变形铝合金耐磨性与高温性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。铸造铝合金因为含有足够量的共晶型Si元素,耐磨性较好,但是它的力学性能较差,使用范围大多都在制造航空器材、日常生活用品、建筑用门窗等。压力加工的变形铝合金具有良好的力学性能,在工业上很多承受件都有所应用。现在已有一些报告对于纯铝的机械变形进行研究,此外对于铝合金特别是Al-Si合金的磨损也有相当多的研究。但是,却很少有关变形铝合金的干摩擦性能研究。变形铝合金的摩擦磨损性能的研究,都是基于其表面改性工艺处理后在测定是否符合性能要求,对变形铝合金基体上的耐磨性研究甚少。
     本文主要针对五种变形铝合金与马氏体不锈钢和奥氏体不锈钢组成的摩擦副在温度为15℃、空气湿度为40g/m3的实验室下进行的在无润滑干摩擦状态下在M2000摩擦磨损试验机进行的干摩擦磨损性能的研究,在相同干摩擦条件下,实验在固定载荷200N的正压力、转速200r/min(0.424m/s)作用下进行2h摩擦磨损实验,每种变形铝合金在实验条件下测试五组。M2000摩擦磨损试验机得到摩擦系数和利用称重法得到体积磨损率后将数据处理分析,对他们的耐磨性进行比较,通过扫描电镜(SEM)观察其磨损表面,能谱仪分析表面微区成分,变形铝合金基体摩擦前后的微观结构、力学性能与摩擦磨损的内在联系,得到变形铝合金的摩擦磨损机理,得到以下结论:
     五种变形铝合金与马氏体不锈钢的平均摩擦系数在0.3~0.4之间,五种变形铝合金与奥氏体不锈钢的平均摩擦系数在0.4~0.5之间,编号A#,E#相对具有较小的摩擦系数和体积磨损率,变形铝合金在载荷作用下发生塑性变形和加工硬化,变形铝合金材料的摩擦磨损过程可以分为三个阶段。第一阶段,轻微磨损阶段;第二阶段,机械混合层形成阶段;第三阶段,机械混合层形成,剥层磨损。变形铝合金的磨损机制以粘着、磨粒磨损为主,同时伴有氧化磨损。磨粒磨损因材料性能的差异而表现出剥层磨损、块状剥落以及增强颗粒的剥落和破碎等几种磨损形式。
     变形铝合金在加工过程中,试样尺寸也是影响变形铝合金的一个重要因素,尺寸不同性能亦不同。管型变形铝合金与棒型铝合金高温时合金屈服强度和塑性的变化趋势大致相同,都是随着温度的提高合金屈服抗拉强度下降,温度小于等于200℃时尺寸为直径50mm的棒型变形铝合金比80mm的棒型铝合金的屈服强度和抗拉强度大。温度为250℃和300℃下不仅没有屈服现象,并且尺寸为直径50mm的棒型变形铝合金比80mm的棒型铝合金的抗拉强度小;管型变形铝合金的抗拉强度小于棒状变形铝合金的抗拉强度。
Aluminum alloy has Low density、high intensity and good plasticity, excellent conductivity、thermal conductivity and resistance to corrosion, widely used in industry, usage amount rank only second to steel.Cast aluminum alloy has plenty of eutectic type Si element, good abrasion resistance, but poor mechanical properties, used mostly in scope in manufacturing aviation equipment, daily necessities, building doors and windows, etc. Press-working of deformation aluminium alloy with good mechanical properties, in industries have found application under many bear parts. Now there has been some reports for pure aluminum mechanical deformation, in addition to the Al-Si alloy, especially wear has quite a lot of research. However, seldom related dry friction properties of aluminum deformation. Research on deformation aluminium alloy tribological properties, all are based on its surface modification process in compliance with performance after the determination of aluminum matrix deformation, the research on very little resistance.
     This article mainly aims at five kinds of deformation aluminum alloy and martensitic stainless steel and the austenitic stainless steel composed of friction pair.In dry friction condition without lubrication friction tester M2000 in the dry friction and wear performance in 15 degrees in temperature, humidity to 40g/m3 in the laboratory. In the same dry friction condition,200N fixed load、rotate speed 200r/min (0.424m/s) experiment for friction and wear process 2 hours, each deformation aluminum alloy in experimental conditions test five times. M2000 friction and wear tester obtain Friction coefficient and the volume wear rate by weighing method,than analysis the data,compare with wear, by scanning electron microscope (SEM) to observe its wear surface, spectrometer analysis of surface composition, the internal relations for microscopic structurematrix、mechanical properties and the friction and wear of deformation aluminum friction,in order to obtain friction and wear mechanism, get the following conclusion:
     Five kinds of deformation of aluminum alloy and martensitic stainless steel's average friction coefficient in between 0.3~0.4, five kinds of deformation of aluminum alloy and austenitic stainless steel's average friction coefficient in between 0.4~0.5. The numbers of A#, E# have lower friction coefficient and volume wear rate,in the foxed load plastic deformation and processing sclerosis occurred. Deformation of aluminum alloy friction and wear process can be divided into three stages.The first stage, minor abrasion stage; The second stage, mechanically mixed layer forming stage;The third stage, mechanically mixed layer forming, peeling wear.Deformation aluminum alloy'swear mechanism to give priority to adhesive wear、abrasive wear, at the same time with oxidation wear. Abrasive wear due to the differences between material properties and show delamination wear、massive spalling and reinforced particle spalling and crushing several wear form.
     In the machining process, the sample size is an important factor that effects the deformation aluminum alloy, that is, the differences of properties due to the differences of the sample size. Tube type deformation aluminumn alloy and rod type deformation aluminum alloy's the yield strength and plastic roughly the same trend in the high temputure.The alloy drop the yield strength and plastic with the increase of temperature, the diameter is 50mm of rod type deformation aluminum alloy's the yield strength and plastic more than the diameter is 80mm of tube type deformation aluminumn alloy when temputure less than or equal to 200℃.Not only has yield phenomenon but also the diameter is 50mm of rod type deformation aluminum alloy's the yield strength and plastic less than the diameter is 80mm of tube type deformation aluminumn alloy when temputure is 250℃or 300℃.The tube type deformation aluminumn alloy's the yield strength and plastic less than tube type deformation aluminumn alloy's.
引文
[1]刘静安.铝及铝加工行业发展新动态与技术创新、产品开发新趋势.四川有色金属,2003,5
    [2]张大童,李元元等.铝基复合材料研究进展.轻合金加工技术,2000,1
    [3]曾渝,尹志明.超高强度铝合金的研究现状及发展趋势.中南工业大学学报,2002,2
    [4]邵伟生,李景秀.中国铝工业研发与应用的最新技术.科技情报开发与经济,2004,1
    [5]肖亚庆.加入WTO后中国铝加工业的发展.新材料产业.2003,2
    [6]高军,赵国群.铝合金型材挤压技术现状及发展趋势.汽车工艺与材料,2002,6
    [7]李红英,董显娟.高强高韧铝合金研究现状及展望.湖南有色金属,2002,10
    [8]武恭,姚良均,李震夏等.铝及铝合金材料手册[M].北京:科学出版社,1994.
    [9]王松龄.全铝车身的研究与发展.汽车工业研究,2000,6
    [10]罗海基.日本政府资助的汽车用铝材项目.世界有色金属,2002,6
    [11]顾伟超,沈德久.铝及其合金微弧氧化技术的研究与进展.金属热处理,2004,1
    [12]王莹,刘向东.碳化硅颗粒增强铝基复合材料的现状及发展趋势.铸造设备研究,2003,6
    [13]国家发展和改革委员会高技术产业公司,中国材料研究学会.中国新材料发展报告(2004).北京:化学工业出版社,2004
    [14]陈剑虹,李明娥,余江瑞等.热处理工艺对6061铝合金显微组织及力学性能的影响.兰州理工大学学报.
    [15]钟掘.提高铝材质量基础研究的进展.轻合金加工技术,2002,5
    [16]王祝堂.美国铝业公司的20—20攻关计划.金属世界,2003,3
    [17]陆大汛熊编署.摩擦学导论.北京出版社,1990
    [18]J.D.Verhoeven, Electrical sliding friction and wear behavior of CuN binsitu composito [J]. IEEETrans. CPMTA,1994,17(4):616-624
    [19]温诗铸.摩擦学原理IMT.清华大学出版社,1999
    [20]张爱民,陈建敏,吕晋军,阎逢元.2024铝合金在干摩擦往复运动条件下的磨损图研究.摩擦学报,(2002)0220094205
    [21]邵荷生.金属的磨料磨损与耐磨材料.北京:机械工业出版社,1988
    [22]李建明.磨损金属学[M].北京:冶金工业出版社,1999
    [23]张嗣伟.摩擦学科学与工程的进展与展望[M]谢友柏.工程前沿,第2卷.北京:高等教育出版社,2005:3—20
    [24]汪德涛.摩擦学发展史话[C].2006全国摩擦学学术会议—纪念摩擦学40周年论文集,2006:246—250
    [25]Department of Education and Science:Lubrication (Tribology) [R]. A Report on the Present Position and Industries Needs, HMSO,1966.
    [26]中国机械工程学会.中国科学院技术科学部中国机械工程学会联合举办第一次全国摩擦磨损润滑研究工作报告会议[J].机械学会动态,1962,18:2
    [27]中国机械工程学会.中国机械工程学会第二次全国摩擦磨损润滑学术会议专辑[J].机械学会动态,1979,68:1-20
    [28]中国机械工程学会.摩擦学学会召开理事扩大会议[J].机械学会动态,1981,93:41-42
    [29]Guillaumin V,Mankowski GCorros Sci,1999,41:421
    [30]王运炎主编.金属材料与热处理.北京:机械工业出版社,1985,174~176
    [31]山东工业大学等编.热处理手册:第一分册.北京:机械工业出版社,1984.,140~142
    [32]雷天同.复合组织的应用与钢的综合性能.金属热处理,1983,(8):55~59
    [33]张华.中国润滑油市场展望[J]。石油商技,2006(4):26~29。
    [34]罗吉甫,王善彰。铁路运输中的摩擦学与节能[J]。润滑与密封,1984(2):11~16。
    [35]To rabian H, Pathak J P, etal. Wear Characteristics of Al2Si Alloys[J]. Wear,1994,172: 49-58.
    [36]Clarke J, Sarkar A D. Wear Characteristics of As cast Binary Aluminium Silicon Alloys[J]. Wear,1979,54:7-16.
    [37]Clegg A J, Das AA. Wear of a Hypereutectic Aluminium Silicon Alloy[J]. Wear,1977, 43:367-373.
    [38]沈阳阀门研究所.阀门设计(Z).沈阳:沈阳阀门研究所,1979。
    [39]高彩桥,刘家浚,邵荷生.材料的粘着磨损与疲劳磨损[M].北京:机械工业出版社,1990
    [40]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992
    [41]吴进明,李志章,郑史烈等.第二相颗粒的快速凝固A12Ti合金滑动磨损性能的影响[J].摩擦学学报,1998,18(4):289~294
    [42]Sarkar A D, Clarke J. Wear characteristics, friction and surface topography observed in the dry sliding of as cast and age hardening Al2Si alloys[J]. Wear,1982,75:71~85
    [43]Prasad B K, Venkateswarlu K, Modi O P. etal. Sliding wearbehavior of someAl2Si alloys: role of shape and size of Si particles and test conditions [J]. Met Mater Trans,1998,29A: 2747~2752
    [44]Alpas A T, Zhang J. Effect of micro structure (particle size andvo lume fraction) and couner face material on the sliding wear resistance of particulate aluminum matrix composite [J]. MetMater Trans,1994,25A:969-983
    [45]FENG Duan(冯端),WANG Yening(王业宁)and QIU Dirong(丘第荣).Metal Physics B(金属物理B)[M]. Beijing:Science Press,1975.557
    [46]中国机械工程学会摩擦学学会.全国摩擦学工业应用调查报告[R].北京,1986
    [47]航空材料手册编写组.航空材料手册[M].北京: 国防工业出版社,1972
    [48]安继儒.中外常用金属材料手册[M].西安:陕西标准化研究所,1984
    [49]高彩桥.摩擦金属学.哈尔滨工业大学出版社,1988:15-58
    [50]M.D.皮特森,W.D.怀纳.磨损控制手册.汪一麟译.机械工业出版社,1994
    [51]T.L. Ho. Evaluation of aircraft brake materials. In:W.A. Glasser, Wear of Materials, New York:American Society of Mechanical Engineers,1977.70
    [52]周筑宝,卢楚芬.最小耗能原理与复合型断裂准则[J].长沙铁道学院学报,1998,16(2):73—77
    [53]周海涛,曾小勤,刘文法等.稀土铈对AZ61变形镁合金组织和力学性能的影响[J]。中国有色金属学报,2004,14(1):99~104
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.