TiAl与K418合金的缺口敏感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对K418及TiAl两种材料带有不同缺口根半径的平板及圆棒试样进行了拉伸断裂实验,通过宏观力学性能参数的测定;断口和金相观察;并结合不同缺口根半径试样的有限元(FEM)计算,对两种材料拉伸的宏观力学性能、缺口敏感度和断裂机理进行了研究。得到以下主要结果:(1)平板双缺口试件、圆棒缺口试件和新型多缺口试件力学性能测定结果表明K418和TiAl合金对缺口敏感性有较大不同:K418对缺口敏感性不大,但TiAl合金表现出较大的缺口敏感性。因而K418铸件容限标准不能直接应用到TiAl合金上。(2)SEM断口分析表明K418室温断裂是韧性断裂和脆性断裂混合型断裂,韧性断裂是由韧窝形成、扩展、融合形成的,其控制因素是塑性变形,试样断裂源于内部缺陷,缺陷组织主要为疏松;TiAl合金室温断裂是典型脆性解理断裂,其控制因素是正应力,缺口试件的起裂源位于缺口根部,基本无缺陷。K418和TiAl合金断裂机理不同,导致其缺口敏感性不同。(3)有限元计算结果表明:缺口前端的正应力syy/sy,三向应力度sm/σ和等效塑性应变e随外加载荷P的增加而增加;随缺口根半径的减小而增加。试样变形是从缺口根部开始的,而试样所受最大正应力却在距离缺口根部一定距离处。(4)在新型多缺口圆棒试件拉伸实验中发现:对TiAl合金,当缺口深度为试件直径的10%时断裂强度下降,当为20%时断裂强度突然急剧下降。
In this paper, tensile macroscopic mechanical properties and fracture mechanism of TiAl and K418 alloys were studied for different notch root radius flat and round bar specimens, based on the measurements of macro-mechanical properties and notch sensitivity, observation of the fracture surface and microstructure, and the detailed FEM calculations of the specimen with different notch root radius. The main results are as follows:(1) the mechanical properties analysis of the double-notched flat specimen, notched rod specimen, and new specimen with multi-notches indicated that:there are a great different in notch sensitivity for TiAl alloy and K418 alloy:K418 alloys have no notch sensitivity. However, a greater notched sensitivity appears in the TiAl alloys. Therefore, K418 cast defect tolerances standard cannot be directly used on TiAl alloy. (2) SEM fracture surface analysis showed that the fracture mode of K418 is composed of ductile and brittle fracture at the room temperature, ductile fracture is induced by dimple formation, expansion, integration, and its controlling factors is the plastic deformation. The specimen fracture finally due to propagation and connection of internal defects, such as shrinkage; the fracture mode of TiAl alloy is a typical cleavage fracture at room temperature, the controlled factor is the normal stress, and the crack initiation origins of the notch specimens are located at the root, no casting defects are found. So, the fracture mechanisms of TiAl and K418 alloys are different, which results in their different notch sensitivity. (3)FEM analysis results show that:the normal stress syy/sy, the stress triaxiality the equivalent plastic strain e increase with the increasing of the load P and decreasing of the root radius of notches. Specimen deformation is induced from the notch root, but the maximum normal stress is located at a distance from notch root. (4) The results of tensile test for new multi-notch rod specimens show that:when the notch depth is 10% of the diameter of the specimen, fracture strength decreased, while notch depth reaches 20% of the diameter of the specimen, the fracture strength is decreased sharply.
引文
[1]王彬,徐世利,赵嵩.汽油机增压技术[J].汽车技术,2002,(6):5-7.
    [2]云清.市场新品:霍尔塞特HK系列涡轮增压器[J].商用汽车,2003,(2):61-62.
    [3]陆梅.废气涡轮增压器工作特性及高原适应性分析[J].公路与运输,2004,(3):1-4.
    [4]邓泽英.国外汽车发动机增压技术的发展及其特点[J].汽车维修,1999,(2):20-21.
    [5]吴殿杰.国外汽车涡轮增压器生产现状及发展趋势[J].汽车研究与开发,1997,(2):7-12.
    [6]王泽华,许鹤皋,蒋兴国等.汽车增压器涡轮壳材料研究[J].内燃机,1999,(1):31-35.
    [7]Zhang YG, ChenGL, GuoJT, WanXJ, FengD.Structural Intermetallics [M].Beijing:National Defense Industry Press,2001.
    [8]M.Yamaguchi, etal. High-Temperature Ordered Intermetallics Alloys VI, Partl-2[J].MRS,1995,364(3).
    [9]Toshimitsu Tetsui. Development of a TiAl turbocharger for passenger vehicle [J]. Materials Sciences and engineering A329-331 (2002) 582-588.
    [10]《中国航空材料手册》编辑委员会.中国航空材料手册(第二卷):变形高温合金铸造高温合金[M].第二版.北京:中国标准出版社,2002.
    [11]苏清友等.航空涡喷、涡扇发动机主要零部件定寿指南[M].北京:航空工业出版社,2004.
    [12]W Betteridge S, Shaw W K. Development of super alloys [J]. Materials Science and Technology,1987,3:682-694.
    [13]Kirk G E. Material requirements for future aero engines [J], IS A2BE 89 7033,335-341.
    [14]Alexander J D, River D D. Gas Turbine Materials:A Review [J], Materials In Aero Space 1986,1:168-188.
    [15]Pope G G. Structural Materials In Aeronautics:Prospects and Perspectives [J]. Aerospace, May/June 1986:22-30.
    [16]Khan T and Car on P. Single Crystal Super alloys for Turbine Blades In Advanced Aircraft Engines [J], Incas Proceedings 1986,2:944-950.
    [17]师昌绪,陆达,荣科.中国高温合金四十年[M].北京:中国科学技术出版社,1996.
    [18]殷克勤.我国航空涡轮高温材料及工艺进展[J].材料工程,1997,(9):3-5.
    [19]陈荣章,王罗宝,佘力.DZ125定向凝固涡轮叶片合金研究[J].材料工程,1997,(9):9-12.
    [20]唐定中,叶国胜,吴仲堂.DD3单晶合金的评估[J].材料工程,1997,(9):6-8.
    [21]吴仲棠,钟振纲,桂中楼.我国第一个单晶燃气涡轮叶片合金DD3的研究[J].航空制造工程,1996,(2):3-5.
    [22]孙传棋,李其娟,吴昌新.无铪淀向凝固高温合金DZ4的工程应用[J].航空制造工程,1997,(8):13-15.
    [23]周永军,王瑞丹.镍基超合金的发展和研究现状.沈阳航空工业学院学报[J],2006,(1):35-37.
    [24]蒙肇斌,甄宝林,张继,王延庆,K18合金增压器涡轮叶片断裂故障分析[J].机械工程材料,2007,(9):73-75.
    [25]常连华,主要合金元素对镍基合金组织和性能的影响[J].汽轮机技术,2001,(5):319-320.
    [26]Kim Y W, Dimiduk D M.Progress in the understanding of gamma titanium aluminides [J]. JOM,1991,43 (8):40.
    [27]Dimiduk D M. Gamma titanium aluminide alloys-an assess2ment within the competition of aerospace structural materials [J].Materials Science and Engineering,1999, A263:281.
    [28]Edward A L. Gamma titanium aluminides as prospective struc2tural materials [J]. Intermetallics,2000,8:1339.
    [29]Kim Y W. Intermetallic alloys based on gamma titanium alumi2nide [J]. JOM, 1989,41 (7):24.
    [30]阎蕴琪,王文生.TiAl化合物——一种具有竞争力的高温结构材料[J].钛工业进展,2000,(5):9.
    [31]D.M.Dimiduk, D.B.Miracle, C.H.Ward, Development of intermetallilc materials for aerospace systems [J]. Mater.Sci.Tech,1992,8:367-375.
    [32]Y-W.Kim. Ordered inermetallic alloy [J], part Ⅲ:gamma Titanium Aluminides. JOM,1994,49(7):30-39.
    [33]D.M. Dimiduk. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials [J]. Mater.Sci.Eng.A,1999, A263:281-288.
    [34]张永刚,韩雅芳,陈国良等.金属间化合物结构材料[M].北京:国防工业出版社,2001.
    [35]M.A.Morris, M.Leboeuf. Grain size refinement of γ-TiAl alloys, effect on mechanical properties [J]. Mater.Sci.Eng.A,1997,224A(1-2):1-11.
    [36]C.Mereer, W.O.Soboyejo. Hall-petch relationships in-TiAl [J]. Scripta.Mater, 1996,35:17-22.
    [37]J.H. Chen, R. Cao, Z. Wang, and J. Zhang. Study on notch fracture of TiAl alloys at room temperature [J]. METALLURGICAL and MATERIALS TRANS A VOL 34A, MONTH 2003-1.
    [38]K.S.Chan and Y.M.Kim. Influence of microstructure on crack-tip micromecha-nicas and fracture behaviors of a two-phase TiAl alloy [J]. Metallurgical transation A.1992-1663.
    [39]C. T. Liu, J. H.Schneibel, P. J. Maziasz. Tensile properties and fracture toughness of TiAl alloys with controlled microstructure [J]. Intermetallics 4(1996)429-440.
    [40]陈剑虹,王国珍,TiAl金属件化合物解理断裂行为的研究[J].甘肃工业大学学报,1999.25(3):1-5.
    [41]陈国良,林均品.有序金属间化合物结构材料物理金属学基础[M].冶金工业出版社。1999.10.
    [42]张永刚,韩雅芳,陈国良.金属间化合物结构材料[M].国防工业出版社.2001.
    [43]石德珂,金志浩,材料力学性能[M].西安交通大学出版社,1998.
    [44]刘勤学,GH2036合金高温持久缺口敏感性的研究[J],特钢技术,2004(4),24-27
    [45]黄伯云.钛铝基金属间化合物[M].长沙:中南工业大学出版社,1998.
    [46]Robert A. Brockman, Geoffrey J. Frank, and Steven E. Olson. Elastic-plastic stress analysis of gamma titanium aluminide polycrysals [J]. The Minerals, Metals and Materials society 2001.
    [47]K.S.Chan and Y.M.Kim. Effects of lamellar spacing and colony size on the fracture resistance of a full-lamellar TiAl alloy [J], Acta metal.MaterVol43.No2 pp.439-451.1995.
    [48]J.H Chen, R.Cao, J.Zhang and G.Z.Wang. Fracture behavior of notched alloys [J].Journal of International Fracture.2003.
    [49]T.Tetsui, S.Ono, Endurance and composition and microstructure effects on endurance of TiAl used in turbochargers [J], Intermetallics 7(1999)689-697.
    [50]J.M.K. Wiezorek, M.J. Mills, H.L. Fraser. Deformation fracture characte ristics in TiAl at room temperature and 800℃. Materials science and Engineering A234-236(1997)1106-1109.
    [51]C. T. Liu, J. H.Schneibel, P. J. Maziasz. Tensile properties and fracture toughness of TiAl alloys with controlled microstructure. Intermetallics 4(1996)429-440.
    [52]Young-Won Kim. Effects of microstructure on the deformation and fracture of-TiAl alloys. Materials Science and Engineering A192/193(1995)519-533.
    [53]Y.M. Kim, ordered intermetal licalloys; part3, γ-TiAl [J],1994,49 (7) 30-39.
    [54]贺连龙,叶恒强,徐仁根。TiAl-V-S合金中Ti5Si3析出相与基体相的取向关系。金属学报,1994,30(4):45-49。
    [55]K. S. Chan and Y. M. Kim. Rate and environment effects on fracture of a two-phase TiAl alloy. Metallurgical Trans A. Vol 24A 1993-113.
    [56]K.S.Chan. Toughening mechanisms in titanium aluminides. Metallurgical transation A.Vol24A.1993-569.
    [57]Y-W.Kim. Ordered inermetallic alloy, part III:gamma Titanium Aluminides. JOM,1994,49(7):30-39.
    [58]P. Wang, N Bhate, K. S. Chan, et al. Colony boundary resistance to crack propagation in lamellar Ti-46A1. Acta.Mater,2003,51(6):1573-1591.
    [59]J.H. Chen, R. Cao, Z. Wang, and J. Zhang. Study on notch fracture of TiAl alloys at room temperature. METALLURGICAL and MATERIALS TRANS A VOL 34A, MONTH 2003-1.
    [60]K.S.Chan and Y-W.Kim. Relationships of slip morphology, microcracking, and fracture resistance in a lamellar TiAl-alloy. Metallurgical and materials trans-ation A.1994-1217.
    [61]F.Apple, R.Wagner. Microstructure and deformation of two-phase gamma-titanium aluminides. Mater.Sci.Eng.A,1998, R22:187-268.
    [62]P.M.Hazzledine, R.K.Kad. Yield and fracture of lamellarγ/a2 TiAl alloyMaterials Science and Engineering A192/193(1995)340-346
    [63]Madan. Mendiratta, Robertl. Goetz and Dennis M. Dimiduk. Notch fracture in γ-Titanium Aluminides. METALLURGICAL AND MATERIALS TRANS A. Vol 27A, DECEMBER 1996-3903.
    [64]R.Cao, Y.Z.Lin, D.Hu and J.H.Chen, Fracture behaviors of a TiAl alloy at various loading modes [J], International Journal of Fracture,2007, submits.
    [65]T.noda, Application of cast gamma TiAl for automobiles [J], Intermetallics 6, 1998:709-713.
    [66]H.Inui, M.H.Oh.A Nakamura and M Yamaguchi [J]:Acta Metall. Mater,40, (1992),3095-3104.
    [67]郑修麟.材料的力学性能[M].西安:西北工业大学出版社,1996.
    [68]迟丽娟,刘芬,材料缺口敏感性试验的应用研究[J].应用科技,2001(2),10-11.
    [69]张行安,胡元凯,朱广福,金属缺口拉伸持久试样应力集中系数的选择[J],材料工程,1981,(4).
    [70]束德林.金属力学性能[M].北京:机械工业出版社,1987.11.
    [71](美)查利R.布鲁克斯,阿肖克-考霍莱著.谢斐绢,孙家骧译.工程材料的失效分析[M].北京:机械工业出版社,2002.
    [72]何其笙.高聚物的力学性能[M].合肥:中国科学技术大学出版社,1996.
    [73]姜伟之,赵时熙,王春生等,工程材料的力学性能[M].北京:北京航空航天大学出版社,1997.
    [74]苏世清,匡震邦.V形切口试样脆断准则的研究[J].上海交通大学学报(专刊),1990,24(5,6):89-96.
    [75]逯智慧,CAT涡轮增压器失效分析[J],露天采矿技术,2003(1),34-35.
    [76]朱海堂,张启明,高丹盈,王占桥,钢纤维高强混凝土的断裂韧性及缺口敏感性研究[J],四川建筑科学研究,2009年6月(3),173-176.
    [77]赵明汉,张继,冯滌,高温合金断口分析图谱[M].北京:冶金工业出版社,2006.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.