水性涂料用聚合物乳液的交联改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水性涂料用聚合物乳液(WPs)按照制备方法可分为聚合物乳液和水分散体,它们大多采用含有亲水基团(如-COOH,-NHB2B及-SOB3BH等)的功能性单体/表面活性剂作为(内)乳化剂,这些物质会保留在聚合物涂膜中,降低涂膜的耐化学品性能。
     本文采用氮丙啶(AZ)、聚碳化二亚胺(PCDI)、双丙酮丙烯酰胺(DAAM)/己二酰肼(ADH)以及亲水改性多异氰酸酯固化剂等对水性涂料用聚合物乳液进行交联改性,降低或消除聚合物分子链段上的亲水基团的影响;同时,从乳胶粒子的微观构型入手,对聚合物乳液功能性基团的分布进行优化,降低配方中亲水性单体的用量,提高反应活性;通过有机聚合物乳液与无机纳米材料的杂化,实现水性涂料的高性能与低成本目标。具体研究结果如下:
     (1)采用氮丙啶和聚碳化二亚胺分别对阴离子型聚氨酯水分散体(PUD)进行交联改性,利用红外光谱(FT-IR)和热重分析(TGA)表征了PUD固化涂膜。结果表明:在室温下氮丙啶和聚碳化二亚胺可与PUD链上的羧基反应。PUD涂膜性能的提高取决于固化剂种类:如氮丙啶能显著改善涂膜耐水性、耐溶剂性及耐污染性,因其能提高涂膜的凝胶含量至92.6%,涂膜硬度至0.72,其最佳的氮丙啶与羧基的质量比为5.8。另一方面,聚碳化二亚胺能改善涂膜的附着力、柔韧性及抗冷脆性,最佳的聚碳化二亚胺与羧基的质量比为10.4。TGA曲线表明聚碳化二亚胺能提高PUD涂膜的热稳定性,而氮丙啶则降低涂膜的热稳定性。
     (2)水性聚氨酯-丙烯酸杂合乳液(PUA)通过氮丙啶(AZ)和聚碳化二亚胺(PCDI)对其进行交联改性, FT-IR分析表明PUA杂合乳液中的羧基参与了交联反应;涂膜性能测试表明:氮丙啶能显著提高涂膜的凝胶量和硬度,改善涂膜的耐水性、耐溶剂性和耐污性,最佳用量为: m(AZ)∶m(-COOP-P) = 6.60;而聚碳化二亚胺能增强涂膜的柔韧性和显著改善涂膜的抗冻融性,最佳用量为: m(PCDI)∶m(-COOP-P)=16.67。TGA分析发现:氮丙啶和聚碳化二亚胺均可以提高涂膜的热稳定性。
     (3)以双丙酮丙烯酰胺(DAAM)、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)和甲基丙烯酸(MAA)为共聚单体,采用半连续种子乳液聚合工艺合成自交联封闭性聚丙烯酸酯乳液(PAE),考查了双丙酮丙烯酰胺(DAAM)和复合乳化剂对乳液聚合稳定性以及涂膜性能的影响。研究发现:随着DAAM含量的增加,乳液聚合稳定性下降,粒径增大,涂膜的耐介质性能和交联度提高,合适的DAAM加入量为总单体质量的3.0%,DAAM和己二酰肼(ADH)的最佳摩尔比为2:1。采用SDBS+OP-10+OP-40为复合乳化剂体系,选用乳化剂的含量为2.35%,阴/非离子乳化剂质量比为1:1.25;复合乳化剂在种子、核、壳比例为1.5:1:2,制备的乳液具有较好的聚合稳定性(乳液凝胶率低和单体转化率高),乳液耐电解质(钙离子)稳定性好,涂膜具有优异的封闭性。FT-IR谱图表明在涂膜形成过程中DAAM的酮羰基与ADH的酰肼基反应生成腙(C=N),TGA分析发现DAAM改性的PAE降低了涂膜的热稳定性。
     (4)以甲基丙烯酸-β-羟乙酯(HEMA)为羟基单体,采用种子乳液聚合工艺,结合即时中和与极性单体分段滴加等手段合成了固含量为45.0%的新型聚丙烯酸酯杂合乳液(PAH)。TEM观察发现:PAH由表层为羧酸盐覆盖的乳胶粒P1和富含-OH的乳胶粒P2组成;纳米粒度分析表明:相对于常规羟基聚丙烯酸酯乳液(HPAE),PAH的粒径分布更宽,平均粒径更小;针对PAH配制的双组份水性聚氨酯涂料(2K-WPU)的综合性能测试说明:当-COOH和-OH在P1和P2中的质量比分别为1:0和1:3时,涂膜性能最佳;傅里叶红外光谱(FT-IR)分析发现:涂膜固化过程中-NCO与-OH完全反应仅需3天;原子力显微镜(AFM)分析显示:2K-WPU涂层结构致密且外观平整。
     (5)采用助溶剂和硅烷偶联剂(Z-6040)对碱性硅溶胶进行复合改性后添加到聚丙烯酸酯乳液中制备聚丙烯酸酯/SiOB2B杂合乳液(Si/PAE),分别考查助溶剂的种类和用量对硅溶胶的溶胶-凝胶(sol-gel)反应及杂合涂层综合性能的影响发现:异丙醇是合适的助溶剂,其最佳添加量为硅溶胶质量的10.0%。TEM测试和纳米粒径分析发现:助溶剂可以提高无机硅颗粒在杂合乳液中的分散能力,降低Si/PAE的平均粒径; FT-IR和AFM分析说明:Si/PAE乳液在成膜过程中,助溶剂可驱使硅溶胶发生溶胶-凝胶化(sol-gel)反应,并在涂层表面富集含硅聚合物,Si/PAE的涂层结构平整且致密;TGA分析发现:Si/PAE涂层具有较好的热稳定性。
Waterborne polymers (WPs) for coatings can be divided into polymer emulsions and polymer dispersions according to the preparation methods. They all use functional monomers /surfactants with hydrophilic groups including -COOH, -NHB2B, -SOB3BH, and so on as the (internal) emulsifiers. However, the hydrophilicity groups remained in the film often decreases the film performance.
     WPs were crosslinking modified with aziridine (AZ), polycarbodiimide (PCDI), diacetone acrylamide (DAAM)/adipic dihydrazide (ADH), and hydrophilic polyisocyanate to eliminate the influence of hydrophilic groups in polymer films. Additionly, in order to decrese the hydrophilic monomer dosages and the volatile organic compound (VOC) contents to improve the properties of polymers, the micro-structure and configuration of polymer particles were designed by optimizing the distribution of functional groups as well as using organic-inorganic hybrid methods, the results were achieved as follows:
     (1) Anionic aqueous polyurethane dispersion (PUD) was consists of carboxyl groups that served as an internal emulsifier stabilizing aqueous PU dispersions and its film also exhibits a high hydrophilicity. To improve the performance of PUD film, PUDs were crosslinked with aziridine derivatives and polycarbodiimide, respectively. The PUD films were also characterized by FT-IR spectrum and thermogravimetric analysis (TGA). The results indicated that aziridine derivatives and polycarbodiimide were reactive toward the carboxyl groups of PUD at room temperature. Properties of cured PUD film are improved depending on their curing categories. For examples, aziridine derivatives improve greatly water-, solvent- and pollution-resistance properties of cured films attributed to increase its gel content up to 92.6% and its hardness to 0.72 with 5.8 of optimal mass ratio of aziridine derivatives and carboxyl groups. On the other hand, polycarbodiimide improve the adhesion, flexibility and cold crack-resistance of cured films with 10.37 of optimal mass ratio of polycarbodiimide and carboxyl groups. TGA curves show that the thermal stability of cured films increased by polycarbodiimide and decreased by aziridine derivatives.
     (2) Polyurethane-acrylate hybrid emulsions (PUA) were crosslinked by aziridine derivatives and polycarbodiimides, respectively. The FT-IR spectra show that the carboxyl groups of PUA reacted with aziridine derivatives and polycarbodiimides during the drying process of PUA. The properties of PUA film indicated that aziridine derivatives greatly improve water-, solvent- and pollution- resistance properties due to increase film’s gel content and hardness, and the optimal mass ratio of aziridine derivatives and carboxyl group [m(AZ): m(-COOP-P)] is 6.60; while polycarbodiimide improves the PUA film’s adhesion, flexibility and cold crack resistance greatly, which the corresponding mass ratio of polycarbodiimide and carboxyl group [m(PCDI): m(-COOP-P) ] is 16.67. The TGA curves determined that both polycarbodiimide and aziridine can improve the thermal stability of PUA films.
     (3) The ambient self-crosslinkable polyacetylate latexes with sealed function were synthesized by semi-batch seeded emulsion polymerization with diacetone acrylamide (DAAM), methyl acrylate (MMA), methacrylic acid (MAA) and butyl acrylate (BA) as co-monomers. The effects of DAAM and multiple emulsifiers on the emulsion polymerization stability and film performances were investigated. The results indicated that the emulsion polymerization stability decreased and particle size of latex increased with the amount of DAAM increased, while the crosslinked degree of cured film increased and the water- or alcohol-resistance properties of cured film improved, and the optimal DAAM dosage is 3.0% (mass fraction) and the molar ratio of DAAM and adipic dihydrazide (ADH) is 2:1; On the other hand, the emulsion polymerization displayed highly stability (low agglomeration and high monomer conversation), polyacrylate latexes exhibited good electrolyte stability, and its cured films possessed excellent sealed function, which the sodium dodecyl sulphonate(SDS), nonyl phenol ethoxylates (OP-10) and OP-40 were used as multiple emulsifiers with 2.35% (mass fraction) of the optimal dosage, the mass ration of SDS to OP-10 and OP-40 is 1:1.25; and the mass ratio of multiple emulsifies dosages in seeded, core and shell is 1.5:1:2. The FT-IR spectrum shows that keton carbonyl groups of DAAM react with hydrazide groups of ADH to form imines (C=N) during film formation. TGA curves indicated that the thermally stability of cured film was decreased attributing to the presence of C=N groups.
     (4) Novel polyacrylate hybrids (PAH) emulsion with 45.0% (wt) solids content was synthesized by semi-batch seeded emulsion polymerization withβ-hydroxyethyl methacrylate (HEMA) as a hydroxyl monomer, the polar monomers were multi-stages added and carboxyl groups were neutralized during the polymerization process. TEM photos show that PAHs were composed of two kinds of emulsion particles including one covered with carboxy groups (P1) and the other carrying hydroxy groups (P2). Nano-granularity analysis indicated that average diameters of the PAHs were smaller and its particle distributions were much broader than those of the common hydroxyl polyacrylate emulsion (HPAE). Two component waterborne polyurethane coatings (2K-WPU) were prepared with PAH, and the properties of 2K-WPU films indicated that the optimal mass ratio of carboxy / hydroxy groups in P1 and P2 were 1:0 and 1:3, respectively. The FT-IR spectra show that the reactions between NCO and OH in 2K-WPU films were completely finished in 3 days. AFM pictures indicated that the surface of 2K-WPU cured films were compact and flat.
     (5) Polyacrylate/SiOB2B composite emulsions (Si/PAE) were prepared by polyacrylate emulsions (PAE) mixing with alkaline silica sol modified by a saline coupling agent and a co-solvent. The effects of kinds and amounts of co-solvents on the sol-gel reaction and the properties of composite films were investigated, the results indicated that isopropanol is the best co-solvent and the optimal dosage is 10 wt% of the silica sol. The nano-granularity analysis and TEM photos showed that co-solvents can make the silica particles distributed more evenly in the composite emulsions and the average diameters of the Si/PAE were smaller than that of the PAE. The FT-IR spectra and AFM pictures indicated that co-solvent could induce the occurrence of sol-gel reaction of silica sol to form Si-based polymers on the surface of films during the film formation. Si/PAE films display excellent properties besides high gloss and compact. TGA curves indicated that the Si/PAE films exhibit higher thermal stability than that of the PAE.
引文
[1] Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers [J]. Progress in Materials Science, 2007, 52(6): 915-1015.
    [2]瞿金清,陈焕钦.水性聚氨酯涂料研究进展[J].高分子材料科学与工程, 2003, 19(2): 43-47.
    [3]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版, 2002: 559-633.
    [4]夏正斌,柯志烽,王国有,等.水性涂料用聚合物乳液的有关概念与基本特征[J].涂料工业, 2009, 39(9): 66-71.
    [5]涂料工艺编委会.涂料工艺(第三版)[M ].北京:化学工业出版社, 1997.
    [6]罗春晖,瞿金清,陈焕钦.水性聚氨酯交联改性机理及性能[J].高等学校化学工程学报, 2009, 23(4): 650-654.
    [7]陈向荣,丁小斌.聚氨酯/聚丙烯酸酯复合乳液的研制进展[J].功能高分子学报, 2001, 14(1): 127-132.
    [8]瞿金清,罗春晖,陈焕钦.水性聚氨酯-丙烯酸杂合乳液交联改性机理及性能[J].华南理工大学学报(自然科学版), 2009, 37(6): 53-57.
    [9]候青顺,张剑秋,张翔飞.聚氨酯/聚丙烯酸酯复合乳液的研究进展[J].化工进展, 2002, 21(11): 831-835.
    [10] Jacobs P B. Two-Component Waterborne Polyurethane Coatings: Now and Into the Next Century [J]. Journal of Coating Technology, 1993, 65(7): 45-50.
    [11] Denise E F, David A L, RichardI J Q. Effect of particle size distribution on the performance of two-component water-reducible acrylic polyurethane coatings using tertiary polyisocy- anate crosslinkers [J]. Journal of Coating Technology, 2000, 72(902): 63-69.
    [12] Blum H, Kubitza W, Hoehlein P. Aqueous binder composition and a process for its preparation [P]. USP5387642, 1995-02-07.
    [13] Heathley F, Lovell P, McDonald J. NMR Studies of Free-radical Polymerization and Copolymerization of Monomers and Polymers Containing Allyl Groups [J]. European Polymer Journal , 1993, 29 (7): 255-268.
    [14]童身毅.交联型乳液涂料用固化剂的进展[J].涂料工业, 2005, 35(8): 38-42.
    [15]卿宁,张晓铺,俞从正.皮革工业用聚氨酯材料研究的回顾与进展[J].中国皮革, 1999, 21(7): 5-10.
    [16] Coogan A G. Post-crosslinking of waterborne urethans [J]. Progress in Organic Coatings, 1997, 32(1-4): 51-63.
    [17]李冰.水性聚氨酯涂料的制备、改性及其性能研究[D].天津大学, 2006.
    [18]谢飞,刘宗惠,魏德卿.氮丙啶交联剂的交联性能及固化动力学研究[J].合成化学, 2002, 10(2) : 120-125.
    [19] Lai J Z, Ling H J, Chen G N, et al. Polymer Hybrids from Self-Emulsified PU Anionomer and Water-Reducible Acrylate Copolymer via a Postcuring Reaction [J]. Journal of Applied Polymer Science, 2003, 90(4): 3578-3587.
    [20] Hesselmans L C, Derksen A J, Goorbergh A M. Polycarbodiimide crosslinkers [J]. Progress in Organic Coatings, 2006, 55(2): 142-148.
    [21]王武生,潘才元,曾俊等.交联水性聚氨酯分散体的合成[J].高分子学报, 2000, (3): 319- 324.
    [22]瞿金清,陈焕钦.环氧改性水性聚氨酯涂料的合成与性能研究[J].高校化学工程学报,2003, 16(5): 570-574.
    [23]高彦芳,李仲涛,吴璟,等.羟基丙烯酸共聚物乙酰乙酰化反应及其聚合物应用研究[J].高分子材料科学与工程, 1999, 15(4): 42-43.
    [24] Kato Y, Hayashi R,Tsukamoto T, et al. Polyhydrazine crosslinker-containing aqueous pigmented dispersions and dispersants [P]. EP: 567128A1, 1993-10-27.
    [25] Abe S, Aoki M, Tsukamoto T. Self-crosslinking resin aqueous dispersion compositions [P]. JP: 6272742, 1987-04-03.
    [26] Yoshio N, Shigeru M, Shohei K,et al. Resin Composition [P]. USP: 6770709, 2004-08-03.
    [27] Clark M D, Helmer B J. Acrylic Modified waterborne alkyd dispersions [P]. USP: 9907- 799, 1999-02-18.
    [28]陈震生,涂伟萍,胡剑青.水性聚氨酯室温交联技术研究进展[J].热固性树脂, 2007, 22(2): 51- 54.
    [29]郑永丽,刘宗惠,贾锂,等.钙离子室温交联聚丙烯酸酯无皂水溶胶的研究[J].合成化学, 2003, 11(5): 417-420.
    [30]杨立群,谢志明,李卓美,等.金属离子络合交联丙烯酸酯共聚物无皂水溶胶涂料[J].应用化学, 1998, 15(2): 82-84.
    [31]蒋硕健.双丙酮丙烯酰胺与己二酰肼在水乳液与水溶性聚合物后交联中的应用[J].中国涂料, 2003(3) : 24-28.
    [32] Trentini M, Gerosa P, Carlson V. Formaldehyde-free Waterborne Acrylic Wood Coatings [J]. European Polymer Journal. 1995, 10(5): 362- 367.
    [33]王浩,唐黎明,陈久军.硅烷偶联剂改性水性聚氨酯涂层[J].化学建材, 2006, 22(4): 124-130.
    [34] Hawkins C A, Sheppard A C, Wood T G. Recent advances in aqueous two-component systems for heavy-duty metal protection [J]. Progress in Organic Coatings, 1997, 32: 256-262.
    [35]罗春晖,瞿金清,陈焕钦.水性双组份涂料用丙烯酸酯乳液的羟值因素[J].涂料工业, 2009, 39(10): 38-42.
    [36] Jacobs P B. Two-component waterborne polyurethane coatings: Now and Into the Next Century [J]. Journal of Coating Technology, 1993, 65(7): 45-50.
    [37] Charles R H, Andrew G G, Robert J H. Film formation mechanism of two-component waterborne polyurethane coatings [J]. Journal of Coatings Technology, 1996, 68(852): 51-61.
    [38] Ingo A, Sascha T, Peter K, et al. HCharacterization of coating systems by scanning acoustic microscopy: Debonding, blistering and surface topologyH [J]. Progress in Organic Coatings, 2009, 64: 112-119.
    [39]瞿金清,涂伟萍,陈焕钦.双组份水性聚氨酯涂料的合成与表征[J].高校化学工程学报, 2002, 2(16): 212-216.
    [40]张发爱,余彩莉,王云普.双组份水性聚氨酯涂料性能研究-聚丙烯酸酯分散体对涂膜性能的影响[J].涂料工业, 2005, 35(6): 1-5.
    [41]周新华.水性双组份丙烯酸聚氨酯涂料的制备与性能研究[D],华南理工大学, 2005.
    [42] Bernhard S, Sylke H, Walter H, et al. Hydroresin dispersions: tailoring morphology of latex particle and films [J]. Progress in Organic Coatings, 1996, 29: 201-208.
    [43] Billiani J, Wilfinger W. New low-VOC acrylic polyol dispersions for two-component polyurethane coatings [J]. Surface Coatings International, 2002, 85(B3):192-195.
    [44] Pires R, Laas H J. A new tailor-made polyisocyanate for two-pack waterborne polyurethane coatings [J]. Paintindia, 2001(9): 124-129.
    [45] Nabuurs T, Pears D, Overbeek A. Defect free coatings from two-pack isocyanate curable acrylic dispersions [J]. Progress in Organic Coatings, 1999, 35(1-4): 129-140.
    [46] Melchiors M, Kobusch C, Jurgens E, et al. Recent developments in aqueous two- component polyurethane (2K-PUR) coatings [J]. Progress in Organic Coatings, 2000, 40(1-4): 99-109.
    [47] Feng S X, Dvorchak M, Hudson K E, et al. New high performance two-component wood coatings comprised of a hydroxy functional acrylic emulsion and a water-dispersible polyisocyanate [J]. Journal of Coatings Technology, 1999, 71(899): 51-57.
    [48] Sawada N, Hamamura T, Nomura M,et al. Two-Component type waterborne coating composition with visible pot life [P]. JP: 2000256B15, 2000.
    [49] Huybrechts J, Bruylants P, Vaes A,et al. Surfactant-Free Emulsions for Waterborne, Two-component Polyurethane Coatings [J]. Progeress in Organic Coatings, 2000, 38: 67-77.
    [50] Alain G, Landfester K, Schorkc F,et al. Hybrid polymer latexes[J]. Progress in Polymer Science, 2007, 32 (12):1439-1461.
    [51]肖新颜,夏正斌,张旭东,等.环境友好涂料新进展[J].化工学报, 2003, 54 (4): 531-537.
    [52] Ling Y Y, Wen B L. Environmental responses of nanostructured polyaniline films based on polystyrene-polyaniline core-shell particles [J]. Materials Chemistry and Physics, 2009, 115 (1): 28-32.
    [53]罗春晖,瞿金清,陈焕钦.自交联封闭性乳液的合成与性能[J].化工学报, 2009, 60(7): 1823-1830.
    [54] Tissot I, Novat C, Lefebvre F, et al. Hybrid latex particles coated with silica [J]. Macrom- olecules, 2001, 34 (17): 5737-5739.
    [55] Chattopadhyay D K, Autumn D, Zakula D C. Organic-inorganic hybrid coatings prepared from glycidyl carbamate resin,3-aminopropyl trimethoxy silane and tetraethoxyortho- silicate [J]. Progress in Organnic Coatings, 2009, 64(1): 128-137.
    [56] Toushiyuki T, Mitsuru W. Acrylic polymer/silica hybrids prepared by emulsifier-free emulsion polymeriza- tion and the sol-gel process [J]. Journal of Polymer Science, 2006, 44: 273-280.
    [57] Zou H, Wu S S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications [J]. Chemical Reviews, 2008, 108(9):3893-3957.
    [58] Schneider M, Graillat C, Guyot A,et al High solid content emulsion Part II: Preparationof seed latexes [J]. Journal of Applied Polymer Science, 2002, 84 (10):1897-914.
    [59] Dvorchak M J. Interfacial studies of crosslinked urethanes: Part IV. Substrate effect on film formation in polyester waterborne polyurethanes [J]. Journal of Coatings Technology 1997, 69(866): 47-54.
    [60] Ginkel M V. New development in waterbased polymers for industrial wood coatings [J]. Surface Coating International(Part A), 2001, (2):85-88.
    [61] Rokicki G. Aliphatic cyclic carbonates and spiroortho-carbonates as monomers [J]. Progress in Polymer Science, 2000, 2(2): 259-265.
    [62] Trentini M, Gerosa P, Carlson V. Formaldehyde-free Waterborne Acrylic Wood Coatings [J]. European Polymer Journal. 1995, 10(5): 362- 367.
    [63] Posthumus W, Derksen A J, Goorbergh J A M, Hesselmans L C J. HCrosslinking by polycarbodiimidesH [J]. Progress in Organic Coatings, 2007, 58(2-3): 231-236.
    [64] Wang S C, Chen P C, Yeh J T, Chen K N. A new curing agent for self-curable system of aqueous-based PU dispersion [J]. React and Functional Polymer 2007, 67(4): 299-311.
    [65]赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M].北京:科学出版社, 2003.
    [66] Lai J Z, Ling H J, Chen G N, Yeh J T, Chen K N. Polymer Hybrids from Self-Emulsified PU Anionomer and Water-Reducible Acrylate Copolymer via a Postcuring Reaction [J]. Journal of Applied Polymer Science, 2003, 90(4): 3578-3587.
    [67] Francoise D, Odile L. The synthesis of C-silyl-substituted aziridine derivatives [J]. Journal of Organic Chemistry, 1978, 156(2): 25-28.
    [68]瞿金清,陈焕钦.水性聚氨酯-丙烯酸杂合乳液涂料研究进展[J].高分子材料科学与工程, 2003, 19(2): 43-47.
    [69] Yang S, Petschke G. Air curable water-borne urethane-acrylic hybrids [P]. US: 6239209, 2001- 12-8.
    [70]李璐,瞿金清,杨卓如.水性聚氨酯木器涂料的研制[J].华南理工大学学报(自然科学版), 2002, 30 (5): 61-63.
    [71] Wang S C, Chen P C, Yeh J T,et al. A new curing agent for self-curable system of aqueous-based PU dispersion [J]. Reactive and functional polymers. 2007, 67(4): 299-311.
    [72]瞿金清,李佩妍,陈焕钦.甲基丙烯酸甲酯与水性聚氨酯的共聚反应[J].华南理工大学学报(自然科学版), 2004, 32(8): 54-57.
    [73] Denise E F, David A L, Richard J Q. Effect of particle size distribution on the performance of two-component water-reducible acrylic polyurethane coatings usingtertiary polyisocyanate crosslinkers [J]. Journal of Coating Technology, 2000, 72(902): 63-69.
    [74]瞿金清,陈焕钦.高固体含量水性聚氨酯的合成[J].化工学报, 2003, 54(6): 868-871.
    [75] Tamai T, Watanabe M. Acrylic polymer/silica hybrids prepared by emulsifier-free emulsion polymerization and the sol-gel process [J]. Journal of Polymer Science, 2006, 44: 273-280.
    [76]唐黎明,郭伟,刘德山,等.乙酰乙酸聚丙烯酸酯与端烯基聚氨酯交联反应机理[J].应用化学, 1997, 14(2): 78-80.
    [77]朱延安,张心亚,曹树潮,等.聚碳酸酯型水性聚氨酯分散体合成与性能[J].水性树脂, 2008, 23(7): 31-34.
    [78]唐林生,张淑芬,杨锦宗.水溶性氨基丙烯酸漆的研制[J].精细化工, 2002, 19(1): 48-50.
    [79]崔月芝,段洪东,张庆思,等.双丙酮丙烯酰胺参与共聚的聚丙烯酸酯乳液的制备及其应用[J].应用化学, 2001, 18(2): 131-133.
    [80] Nakayama Y. Development of novel aqueous coatings which meet the requirements of ecology-conscious society: novel cross-linking system based on the carbonyl-hydrazide reaction and its applications [J]. Progress in Organic Coatings, 2004, 51: 280-299.
    [81] Nicola K, Derek R I, Joesph L K. The diacetone acrylamide crosslinking reaction and its influence on the film formation of acrylic latex [J]. Journal of Coatings Technology and Research, 2008, 5(3): 285-297.
    [82]张庆思,朱晓丽,李俊英,等.聚氨酯水分散体交联剂的合成与结构表征[J].应用化学, 2004, 21(11): 1123-1126.
    [83]曹同玉,刘庆普,胡金生.聚合物乳液合成原理、性能及应用[M].北京:化学工业出版社, 2007, 165-188.
    [84] Melchiors M, Kobusch C, Jurgens E, et al. Recent developments in aqueous two- component polyurethane (2K-PUR) coatings [J]. Progress in Organic Coatings, 2000, 40(1-4): 99-109.
    [85] Nabuurs T, Pears D, Overbeek A. Defect free coatings from two-pack isocyanate curable acrylic dispersions [J]. Progress in Organic Coatings, 1999, 35(1-4): 129-140.
    [86] Michael J D. Using high performance two-component waterborne polyurethane wood coatings [J]. Journal of Coatings Technology, 1997, 69(866): 47-52.
    [87] Sawada N, Hamamura T, Nomura M, et al. Two-component type waterborne coating composition with visible pot life [P]. JP 2000256615, 2000.
    [88] Geurink P, Scherer T, Buter R, et al. A complete new design for waterborne 2-pack PUR coatings with robust application properties [J]. Progress in Organic Coatings, 2006, 55: 119-127.
    [89] Zeno W, Wicks J, Douglas A, et al. Two package waterborne urethane systems [J]. Progress in Organic Coatings, 2002, 44: 161-183.
    [90] Urska S, Matjaz K. Seed semibatch emulsion copolymerization of methyl methacrylate and butyl acrylate using polyurethane dispersion: effect of soft segment length on kinetics [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 233: 51-62.
    [91] Ansen F K, Ugelstad J . Particle nucleation in emulsion polymerizationⅡ: Nucleation in systems with anionic emulsifier investigated by seeded and unseeded polymerization [J]. Journal of Polymer Science: Polymer Chemistry Edition, 1979, 17: 30-33.
    [92] Schneider M, Graillat C, Guyot A,et al. High solid content emulsion Part II: Preparation of seed latexes [J]. Journal of Applied Polymer Science, 2002, 84 (10): 1897 - 914.
    [93] Hirose M, Kadowaki F, Zhou J H. The structure and properties of core-shell type acrylic- polyurethane composite aqueous emulsions [J]. Progress in Organnic Coatings, 1997, 31 (3): 151 - 169.
    [94] Neslihan A, Bunyamin K A, Tuncer E, et al. A method for polymethymetacrylate coating via self-curable unsaturated polyester primer on metal and glass surfaces [J]. Progress in Organnic Coatings, 2007, 60 (6): 69 - 74.
    [95]莫尊理,赵仲丽,陈红,等.纳米SiOB2B /纤维素复合材料的非均相制备及其性能[J].复合材料学报, 2008, 25 (4) : 24 - 28.
    [96]赫丽华,刘平桂,丁鹤雁.聚己内酯/环氧树脂/SiOB2B杂化材料的制备及性能[J].复合材料学报, 2006, 23 (3) : 71 - 76.
    [97] Ma J Z, Hu J, Zhang Z J. Polyacrylate/silica nanocomposite materials prepared by sol-gel process [J]. European Polymer Journal, 2007, 43 (7): 4169 - 4177.
    [98] Yasuharu N. Development of novel aqueous coatings which meet the requirements of ecology-conscious society: novel crosslinking system based on the carbonyl-hydrazide reaction and its applications [J]. Progress in Organic Coatings, 2004, 51: 280 - 299.
    [99] Zou H, Wu S S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications [J]. Chemical Reviews, 2008, 108 (9): 3893 - 3957.
    [100] Chien H Y, Feng J L, Yun P L, et al. Composites of colloidal silica and waterborne polyurethane [J]. Journal of Colloid and Interface Science, 2006, 302 (6): 123 - 132.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.