. Klein, K. M. SpencerSylvia. Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines [J], J. Anal. Chem., 2000, 72: 5834-5840.
    [51] M. Kahraman, N. Tokman, M. Culha, Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering [J], ChemPhysChem., 2008, 9(6): 902-910.
    [52] H. Ko, S. Singamaneni, V. V. Tsukruk, Nanostructured Surfaces and Assemblies as SERS Media [J], Small, 2008, 4:1576-1595.
    [53]赵凯,赵凯,陈星等, DNA-金纳米粒子网状结构的合成及在癌胚抗原检测中的初步应用[J],生物学杂志, 2009,26(2).
    [54] Z. Hossain, F.J. Huq., Studies on the interaction between Ag+ and DNA [J], Inorg. Biochem., 2002, 91(22):398-404.
    [55] R.P. Sinha, D.P. Hader, UV-induced DNA damage and repair: a review [J], Photochem. Photobiol. Sci., 2002, 1(4): 225-236.
    [56] Yang LB., Shen YH., Xie AJ., et al., Facile Size-Controlled Synthesis of Silver Nanoparticles in UV-Irradiated Tungstosilicate Acid Solution [J], J. Phys .Chem. C., 2007, 111: 5300-5308.
    [57] S. Kundu, V. Maheshwari, R. F. Saraf, Photolytic metallization of an nanoclusters and electrically conducting micrometer long nanostructures on a DNA scaffold [J], Langmuir, 2006,24: 551-555.
    [58] M. Yamada, K. Kato, M. Nomizu, et al., Preparation and Characterization of DNA Films Induced by UV Irradiation [J], Chem.-Eur. J., 2002, 8(6):1407-1412.
    [59] Huang HF, Zhu LM, Reid BR, et al., Solution Structure of a Cisplatin-Induced DNA Interstrand Cross-Link [J], Science, 1995, 270(5243): 1842-1845.
    [60] Duguid J, Bloomfield VA, Benevides J, et al., Raman Spectral Studies of Nucleic-Acids .44. Raman-Spectroscopy of DNA-Metal Complexes .1. Interactions and Conformational Effects of the Divalent-Cations - Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd [J], Biophysical Journal, 1993, 65(5): 1916-1928.
    [61] L. Berti, A. Alessandrini, P. Facci. DNA-Templated Photoinduced Silver Deposition [J], J. Am. Chem. Soc., 2005, 127: 11216-11217.
    [62] Z. Xie, Z. Y. Wang, Y. X. Ke, et al., Nanosilver fabrication under the control of ligands containing pyridyl group in solution phase with photoreduction method [J], Chem. Lett., 2003, 32(8): 686-687.
    [63] E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire [J], Nature, 1998, 391(6669): 775-778.
    [64] K. Keren, M. Krueger, R. Gilad, et al., Sequence-specific molecular lithography on single DNA molecules [J], Science, 2002, 297(5578):72-75.
    [65] K. Keren, R. S. Berman, E. Buchstab, et al., DNA-Templated Carbon Nanotube Field-Effect Transistor [J], Science, 2003, 302(5649): 1380-1382.
    [66] Z. X. Deng, C. D. Mao, Molecular Lithography with DNA Nanostructures [J], Angew. Chem. Int. Ed., 2004, 116: 4160-4162.
    [67] Hao Yan, Sung Ha Park, Gleb Finkelstein, et al., DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires, [J], Science, 2003, 301(5641): 1882-1884.
    [68] K. Keren, R. S. Berman, E. Braun., Patterned DNA Metallization by Sequence-Specific Localization of a Reducing Agent [J], Nano Lett, 2004, 4(2): 323-326.
    [69] Yang LL, Bai S, Zhu DS, et al., Superhydrophobic Patterned Film Fabricated from DNA Assembly and Ag Deposition [J], J. Phys. Chem. C., 2007, 111: 431-433.
    [70] S. Kundu, V. Maheshwari, R. F. Saraf, Photolytic metallization of an nanoclusters and electrically conducting micrometer long nanostructures on a DNA scaffold [J], Langmuir, 2006, 24: 551-555.
    [71] Y. Sun, Y. Xia., Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium [J], J. Am. Chem. Soc., 2004, 126: 3892-3901.
    [72] Y. Sun, B. Mayers, Y. Xia., Metal Nanostructures with Hollow Interiors [J], Advanced Materials, 2003, 15(7-8): 641-646.
    [73] A. Kumar, A. B. Mandale, M. Sastry., Sequential Electrostatic Assembly of Amine-Derivatized Gold and Carboxylic Acid-Derivatized Silver Colloidal Particles on Glass Substrates [J], Langmuir, 2000, 16(17): 6921-6926.
    [74] A. Kumar, M. Pattarkine, M. Bhadbhade, et al., Linear Superclusters of Colloidal Gold Particles by Electrostatic Assembly on DNA Templates [J], Advanced Materials, 2001, 13(5): 341-345.
    [75] S. Mandal, P. R. Selvakannan, R. Pasricha, et al., Keggin Ions as UV-Switchable Reducing Agents in the Synthesis of Au Core?Ag Shell Nanoparticles [J], J. Am. Chem. Soc., 2003, 125: 8440-8441.
    [76] E. Prodan, C. Radloff, N. Halas, et al., A hybridization model for the plasmon response of complex nanostructures [J], Science, 2003, 302(5644):419-422.
    [77] L. M. Liz-Marzan, Tailoring Surface Plasmon Resonance through the Morphology and Assembly of Metal Nanoparticles [J], Langmuir 2006, 22: 32-41.
    [78] G. Wei, H. Zhou, Zh. G. Liu, et al., One-Step Synthesis of Silver Nanoparticles, Nanorods, and Nanowires on the Surface of DNA Network [J], J. Phys. Chem. B., 2005, 109: 8738-8743.
    [79] P. Kolla, The Application of Analytical Methods to the Detection of Hidden Explosives and Explosive Devices [J], Angew. Chem. Int. Ed., 2003, 36: 800-811.
    [80] C. J. McHugh, R. Keir, D. Graham, et al., The first controlled reduction of the high explosive RDX [J], Chem. Commun., 2002, 2514-2515.
    [81] L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, et al., Mixed Silver/Gold Colloids: A Study of Their Formation, Morphology, and Surface-Enhanced Raman Activity [J], Langmuir, 2000, 16: 9722-9728.
    [82] Li JF., Huang YF., Ding Y., Shell-isolated nanoparticle-enhanced Raman spectroscopy [J], Nature, 2010, 464: 392-395.
    [83] M. J. Hostetler, J. E. Wingate, C. J. Zhong, et al., Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size [J], Langmuir, 1998, 14: 17-30.
    [84] M. W. Shao, L. Lu, H. Wang, et al., An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from -silver vanadate and copper [J], Chem. Commun., 2008, 2310-2312.
    [85] R. G. Sanedrin, D. G. Georganopoulou, S. Park, et al., Seed-mediated growth of bimetallic prisms [J], Advanced Materials, 2005, 17(8):1027-1031.
    [86] E. Hao, S. Li, R. C. Bailey, et al., Optical Properties of Metal Nanoshells [J], J. Phys. Chem. B., 2004, 108(4):1224-1229.
    [87] G. Wei, L. Wang, Z. Liu, et al., DNA-network-templated self-assembly of silver nanoparticles and their application in surface-enhanced raman scattering [J], J. Phys. Chem. B, 2005, 109: 23941-23947.
    [88] K. Kneipp, Y. Wang, R. R. Dasari, et al., Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver [J], Spectrochimica Acta Part A., 1995, 51(12):2171-2175.
    [89] J. I. Jerez-Rozo, O. M. Primera-Pedrozo, M. A. Barreto-Cabán, et al., Nanotechnology-based detection of explosives and biological agents simulants [J], IEEE SEN. J., 2008, 8(5-6): 963-973.
    [90] G. Schmid, A. Lehnert, J. O. Malm, et al., LIGAND-STABILIZED BIMETALLIC COLLOIDS IDENTIFIED BY HRTEM AND EDX [J], Angew. Chem. Int. Ed., 1991, 30 (7) :874-876.
    [91] X. W. Teng, D. Black, N. J. Watkins, et al., Platinum-Maghemite Core?Shell Nanoparticles Using a Sequential Synthesi [J], Nano Lett., 2003, 3(2): 261-264.
    [92] C. S. Ah, S. D. Hong, D. J. Jang, Preparation of AucoreAgshell Nanorods and Characterization of Their Surface Plasmon Resonances [J], J. Phys. Chem. B., 2001, 105(33): 7871-7873.
    [93] I. S. Sloufova, F. Lednicky, A. Gemperle, et al., Core?Shell (Ag)Au Bimetallic Nanoparticles: Analysis of Transmission Electron Microscopy Images [J], Langmuir, 2000, 16: 9928-9935.
    [1] K. N. Houk, Andrew G. Leach, Susanna P. Kim, et al. Binding Affinities of Host-Guest, Protein-Ligand, and Protein-Transition-State Complexes [J], Angew. Chem. Int. Ed., 2003, 42: 4872-4897.
    [2] Mohamed Saadioui and Volker B?hmer, Double-and Multi-Calixarentes [M], Calixarenes 2001, Netherlands: Springer Netherlands, 2001,130-134.
    [3] Chechik V., Stirling C.J.M. Gold-thiol self-assembled monolayers [J], Patai, S; Rappoport, Z., Ed. Wiley: Chichester, 1999, 551-640.
    [4] Ernest B. Troughton, Colin D. Bain, George M. Whitesides, Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: structure, properties, and reactivity of constituent functional groups [J], Langmuir, 1988, 4:365-385.
    [5] M. Umadevi, A. Ramasubbu, P. Vanelle, V. Ramakrishnan, Spectral investigations on 2-methyl-1,4-naphthoquinone: solvent effects, host-guest interactions and SERS [J], J. Raman Spectrosc, 2003, 34:112-120.
    [6] Claudia Marenco, Charles J. M. Stirling, Jack Yarwood, Thiacalixarene self-assembled monolayers on roughened gold surfaces and their potential as SERS-based chemical sensors [J], J. Raman Spectrosc, 2003, 34:183-194.
    [7] P. Leyton, C. Domingo, S. Sanchez-Cortes, M. Campos-Vallette, et al., Surface Enhanced Vibrational (IR and Raman) Spectroscopy in the Design of Chemosensors Based on Ester Functionalized p-tert-Butylcalix[4]arene Hosts [J], Langmuir, 2005, 21:11814-11820.
    [8] Garcia-Ramos Jose V, Conception Domingo, et al., Self-assembly of a dithiocarbamate calix[4]arene on Ag na no particles and its application in the fabrication of surface-enhanced Raman scattering based nanosensors [J], Phys. Chem. Chem. Phys., 2009, 11: 1787-1793.
    [9] P. Leytona, C. Domingob, S. Sanchez-Cortesb, et al., Reflection–absorption IR andsurface-enhanced IR spectroscopy of tetracarboethoxy t-butyl-calix[4]arene, as a host molecule with potential applications in sensor devices [J], Vibrational Spectroscopy, 2007, 43: 358-365.
    [10] P. Leyton, S. Sanchez-Cortes, J. V. Garcia-Ramos, et al., Selective Molecular Recognition of Polycyclic Aromatic Hydrocarbons (PAHs) on Calix[4]arene-Functionalized Ag Nanoparticles by Surface-Enhanced Raman Scattering [J], J. Phys. Chem. B., 2004, 108:17484-17490.
    [11] S. Sánchez-Cortés, M. Vasina, O. Francioso, J. V. García-Ramos, Raman and surface-enhanced Raman spectroscopy of dithiocarbamate fungicides [J], Vibrational Spectroscopy, 1998, 17: 133-144.
    [12] S. Sánchez-Cortés, C. Domingo, J. V. García-Ramos, et al., Surface-Enhanced Vibrational Study (SEIR and SERS) of Dithiocarbamate Pesticides on Gold Films [J], Langmuir, 2001, 17: 1157–1162.
    [13] Peter Morf, Fabio Raimondi, Heinz-Georg Nothofer, et al., Dithiocarbamates: Functional and Versatile Linkers for the Formation of Self-Assembled Monolayers [J], Langmuir, 2006, 22: 658-663.
    [14] Luca Guerrini, JoséV. Garcia-Ramos, Concepción Domingo, et al., Functionalization of Ag Nanoparticles with Dithiocarbamate Calix[4]arene As an Effective Supramolecular Host for the Surface-Enhanced Raman Scattering Detection of Polycyclic Aromatic Hydrocarbons [J], Langmuir, 2006, 22: 10924-10926.
    [15] Luca Guerrini, Jos V. Garcia-Ramos, Concepcin Domingo, et al., Sensing Polycyclic Aromatic Hydrocarbons with Dithiocarbamate-Functionalized Ag Nanoparticles by Surface-Enhanced Raman Scattering [J], J. Anal. Chem., Chem., 2009, 8: 953–960.
    [16] Luca Guerrini, Jose V. Garcia-Ramos, Concepcion Domingo, et al., Self-assembly of a dithiocarbamate calix[4]arene on Ag nanoparticles and its application in the fabrication of surface-enhanced Raman scattering based nanosensors [J], Phys .Chem. Chem. Phys. 2009, 11: 1787-1793.
    [17] Jean-Marie Lehn, Perspectives in Supramolecular Chemistry - From Molecular Recognition towards Molecular Information Processing and Self-Organization [J], Angew. Chem. Int. Ed., 1990, 29: 1304-1319.
    [18] Mikhail V. Rekharsky, Yoshihisa Inoue, Complexation Thermodynamics of Cyclodextrins [J], Chem. Rev., 1998, 98:1875-1917.
    [19] M. Morgan Conn, Julius Rebek, Self-Assembling Capsules [J], Chem. Rev., 1997, 97: 1647-1668.
    [20] Atsuhisa Miyawaki, Masahiko Miyauchi, Yoshinori Takashima, et al. Formation of supramolecular isomers; poly[2]rotaxane and supramolecular assembly [J], Chem. Commun.,2008, 456-458.
    [21] Yasushi Maeda, Teruo Fukuda, Hiroyuki Yamamoto, et al. Regio- and Stereoselective Complexation by a Self-Assembled Monolayer of Thiolated Cyclodextrin on a Gold Electrode [J], Langmuir, 1997, 13: 4187-4189.
    [22] Axel Michalke, Andreas Janshoff, Claudia Steinem, et al., Quantification of the Interaction between Charged Guest Molecules and Chemisorbed Monothiolatedβ-Cyclodextrins [J], J. Anal. Chem., 1999, 71, 2528-2533.
    [23] Yasushi Maeda, Hiromi Kitano, Inclusional Complexation by Cyclodextrins at the Surface of Silver As Evidenced by Surface-Enhanced Resonance Raman Spectroscopy [J], J. Phys. Chem. B., 1995, 99: 487-488.
    [24] Christian Henke, Claudia Steinem, Andreas Janshoff, Self-Assembled Monolayers of Monofunctionalized Cyclodextrins onto Gold: A Mass Spectrometric Characterization and Impedance Analysis of Host?Guest Interaction [J], J. Anal. Chem., 1996, 68:3158-3165.
    [25] Wieland Hill, Valérie Fallourd, Dieter Klockow, Investigation of the Adsorption of Gaseous Aromatic Compounds at Surfaces Coated with Heptakis(6-thio-6-deoxy)-β-cyclodextrin by Surface-Enhanced Raman Scattering [J], J. Phys. Chem. B., 1999, 103: 4707-4713.
    [26] Marcel W. J. Beulen, Jürgen Bügler, Menno R. de Jong, et al., Host-Guest Interactions at Self-Assembled Monolayers of Cyclodextrins on Gold [J], Chem. Eur. J., 2000, 6:1176-1183.
    [27] Douglas S. Daniels, E. James Petersson, Jade X. Qiu, et al., High-Resolution Structure of aβ-Peptide Bundle [J], J. Am. Chem.Soc., 2007, 129: 12630-12631.
    [28] Maria T. Rojas, Rainer Koeniger, J. Fraser Stoddart, et al., Supported Monolayers Containing Preformed Binding Sites. Synthesis and Interfacial Binding Properties of a Thiolated. beta.-Cyclodextrin Derivative [J], J. Am. Chem. Soc., 2007, 129: 12630-12631.
    [29] Andrea McNally, Robert J. Forster, Tia E. Keyes, Interfacial supramolecular cyclodextrin-fullerene assemblies: host reorientation and guest stabilization [J], Phys. Chem. Chem. Phys., 2009, 11: 848-856.
    [30] Colm T. Mallon, Robert J. Forster, Andrea McNally, Surface-Immobilized Pyridine-Functionalized [gamma]-Cyclodextrin: Alkanethiol Co-adsorption-Induced Reorientation [J], Langmuir, 2007, 23: 6997-7002.
    [31] Paula Aldeanueva-Potel, Erwan Faoucher, Ramn A. Alvarez-Puebla, et al., Recyclable Molecular Trapping and SERS Detection in Silver-Loaded Agarose Gels with Dynamic Hot Spots [J], J. Anal. Chem., 2009, 81: 2895-2903.
    [32] Monk, P. M. S., The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4-Bipyridine [M] John Wiley and Sons: Chichester, U.K., 1998, 263-298.
    [33] Luca Guerrini, Jos V. Garcia-Ramos, Concepcin Domingo, et al., Building Highly Selective Hot Spots in Ag Nanoparticles Using Bifunctional Viologens: Application to the SERS Detection of PAHs [J], J. Phys. Chem. C., 2008, 112: 7527-7530.
    [34] Luca Guerrini, Jos V. Garcia-Ramos, Concepcin Domingo, et al., Nanosensors Based on Viologen Functionalized Silver Nanoparticles: Few Molecules Surface-Enhanced Raman Spectroscopy Detection of Polycyclic Aromatic Hydrocarbons in Interparticle Hot Spots [J], J. Anal. Chem., 2009, 82: 1418-1425.
    [35] L. Guerrinia, A.E. Aliagab, J. Cárcamob, Functionalization of Ag nanoparticles with the bis-acridinium lucigenin as a chemical assembler in the detection of persistent organic pollutants by surface-enhanced Raman scattering [J], Analytica Chimica Acta., 2008, 624: 286-293.
    [36] H Sohn, MJ Sailor, D Magde, WC Trogler, Detection of nitroaromatic explosives based on photoluminescent polymers containing metalloles [J], J. Am. Chem. Soc., 2003, 125: 3821-3830.
    [37] Charles, Paul T, Dingle, et al., Enhanced biosensor performance for on-site field analysis of explosives in water using solid-phase extraction membranes [J], Field Anal. Chem.Technol., 2001, 5: 272-280.
    [38] J. Hawari1, S. Beaudet1, A. Halasz1, Microbial degradation of explosives: biotransformation versus mineralization [J], Appl. Microbiol. Biotechnol, 2000, 54: 605-618.
    [39] Timothy M. Swager, The molecular wire approach to sensory signal amplification Swager [J], Acc. Chem. Res., 1998, 31: 201–207.
    [40] D. Tyler McQuade, Anthony E. Pullen, Timothy M. Swager, Conjugated polymer-based chemical sensors [J], Chem. Rev., 2000, 100: 2537–2574.
    [41] Samuel S. R. Dasary, Anant Kumar Singh, Dulal Senapati, et al., Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene [J], J. Am. Chem. Soc., 2009, 131:13806-13812.
    [42] Michael Riskin, Ran Tel-Vered, Tatyana Bourenko, et al., Imprinting of Molecular Recognition Sites through Electropolymerization of Functionalized Au Nanoparticles: Development of an Electrochemical TNT Sensor Based onπ-Donor?Acceptor Interactions Eran Granot and Itamar Willner [J], J. Am. Chem. Soc., 2008, 130: 9726-9733.
    [43] Michael Riskin, Ran Tel-Vered, Oleg Lioubashevski, et al., Ultrasensitive Surface Plasmon Resonance Detection of Trinitrotoluene by a Bis-aniline-Cross-Linked Au Nanoparticles Composite [J], J. Am. Chem. Soc., 2009, 131: 7368-7378.
    [44] Xie Cheng gen, Zhang Zhongping, Wang Dapeng, et al., Surface Molecular Self-Assembly Strategy for TNT Imprinting of Polymer Nanowire/Nanotube Arrays [J], J. Anal. Chem., 2006.78: 8339-8346.
    [45] Xie Chenggen, Liu Bianhua, Wang Zhenyang, Molecular Imprinting at Walls of Silica Nanotubes for TNT Recognition [J], J. Anal. Chem., 2008, 80: 437-443.
    [46] Gao Daming, Zhang Zhongping, Wu Minghong, A Surface Functional Monomer-Directing Strategy for Highly Dense Imprinting of TNT at Surface of Silica Nanoparticles [J], J. Am. Chem. Soc., 2007, 129: 7859-7866.
    [47] Yang Liangbao, Yuhua Shen, Xie Anjian, Synthesis of Controllable-Size Core-Shell Se@Ag and Se@Au Nanoparticles in UV-Irradiated TSA Solution [J], Eur. J. Inorg. Chem., 2007, 8: 1128-1134.
    [48] Yang Liangbao, Yuhua Shen, Xie Anjian, Facile size-controlled synthesis of silver nanoparticles in UV-irradiated tungstosilicate acid solution [J], J. Phys. Chem. C., 2007, 111: 5300-5308.
    [49] Hildebrandt, P. and M. Stockburger, Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver [J], J. Phys. Chem., 1984, 88: 5935-5944.
    [50] Natalie R. Walkera, Matthew J. Linmana, Margaret M. Timmersa, et al., Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol–gel sensing films [J], Anal. Chim.Acta., 2007, 593: 82-91.
    [51] Ram K. R. Jetti, Roland Boese, Tejender S. Thakur, B Proton transfer and N (+)–HEnhancement [J], J. Phys. Chem. C., 2009, 113: 18212-18222.
    [58] Wieland Hill, Bernhard Wehling, Potential- and pH-dependent surface-enhanced Raman scattering of p-mercapto aniline on silver and gold substrates [J], J. Phys. Chem., 1993, 97: 9451–9455.
    [59] Masatoshi Osawa, Naoki Matsuda, Katsumasa Yoshii, et al., Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution [J], J. Phys. Chem., 1994, 98: 12702-12707.
    [60] Zhou Qun, Li Xiaowei, Fan Qiang, Charge Transfer between Metal Nanoparticles Interconnected with a Functionalized Molecule Probed by Surface-Enhanced Raman Spectroscopy [J], Angew.Chem., Int. Ed., 2006, 45: 3970-3973.
    [61] A. Ashkin, Acceleration and trapping of particles by radiation pressure [J], Phys. Rev. Lett., 1970, 24:156-159.
    [62] David G. Grier A revolution in optical manipulation [J], Nature, 2003, 424: 810-816.
    [63] Mingwang Shao, Lei Lu; Hong Wang, An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper [J], Chem. Commun., 2008, 2310-2312.
    [64] Garcia-Ramos, J. D. Gómez-Varga, C. Domingo, Ag Nanoparticles Prepared by Laser Photoreduction as Substrates for in Situ Surface-Enhanced Raman Scattering Analysis of Dyes [J], Langmuir, 2007, 23: 5210-5215.
    [65] Lewandowska R, Krasowski K, Bacewicz R, et al., Studies of silver-vanadate superionic glasses using Raman spectroscopy [J], Solid State Ionics. 1999, 119: 229-234.
    [66] James M. Sylvia, James A. Janni, et al., Surface-enhanced Raman detection of 2, 4-dinitrotoluene impurity vapor as a marker to locate landmines [J], J. Anal. Chem., 2000, 72: 5834–5840.
    [67] Hyunhyub Ko, Vladimir V. Tsukruk, Nanoparticle-Decorated Nanocanals for Surface-Enhanced Raman Scattering [J], Small, 2008, 4: 1980-1984.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.